Genome-Wide Identification and Expression Analysis of the NLP Family in Sweet Potato and Its Two Diploid Relatives
Abstract
1. Introduction
2. Results
2.1. Identification and Characteristics of NLPs in Sweet Potato and Its Two Diploid Relatives
2.2. Chromosomal Distribution and Syntenic Analysis of IbNLP Genes
2.3. Phylogenetic Relationships of NLPs in Sweet Potato and Its Two Diploid Relatives
2.4. Conserved Domain and Exon–Intron Structure Analysis of NLPs in Sweet Potato and Its Two Diploid Relatives
2.5. cis-Element Analysis in the Promoter of IbNLPs in Sweet Potato
2.6. Protein Interaction Network of IbNLPs in Sweet Potato
2.7. Expression Analysis of NLPs in Sweet Potato and Its Two Diploid Relatives
2.7.1. Expression Analysis in Different Tissues
2.7.2. Expression Analysis in Different Development Stages
2.7.3. Expression Analysis in Sweet Potato Starch Transcriptome
2.7.4. Expression Analysis in Nitrate Induction
2.7.5. Expression Analysis Under Abiotic Stresses
3. Discussion
3.1. Identification and Evolution of the NLP Family
3.2. Different Functions of NLPs in Tuberous Root Development and Starch Synthesis in Sweet Potato
3.3. Different Functions of NLPs on Abiotic Stress Response Between Sweet Potato and Its Two Diploid Relatives
4. Materials and Methods
4.1. Identification of NLPs
4.2. Chromosomal Distribution of NLPs and Syntenic Analysis
4.3. Protein Properties Prediction of NLPs
4.4. Phylogenetic Analysis of NLPs
4.5. Domain Identification Analysis of NLPs
4.6. Exon–Intron Structures and Promoter Analysis of NLPs
4.7. Protein Interaction Network of NLPs
4.8. qRT-PCR Analysis of NLPs
4.9. Transcriptome Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bloom, A.R. The increasing importance of distinguishing among plant nitrogen sources. Curr. Opin. Plant Biol. 2015, 25, 10–16. [Google Scholar] [CrossRef]
- Mason, R.E.; Craine, J.M.; Lany, N.K.; Jonard, M.; Ollinger, S.V.; Groffman, P.M.; Fulweiler, R.W.; Angerer, J.; Read, Q.D.; Reich, P.B.; et al. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 2022, 376, eabh3767. [Google Scholar] [CrossRef]
- Crawford, N.M.; Forde, B.G. Molecular and developmental biology of inorganic nitrogen nutrition. Arab. Book 2002, 1, e0011. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Liu, M.; Lin, Z.; Wang, Z.; Chen, B.; Liu, C.; Guo, A.; Konishi, M.; Yanagisawa, S.; Wagner, G.; et al. NIN-like protein 7 transcription factor is a plant nitrate sensor. Science 2022, 377, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhi, X.; Wang, Y.; Wang, Y. Genome-wide survey and expression analysis of NIN-like Protein (NLP) genes reveals its potential roles in the response to nitrate signaling in tomato. BMC Plant Biol. 2021, 21, 347. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.J.; Cramer, M.D. Root nitrogen acquisition and assimilation. Plant Soil 2005, 274, 1–36. [Google Scholar] [CrossRef]
- Forde, B.G.; Clarkson, D.T. Nitrate and ammonium nutrition of plants: Physiological and molecular perspectives. Adv. Bot. Res. 1999, 30, 1–90. [Google Scholar] [CrossRef]
- Lu, C.; Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef]
- Vidal, E.A.; Alvarez, J.M.; Araus, V.; Riveras, E.; Brooks, M.D.; Krouk, G.; Ruffel, S.; Lejay, L.; Crawford, N.M.; Coruzzi, G.M.; et al. Nitrate in 2020: Thirty years from transport to signaling networks. Plant Cell 2020, 32, 2094–2119. [Google Scholar] [CrossRef]
- Konishi, M.; Yanagisawa, S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat. Commun. 2013, 4, 1617. [Google Scholar] [CrossRef]
- Castaings, L.; Camargo, A.; Pocholle, D.; Gaudon, V.; Texier, Y.; Boutet-Mercey, S.; Taconnat, L.; Renou, J.P.; Daniel-Vedele, F.; Fernandez, E.; et al. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J. 2009, 57, 426–435. [Google Scholar] [CrossRef]
- Liu, K.; Niu, Y.; Konishi, M.; Wu, Y.; Du, H.; Chung, H.S.; Li, L.; Boudsocq, M.; McCormack, M.; Maekawa, S.; et al. Discovery of nitrate-CPK-NLP signalling in central nutrient growth networks. Nature 2017, 545, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Marchive, C.; Roudier, F.; Castaings, L.; Bréhaut, V.; Blondet, E.; Colot, V.; Meyer, C.; Krapp, A. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat. Commun. 2013, 4, 1713. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Wang, Y.; Liu, Y.; Jiang, L.; He, B.; Ning, L.; Du, H.; Lv, Y.; Zhou, L.; Lin, F.; et al. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize. Plant J. 2020, 102, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Guan, P.; Ripoll, J.J.; Wang, R.; Vuong, L.; Bailey-Steinitz, L.J.; Ye, D.; Crawford, N.M. Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proc. Nat. Acad. Sci. USA 2017, 114, 2419–2424. [Google Scholar] [CrossRef]
- Guan, P. Dancing with Hormones: A current perspective of nitrate signaling and regulation in Arabidopsis. Front. Plant Sci. 2017, 8, 1697. [Google Scholar] [CrossRef]
- Jagadhesan, B.; Sathee, L.; Meena, H.S.; Jha, S.K.; Chinnusamy, V.; Kumar, A.; Kumar, S. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice. Sci. Rep. 2020, 10, 9368. [Google Scholar] [CrossRef]
- Ge, M.; Liu, Y.; Jiang, L.; Wang, Y.; Lv, Y.; Zhou, L.; Liang, S.; Bao, H.; Zhao, H. Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Plant Growth Regul. 2018, 84, 95–105. [Google Scholar] [CrossRef]
- Li, D.; Jin, Y.; Lu, Q.; Ren, N.; Wang, Y.; Li, Q. Genome-wide identification and expression analysis of NIN-like protein (NLP) genes: Exploring their potential roles in nitrate response in tea plant (Camellia sinensis). Plant Physiol. Biochem. 2024, 207, 108340. [Google Scholar] [CrossRef]
- Mishra, S.; Singroha, G.; Tiwari, R.; Sharma, P. Comprehensive genome-wide expression analysis of NLP transcription factors elucidates their crucial role in enhancing nitrogen response in wheat (Triticum aestivum L.). Curr. Plant Biol. 2025, 42, 100463. [Google Scholar] [CrossRef]
- Liu, M.; Chang, W.; Fan, Y.; Sun, W.; Qu, C.; Zhang, K.; Liu, L.; Xu, X.; Tang, Z.; Li, J.; et al. Genome-wide identification and characterization of NODULE-INCEPTION-Like protein (NLP) family genes in Brassica napus. Int. J. Mol. Sci. 2018, 19, 2270. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hou, Q.; Nie, X.; Shang, C.; Dong, Q.; Wang, Q. Genome-wide identification of the apple NLP (NIN-like proteins) family and their potential role under abiotic stress. 3 Biotech 2025, 15, 210. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, J.; Tang, W.; Sun, D.; Wang, S.; Chen, K.; Zhou, Y.; Wang, C.; Chen, J.; Xu, Z.; et al. Genome-Wide Identification of NLP Gene Families and Haplotype Analysis of SiNLP2 in Foxtail Millet (Setaria italica). Int. J. Mol. Sci. 2024, 25, 12938. [Google Scholar] [CrossRef]
- Schauser, L.; Roussis, A.; Stiller, J.; Stougaard, J. A plant regulator controlling development of symbiotic root nodules. Nature 1999, 402, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Easwaran, V.; Chau, V.; Okamoto, M.; Ierullo, M.; Kimura, M.; Endo, A.; Yano, R.; Pasha, A.; Gong, Y.; et al. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nat. Commun. 2016, 7, 13179. [Google Scholar] [CrossRef]
- Wu, J.; Sun, L.Q.; Song, Y.; Bai, Y.; Wan, G.Y.; Wang, J.X.; Xia, J.Q.; Zhang, Z.Y.; Zhang, Z.S.; Zhao, Z.; et al. The OsNLP3/4-OsRFL module regulates nitrogen-promoted panicle architecture in rice. New Phytol. 2023, 240, 2404–2418. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.S.; Xia, J.Q.; Alfatih, A.; Song, Y.; Huang, Y.J.; Wan, G.Y.; Sun, L.Q.; Tang, H.; Liu, Y.; et al. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnol. J. 2021, 19, 448–461. [Google Scholar] [CrossRef]
- Cao, H.; Qi, S.; Sun, M.; Li, Z.; Yang, Y.; Crawford, N.M.; Wang, Y. Overexpression of the maize ZmNLP6 and ZmNLP8 can complement the Arabidopsis nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation. Front. Plant Sci. 2017, 8, 1703. [Google Scholar] [CrossRef]
- Lin, J.S.; Li, X.; Luo, Z.; Mysore, K.S.; Wen, J.; Xie, F. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula. Nat. Plants 2018, 4, 942–952. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, J.; Li, F.; Lu, Y.; Fang, Z.; Fu, M.; Mysore, K.S.; Wen, J.; Gong, J.; Murray, J.; et al. The small peptide CEP1 and the NIN-like protein NLP1 regulate NRT2.1 to mediate root nodule formation across nitrate concentrations. Plant Cell 2023, 35, 776–794. [Google Scholar] [CrossRef]
- Liu, Q. Improvement for agronomically important traits by gene engineering in sweetpotato. Breed Sci. 2017, 67, 15–26. [Google Scholar] [CrossRef]
- Yang, J.; Moeinzadeh, M.H.; Kuhl, H.; Helmuth, J.; Xiao, P.; Haas, S.; Liu, G.L.; Zheng, J.L.; Sun, Z.; Fan, W.; et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat. Plants 2017, 3, 696–703. [Google Scholar] [CrossRef]
- Wu, S.; Lau, K.H.; Cao, Q.; Hamilton, J.P.; Sun, H.; Zhou, C.; Eserman, L.; Gemenet, D.C.; Olukolu, B.A.; Wang, H.; et al. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nat. Commun. 2018, 9, 4580. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhou, L.; Li, Y.; Zhang, D.; Gao, Y. Plant NIGT1/HRS1/HHO transcription factors: Key regulators with multiple roles in plant growth, development, and stress responses. Int. J. Mol. Sci. 2021, 22, 8685. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Guo, Z.; Song, L.; Wang, Y.; Cheng, Y. NCP1/AtMOB1A plays key roles in auxin-mediated Arabidopsis development. PLoS Genet. 2016, 12, e1005923. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Yue, X.; Cui, X.; Song, L.; Cheng, Y. AtMOB1 genes regulate jasmonate accumulation and plant development. Plant Physiol. 2020, 182, 1481–1493. [Google Scholar] [CrossRef]
- Gorgues, L.; Smokvarska, M.; Mercier, C.; Igisch, C.P.; Crabos, A.; Dongois, A.; Bayle, V.; Fiche, J.B.; Nacry, P.; Nollmann, M.; et al. GEF14 acts as a specific activator of the plant osmotic signaling pathway by controlling ROP6 nanodomain formation. EMBO Rep. 2025, 26, 2146–2165. [Google Scholar] [CrossRef]
- Qin, Z.; Li, A.; Dong, S.; Wang, Q.; Hou, F.; Zhang, H. Comparative transcriptome analysis of hybrid population provides insights into starch content in sweet potato (Ipomoea batatas L.) storage root. Plant Mol. Biol. Rep. 2021, 39, 673–684, Correction in Plant Mol. Biol. Rep. 2021, 39, 685. https://doi.org/10.1007/s11105-021-01296-5. [Google Scholar] [CrossRef]
- Jiang, Z.; Wei, Z.; Zhang, J.; Zheng, C.; Zhu, H.; Zhai, H.; He, S.; Gao, S.; Zhao, N.; Zhang, H.; et al. Source-sink synergy is the key unlocking sweet potato starch yield potential. Nat. Commun. 2024, 15, 7260. [Google Scholar] [CrossRef]
- Ji, H.; Zhao, H.; Zeng, Y.; Cheng, R.; Wang, S.; Wang, Y.; Zhao, H. Meta-analysis on the effect and influence factors of nitrogen application on tuber yield of sweet potato in China. J. Plant Nutr. Fertil. 2024, 30, 1606–1620. [Google Scholar] [CrossRef]
- Duan, W.; Wang, Q.; Zhang, H.; Xie, B.; Li, A.; Hou, F.; Dong, S.; Wang, B.; Qin, Z.; Zhang, L. Differences between nitrogen-tolerant and nitrogen-susceptible sweetpotato cultivars in photosynthate distribution and transport under different nitrogen conditions. PLoS ONE 2018, 13, e0194570. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, Y.; Zhai, H.; He, S.; Zhao, N.; Liu, Q. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. J. Integr. Agric. 2019, 18, 9–23. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q.; Zhai, H.; Li, Y.; Wang, X.; Liu, Q.; He, S. Transcript profile analysis reveals important roles of jasmonic acid signalling pathway in the response of sweet potato to salt stress. Sci. Rep. 2017, 7, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Hsu, P.K.; Tsay, Y.F. Uptake, allocation and signaling of nitrate. Trends Plant Sci. 2012, 17, 458–467, Erratum in Trends Plant Sci. 2012, 17, 624. https://doi.org/10.1016/j.tplants.2012.08.007. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Naz, M.; Fan, X.; Xuan, W.; Miller, A.J.; Xu, G. Plant nitrate transporters: From gene function to application. J. Exp. Bot. 2017, 68, 2463–2475. [Google Scholar] [CrossRef]
- Yu, L.; Wu, J.; Tang, H.; Yuan, Y.; Wang, S.; Wang, Y.; Zhu, Q.; Li, S.; Xiang, C. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation. Sci. Rep. 2016, 6, 27795. [Google Scholar] [CrossRef]
- Alfatih, A.; Wu, J.; Zhang, Z.; Xia, J.; Jan, S.; Yu, L.; Xiang, C. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency. J. Exp. Bot. 2020, 71, 6032–6042. [Google Scholar] [CrossRef]
- Cao, X.; Lu, X.; Xiong, J.; Li, J.; Wu, Q.; Zhou, F.; Xie, S. Cloning and expression of Poncirus Trifoliata (L.) Raf. NIN- Like transcription factors under different water conditions. Sci. Agric. Sin. 2016, 49, 381–390. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Li, H.; Zhang, F.; Zhao, X.; Han, Y.; Wang, X.; Hao, Y. Genome-wide identification and expression pattern analysis of NLP (NIN-Like Protein) transcription factor gene family in apple. Sci. Agri. Sin. 2019, 52, 4333–4349. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Wang, C.; Xu, H.; Lin, S.; Deng, W.; Zhou, J.; Zhang, Y.; Shi, Y.; Peng, D.; Xue, Y. GPS 5.0: An update on the prediction of kinase-specific phosphorylation sites in proteins. Genom. Proteom. Bioinform. 2020, 18, 72–80. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for Bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Lescot, M.; Dehais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouze, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids. Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Kohl, M.; Wiese, S.; Warscheid, B. Cytoscape: Software for visualization and analysis of biological networks. Data Min. Proteom. Methods Mol. Biol. 2011, 696, 291–303. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene ID | CDS Length/bp | Protein Size/aa | Phosphorylation Site | MW/kDa | pI | GRAVY | Subcellular Locations | Arabidopsis Homologous | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Ser | Thr | Tyr | |||||||||
IbNLP1 | g3955 | 714 | 237 | 2 | 1 | 6 | 36.67 | 8.43 | −0.67 | Nucleus | / |
IbNLP2 | g4351 | 1812 | 603 | 26 | 24 | 10 | 94.86 | 5.55 | −0.40 | Mitochondrion; Nucleus | / |
IbNLP3 | g4375 | 996 | 331 | 9 | 12 | 8 | 52.6 | 6.50 | −0.47 | Nucleus | / |
IbNLP4 | g19466 | 2088 | 695 | 29 | 17 | 11 | 109.26 | 5.74 | −0.36 | Nucleus | AtNLP6 |
IbNLP5 | g36533 | 2046 | 681 | 30 | 17 | 8 | 102.51 | 5.26 | −0.38 | Nucleus | AtNLP9 |
IbNLP6 | g38014 | 1464 | 487 | 15 | 9 | 8 | 79.55 | 8.30 | −0.51 | Nucleus | AtNLP4 |
IbNLP7 | g59844 | 2823 | 940 | 36 | 27 | 16 | 104.09 | 6.21 | −0.57 | Nucleus | AtNLP5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, K.; Wang, W.; Dai, Z.; Shang, M.; Zhai, H.; Gao, S.; Zhao, N.; Liu, Q.; He, S.; Zhang, H. Genome-Wide Identification and Expression Analysis of the NLP Family in Sweet Potato and Its Two Diploid Relatives. Int. J. Mol. Sci. 2025, 26, 8435. https://doi.org/10.3390/ijms26178435
Peng K, Wang W, Dai Z, Shang M, Zhai H, Gao S, Zhao N, Liu Q, He S, Zhang H. Genome-Wide Identification and Expression Analysis of the NLP Family in Sweet Potato and Its Two Diploid Relatives. International Journal of Molecular Sciences. 2025; 26(17):8435. https://doi.org/10.3390/ijms26178435
Chicago/Turabian StylePeng, Kui, Wenbin Wang, Zhuoru Dai, Meiqi Shang, Hong Zhai, Shaopei Gao, Ning Zhao, Qingchang Liu, Shaozhen He, and Huan Zhang. 2025. "Genome-Wide Identification and Expression Analysis of the NLP Family in Sweet Potato and Its Two Diploid Relatives" International Journal of Molecular Sciences 26, no. 17: 8435. https://doi.org/10.3390/ijms26178435
APA StylePeng, K., Wang, W., Dai, Z., Shang, M., Zhai, H., Gao, S., Zhao, N., Liu, Q., He, S., & Zhang, H. (2025). Genome-Wide Identification and Expression Analysis of the NLP Family in Sweet Potato and Its Two Diploid Relatives. International Journal of Molecular Sciences, 26(17), 8435. https://doi.org/10.3390/ijms26178435