Idiopathic Inflammatory Myopathy—Molecular Mechanisms Underlying Its Pathogenesis and Physical Therapy Effects
Abstract
1. Introduction
1.1. Idiopathic Inflammatory Myopathies Characteristics
| IIM | Characteristic Clinical Features | Histopathological Characteristics | MSA |
|---|---|---|---|
| DM | Heliotrope rash, Gottron’s papules, Gottron’s sign, shawl sign, holster sign, mechanic’s hands, periungual redness and telangiectasias | Perimysial and perivascular infiltration of mainly B cells, CD4+ T cells, macrophages and dendritic cells, perifascicular atrophy, capillary depletion [30] | Anti-Mi-2, anti-MDA-5, anti-NXP-2, anti-TIF-1γ, and anti-SAE-1/2 |
| IBM | Asymmetric pattern of weakness, involvement of finger flexors, wrist flexors, ankle dorsiflexors and knee extensors | CD 8+ T cell infiltrate of non-necrotic fibers, rimmed vacuoles, cytoplasmic protein aggregates, mitochondrial abnormalities | Anti-cN1A [31] |
| IMNM | Prominent muscle atrophy, severe proximal weakness, significantly elevated creatine kinase | Necrosis and regeneration of muscle fibers, scattered isolated CD68-prevalent cells, without CD8 invading or surrounding non-necrotic fibers [32] | Anti-SRP, anti-HMGCR |
| ASyS | Myositis, Raynaud’s phenomenon, arthritis, mechanic’s hands, interstitial lung disease | Perimysial fibrosis with endothelial lesion, perifascicular ischemia, necrotic fibers [33] | Anti-Jo-1, Anti-PL-7, Anti-PL-12, Anti-EJ, Anti-OJ, Anti-KS, Anti-Zo, Anti-Ha |
| PM | Proximal, symmetric weakness, diagnosis of exclusion | CD 8+ T cell infiltrate |
1.2. Current Treatment Options
2. Discussion
2.1. Mitochondrial Dysfunctions
2.2. Endoplasmic Reticulum Stress
2.3. Cell Death: Necroptosis, Pyroptosis, Apoptosis, and FAP Senescence
2.4. Myokines
2.5. Neutrophil Dysregulation
2.6. Interplay Between Immune and Nonimmune Mechanisms
3. Challenges and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMA | Antimitochondrial antibodies |
| ASyS | Antisynthetase syndrome |
| ATF6 | Activating transcription factor 6 |
| ATG12 | Autophagy related 12 |
| cGAS | Cyclic GMP-AMP synthase |
| cGAMP | Cyclic GMP-AMP |
| CK | Creatine kinase |
| cN1A | Cytosolic 5′-nucleotidase 1A |
| DDIT3 | DNA damage-inducible transcript 3 |
| DM | Dermatomyositis |
| DMARDs | Disease modifying anti-rheumatic drugs |
| Drp1 | Dynamin-related protein 1 |
| eIF2α | Eukaryotic translation initiation factor 2 subunit alpha |
| EMG | Electromyography |
| ER | Endoplasmic reticulum |
| Fis1 | Fission protein 1 |
| GLP-1 | Glucagon-like peptide-1 |
| GRP78/BiP | Glucose-regulated protein 78/binding immunoglobulin protein |
| GSDMD | Gasdermin D |
| HIIT | High-intensity interval training |
| HMGβ1 | High-mobility group box 1 |
| HMGCR | 3-hydroxy-3-methylglutaryl-coenzyme A reductase |
| IBM | Inclusion body myositis |
| IFN | Interferon |
| IIM | Idiopathic inflammatory myopathy |
| ILD | Interstitial lung disease |
| IMNM | Immune-mediated necrotizing myopathy |
| IVIG | Intravenous immunoglobulin |
| IL | Interleukin |
| MAA | Myositis-associated autoantibodies |
| MDA-5 | Melanoma differentiation-associated gene 5 |
| Mfn | Mitofusin |
| MHC-1 | Major histocompatibility complex class I |
| MLKL | Mixed lineage kinase domain-like protein |
| MSA | Myositis-specific autoantibodies |
| mtDNA | Mitochondrial DNA |
| MyoD | Myogenic differentiation 1 |
| NETs | Neutrophil extracellular traps |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| NLRP | Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing |
| NXP-2 | Nuclear matrix protein 2 |
| OM | Overlap myositis |
| OxPHOS | Oxidative phosphorylation |
| P2X7 | P2X purinergic receptor 7 |
| PBC | Primary biliary cholangitis |
| PERK | Protein kinase RNA-like endoplasmic reticulum kinase |
| PGAM5 | Phosphoglycerate mutase family member 5 |
| PM | Polymyositis |
| RIPK | Receptor-interacting protein kinase |
| ROS | Reactve oxygen species |
| RyR1 | Ryanodine receptor 1 |
| SAE | Small ubiquitin-like modifier-1 activating enzyme |
| SDHB | Succinate dehydrogenase subunit B |
| sHSP | Small heat shock proteins |
| SRP | Signal recognition particle |
| STING | Stimulator of interferon genes |
| TGFβ | Transforming growth factor beta |
| TIF-1γ | Transcriptional intermediary factor 1 |
| TLR9 | Toll-like receptor 9 |
| TNFα | Tumor necrosis factor-alpha |
| TOM20 | Translocase of outer mitochondrial membrane 20 |
| UPR | Unfolded protein response |
References
- Jones, J.; Wortmann, R. Idiopathic inflammatory myopathies—A review. Clin. Rheumatol. 2015, 34, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Ashton, C.; Paramalingam, S.; Stevenson, B.; Brusch, A.; Needham, M. Idiopathic inflammatory myopathies: A review. Intern. Med. J. 2021, 51, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, A.; Chinoy, H. Recent developments in classification criteria and diagnosis guidelines for idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 2018, 30, 606–613. [Google Scholar] [CrossRef]
- Bohan, A.; Peter James, B. Polymyositis and Dermatomyositis. N. Engl. J. Med. 1975, 292, 344–347. [Google Scholar] [CrossRef]
- Tanboon, J.; Nishino, I. Classification of idiopathic inflammatory myopathies: Pathology perspectives. Curr. Opin. Neurol. 2019, 32, 704–714. [Google Scholar] [CrossRef]
- Selva-O’Callaghan, A.; Pinal-Fernandez, I.; Trallero-Araguás, E.; Milisenda, J.C.; Grau-Junyent, J.M.; Mammen, A.L. Classification and management of adult inflammatory myopathies. Lancet Neurol. 2018, 17, 816–828. [Google Scholar] [CrossRef]
- DeWane, M.E.; Waldman, R.; Lu, J. Dermatomyositis: Clinical features and pathogenesis. J. Am. Acad. Dermatol. 2020, 82, 267–281. [Google Scholar] [CrossRef]
- Schmidt, J. Current Classification and Management of Inflammatory Myopathies. J. Neuromuscul. Dis. 2018, 5, 109–129. [Google Scholar] [CrossRef]
- Snedden, A.M.; Kellett, K.A.B.; Lilleker, J.B.; Hooper, N.M.; Chinoy, H. The role of protein aggregation in the pathogenesis of inclusion body myositis. Clin. Exp. Rheumatol. 2022, 40, 414–424. [Google Scholar] [CrossRef]
- Greenberg, S.A. Inclusion body myositis: Clinical features and pathogenesis. Nat. Rev. Rheumatol. 2019, 15, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.S.; Campos, E.D.; Zanoteli, E. Inflammatory myopathies: An update for neurologists. Arq. Neuro-Psiquiatr. 2022, 80 (Suppl. 1), 238–248. [Google Scholar] [CrossRef]
- Halilu, F.; Christopher-Stine, L. Myositis-specific Antibodies: Overview and Clinical Utilization. Rheumatol. Immunol. Res. 2022, 3, 1–10. [Google Scholar] [CrossRef]
- Leclair, V.; Lundberg, I.E. New Myositis Classification Criteria-What We Have Learned Since Bohan and Peter. Curr. Rheumatol. Rep. 2018, 20, 18. [Google Scholar] [CrossRef]
- Hodgkinson, L.M.; Wu, T.T.; Fiorentino, D.F. Dermatomyositis autoantibodies: How can we maximize utility? Ann. Transl. Med. 2021, 9, 433. [Google Scholar] [CrossRef]
- Marasandra Ramesh, H.; Gude, S.S.; Venugopal, S.; Peddi, N.C.; Gude, S.S.; Vuppalapati, S. The Role of Myositis-Specific Autoantibodies in the Dermatomyositis Spectrum. Cureus 2022, 14, e22978. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, S.; Pöhler, G.H.; Seeliger, B.; Prasse, A.; Witte, T.; Thiele, T. Treatment strategies in MDA5-positive clinically amyopathic dermatomyositis: A single-center retrospective analysis. Clin. Exp. Med. 2024, 24, 37. [Google Scholar] [CrossRef] [PubMed]
- Selva-O’Callaghan, A.; Romero-Bueno, F.; Trallero-Araguás, E.; Gil-Vila, A.; Ruiz-Rodríguez, J.C.; Sánchez-Pernaute, O.; Pinal-Fernández, I. Pharmacologic Treatment of Anti-MDA5 Rapidly Progressive Interstitial Lung Disease. Curr. Treat. Options Rheumatol. 2021, 7, 319–333. [Google Scholar] [CrossRef]
- Allenbach, Y.; Benveniste, O.; Stenzel, W.; Boyer, O. Immune-mediated necrotizing myopathy: Clinical features and pathogenesis. Nat. Rev. Rheumatol. 2020, 16, 689–701. [Google Scholar] [CrossRef]
- Liang, E.; Rastegar, M. Immune-mediated necrotising myopathy: A rare cause of hyperCKaemia. BMJ Case Rep. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Uruha, A.; Suzuki, S.; Nakahara, J.; Hamanaka, K.; Takayama, K.; Suzuki, N.; Nishino, I. Clinical features and prognosis in anti-SRP and anti-HMGCR necrotising myopathy. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1038–1044. [Google Scholar] [CrossRef]
- Pinal-Fernandez, I.; Parks, C.; Werner, J.L.; Albayda, J.; Paik, J.J.; Danoff, S.K.; Casciola-Rosen, L.; Christopher-Stine, L.; Mammen, A.L. Longitudinal Course of Disease in a Large Cohort of Myositis Patients With Autoantibodies Recognizing the Signal Recognition Particle. Arthritis Care Res. 2017, 69, 263–270. [Google Scholar] [CrossRef]
- Fredi, M.; Cavazzana, I.; Franceschini, F. The clinico-serological spectrum of overlap myositis. Curr. Opin. Rheumatol. 2018, 30, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Marco, J.L.; Collins, B.F. Clinical manifestations and treatment of antisynthetase syndrome. Best Pract. Res. Clin. Rheumatol. 2020, 34, 101503. [Google Scholar] [CrossRef]
- Milisenda, J.C.; Selva-O’Callaghan, A.; Grau, J.M. The diagnosis and classification of polymyositis. J. Autoimmun. 2014, 48–49, 118–121. [Google Scholar] [CrossRef]
- Dalakas, M.C. Inflammatory Muscle Diseases. N. Engl. J. Med. 2015, 372, 1734–1747. [Google Scholar] [CrossRef]
- van der Meulen, M.F.G.; Bronner, I.M.; Hoogendijk, J.E.; Burger, H.; van Venrooij, W.J.; Voskuyl, A.E.; Dinant, H.J.; Linssen, W.H.J.P.; Wokke, J.H.J.; de Visser, M. Polymyositis. Neurology 2003, 61, 316–321. [Google Scholar] [CrossRef]
- Leclair, V.; Notarnicola, A.; Vencovsky, J.; Lundberg, I.E. Polymyositis: Does it really exist as a distinct clinical subset? Curr. Opin. Rheumatol. 2021, 33, 537–543. [Google Scholar] [CrossRef]
- Allenbach, Y.; Benveniste, O.; Goebel, H.-H.; Stenzel, W. Integrated classification of inflammatory myopathies. Neuropathol. Appl. Neurobiol. 2017, 43, 62–81. [Google Scholar] [CrossRef]
- Senécal, J.-L.; Raynauld, J.-P.; Troyanov, Y. Editorial: A New Classification of Adult Autoimmune Myositis. Arthritis Rheumatol. 2017, 69, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Kamperman, R.G.; van der Kooi, A.J.; de Visser, M.; Aronica, E.; Raaphorst, J. Pathophysiological Mechanisms and Treatment of Dermatomyositis and Immune Mediated Necrotizing Myopathies: A Focused Review. Int. J. Mol. Sci. 2022, 23, 4301. [Google Scholar] [CrossRef] [PubMed]
- Lucchini, M.; Maggi, L.; Pegoraro, E.; Filosto, M.; Rodolico, C.; Antonini, G.; Garibaldi, M.; Valentino, M.L.; Siciliano, G.; Tasca, G.; et al. Anti-cN1A Antibodies Are Associated with More Severe Dysphagia in Sporadic Inclusion Body Myositis. Cells 2021, 10, 1146. [Google Scholar] [CrossRef] [PubMed]
- Merlonghi, G.; Antonini, G.; Garibaldi, M. Immune-mediated necrotizing myopathy (IMNM): A myopathological challenge. Autoimmun. Rev. 2022, 21, 102993. [Google Scholar] [CrossRef]
- Tanboon, J.; Inoue, M.; Hirakawa, S.; Tachimori, H.; Hayashi, S.; Noguchi, S.; Okiyama, N.; Fujimoto, M.; Suzuki, S.; Nishino, I. Muscle pathology of antisynthetase syndrome according to antibody subtypes. Brain Pathol. 2023, 33, e13155. [Google Scholar] [CrossRef]
- Khoo, T.; Lilleker, J.B.; Thong, B.Y.-H.; Leclair, V.; Lamb, J.A.; Chinoy, H. Epidemiology of the idiopathic inflammatory myopathies. Nat. Rev. Rheumatol. 2023, 19, 695–712. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, J.; Hudson, M.; Vinet, E.; Fortin, P.R.; Bykerk, V.; Pineau, C.A.; Wang, M.; Bernatsky, S.; Baron, M. A comparison of health-related quality of life (HRQoL) across four systemic autoimmune rheumatic diseases (SARDs). PLoS ONE 2017, 12, e0189840. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, A.G.S.; Lilleker, J.B.; Amin, T.; Aragon, O.; Bechman, K.; Cuthbert, V.; Galloway, J.; Gordon, P.; Gregory, W.J.; Gunawardena, H.; et al. British Society for Rheumatology guideline on management of paediatric, adolescent and adult patients with idiopathic inflammatory myopathy. Rheumatology 2022, 61, 1760–1768. [Google Scholar] [CrossRef]
- Lightfoot, A.P.; Nagaraju, K.; McArdle, A.; Cooper, R.G. Understanding the origin of non-immune cell-mediated weakness in the idiopathic inflammatory myopathies—Potential role of ER stress pathways. Curr. Opin. Rheumatol. 2015, 27, 580–585. [Google Scholar] [CrossRef]
- Vernerová, L.; Horváthová, V.; Kropáčková, T.; Vokurková, M.; Klein, M.; Tomčík, M.; Oreská, S.; Špiritović, M.; Štorkánová, H.; Heřmánková, B.; et al. Alterations in activin A-myostatin-follistatin system associate with disease activity in inflammatory myopathies. Rheumatology 2020, 59, 2491–2501. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Ma, J.; Li, Z. Systematic review of physical exercise for patients with idiopathic inflammatory myopathies. Nurs. Health Sci. 2021, 23, 312–324. [Google Scholar] [CrossRef]
- Van Thillo, A.; Vulsteke, J.B.; Van Assche, D.; Verschueren, P.; De Langhe, E. Physical therapy in adult inflammatory myopathy patients: A systematic review. Clin. Rheumatol. 2019, 38, 2039–2051. [Google Scholar] [CrossRef]
- Alexanderson, H.; Boström, C. Exercise therapy in patients with idiopathic inflammatory myopathies and systemic lupus erythematosus—A systematic literature review. Best. Pract. Res. Clin. Rheumatol. 2020, 34, 101547. [Google Scholar] [CrossRef]
- Munters, L.A.; Loell, I.; Ossipova, E.; Raouf, J.; Dastmalchi, M.; Lindroos, E.; Chen, Y.W.; Esbjörnsson, M.; Korotkova, M.; Alexanderson, H.; et al. Endurance Exercise Improves Molecular Pathways of Aerobic Metabolism in Patients With Myositis. Arthritis Rheumatol. 2016, 68, 1738–1750. [Google Scholar] [CrossRef]
- Habers, G.E.; Takken, T. Safety and efficacy of exercise training in patients with an idiopathic inflammatory myopathy--a systematic review. Rheumatology 2011, 50, 2113–2124. [Google Scholar] [CrossRef]
- Baschung Pfister, P.; de Bruin, E.D.; Tobler-Ammann, B.C.; Maurer, B.; Knols, R.H. The relevance of applying exercise training principles when designing therapeutic interventions for patients with inflammatory myopathies: A systematic review. Rheumatol. Int. 2015, 35, 1641–1654. [Google Scholar] [CrossRef]
- Marchi, S.; Guilbaud, E.; Tait, S.W.G.; Yamazaki, T.; Galluzzi, L. Mitochondrial control of inflammation. Nat. Rev. Immunol. 2023, 23, 159–173. [Google Scholar] [CrossRef]
- Xu, X.; Pang, Y.; Fan, X. Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025, 10, 190. [Google Scholar] [CrossRef]
- Meyer, A.; Laverny, G.; Bernardi, L.; Charles, A.L.; Alsaleh, G.; Pottecher, J.; Sibilia, J.; Geny, B. Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation. Front. Immunol. 2018, 9, 536. [Google Scholar] [CrossRef] [PubMed]
- Sena, L.A.; Li, S.; Jairaman, A.; Prakriya, M.; Ezponda, T.; Hildeman, D.A.; Wang, C.R.; Schumacker, P.T.; Licht, J.D.; Perlman, H.; et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 2013, 38, 225–236. [Google Scholar] [CrossRef]
- Kaminski, M.M.; Sauer, S.W.; Klemke, C.D.; Süss, D.; Okun, J.G.; Krammer, P.H.; Gülow, K. Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: Mechanism of ciprofloxacin-mediated immunosuppression. J. Immunol. 2010, 184, 4827–4841. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhuang, H.; Feng, D. Quality control of mitochondrial nucleoids. Trends Cell Biol. 2025. [Google Scholar] [CrossRef]
- Irazoki, A.; Gordaliza-Alaguero, I.; Frank, E.; Giakoumakis, N.N.; Seco, J.; Palacín, M.; Gumà, A.; Sylow, L.; Sebastián, D.; Zorzano, A. Disruption of mitochondrial dynamics triggers muscle inflammation through interorganellar contacts and mitochondrial DNA mislocation. Nat. Commun. 2023, 14, 108. [Google Scholar] [CrossRef]
- Basualto-Alarcón, C.; Urra, F.A.; Bozán, M.F.; Jaña, F.; Trangulao, A.; Bevilacqua, J.A.; Cárdenas, J.C. Idiopathic inflammatory myopathy human derived cells retain their ability to increase mitochondrial function. PLoS ONE 2020, 15, e0242443. [Google Scholar] [CrossRef] [PubMed]
- Gasparotto, M.; Franco, C.; Zanatta, E.; Ghirardello, A.; Zen, M.; Iaccarino, L.; Fabris, B.; Doria, A.; Gatto, M. The interferon in idiopathic inflammatory myopathies: Different signatures and new therapeutic perspectives. A literature review. Autoimmun. Rev. 2023, 22, 103334. [Google Scholar] [CrossRef]
- Wischnewski, S.; Rausch, H.-W.; Ikenaga, C.; Leipe, J.; Lloyd, T.E.; Schirmer, L. Emerging mechanisms and therapeutics in inflammatory muscle diseases. Trends Pharmacol. Sci. 2025, 46, 249–263. [Google Scholar] [CrossRef]
- Lauletta, A.; Bosco, L.; Merlonghi, G.; Falzone, Y.M.; Cheli, M.; Bencivenga, R.P.; Zoppi, D.; Ceccanti, M.; Kleefeld, F.; Léonard-Louis, S.; et al. Mitochondrial pathology in inflammatory myopathies: A marker of worse clinical outcome. J. Neurol. 2025, 272, 480. [Google Scholar] [CrossRef] [PubMed]
- Ang, P.S.; Ezenwa, E.; Ko, K.; Hoffman, M.D. Refractory dermatomyositis responsive to anifrolumab. JAAD Case Rep. 2024, 43, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Baumer, M.; Upton, L.; Ong, S.; Smith, K.; West, D.; Kilian, A. Recalcitrant Dermatomyositis Treated With Anifrolumab. ACR Open Rheumatol. 2025, 7, e11792. [Google Scholar] [CrossRef]
- Meyer, A.; Laverny, G.; Allenbach, Y.; Grelet, E.; Ueberschlag, V.; Echaniz-Laguna, A.; Lannes, B.; Alsaleh, G.; Charles, A.L.; Singh, F.; et al. IFN-β-induced reactive oxygen species and mitochondrial damage contribute to muscle impairment and inflammation maintenance in dermatomyositis. Acta Neuropathol. 2017, 134, 655–666. [Google Scholar] [CrossRef]
- Abad, C.; Pinal-Fernandez, I.; Guillou, C.; Bourdenet, G.; Drouot, L.; Cosette, P.; Giannini, M.; Debrut, L.; Jean, L.; Bernard, S.; et al. IFNγ causes mitochondrial dysfunction and oxidative stress in myositis. Nat. Commun. 2024, 15, 5403. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Zhang, J.; Pu, C. 3-n-Butylphthalide reduces the oxidative damage of muscles in an experimental autoimmune myositis animal model. Exp. Ther. Med. 2017, 14, 2085–2093. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, J.; Zhang, J.; Pu, C. Effect of butylphthalide intervention on experimental autoimmune myositis in guinea pigs. Exp. Ther. Med. 2018, 15, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Chapa, J.A.; Macêdo, M.B.; Lood, C. The Emerging Role of Mitochondrial Dysfunction in the Pathogenesis of Idiopathic Inflammatory Myopathies. Rambam Maimonides Med. J. 2023, 14, e0006. [Google Scholar] [CrossRef] [PubMed]
- Albayda, J.; Khan, A.; Casciola-Rosen, L.; Corse, A.M.; Paik, J.J.; Christopher-Stine, L. Inflammatory myopathy associated with anti-mitochondrial antibodies: A distinct phenotype with cardiac involvement. Semin. Arthritis Rheum. 2018, 47, 552–556. [Google Scholar] [CrossRef]
- Yamanaka, T.; Fukatsu, T.; Ichinohe, Y.; Hirata, Y. Antimitochondrial antibodies-positive myositis accompanied by cardiac involvement. BMJ Case Rep. 2017, 2017. [Google Scholar] [CrossRef]
- Mutoh, T.; Takahashi, M.; Satake, H.; Daikoku, K.; Fujii, H. Anti-mitochondrial antibody-positive inflammatory myopathy with multiple arrhythmias resistant to high-dose glucocorticoids and intravenous cyclophosphamide: A case-based review. Clin. Rheumatol. 2025, 44, 2561–2571. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, X.; Han, Z.; Wu, X.; Li, G.; Chen, J.; Xu, B.; Gu, R.; Wang, L. Refractory ventricular tachycardia and heart failure due to anti-mitochondrial antibody-positive inflammatory myopathy. BMC Cardiovasc. Disord. 2023, 23, 57. [Google Scholar] [CrossRef]
- Højgaard, P.; Witting, N.; Rossing, K.; Pecini, R.; Hartvig Lindkær Jensen, T.; Hasbak, P.; Diederichsen, L.P. Cardiac arrest in anti-mitochondrial antibody associated inflammatory myopathy. Oxf. Med. Case Rep. 2021, 2021, omaa150. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, M.; Luo, Y.-B.; Sun, Y.; Shao, K.; Dai, T.; Li, W.; Zhao, Y.; Yan, C. Idiopathic inflammatory myopathies with anti-mitochondrial antibodies: Clinical features and treatment outcomes in a Chinese cohort. Neuromuscul. Disord. 2019, 29, 5–13. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Hu, J.; Jin, J.; Lu, J.; Shen, C.; Cai, Z. Associations between anti-mitochondrial antibodies and cardiac involvement in idiopathic inflammatory myopathy patients. Z. Für Rheumatol. 2024, 83, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, S.E.; Pinal-Fernandez, I.; Casal-Dominguez, M.; Albayda, J.; Paik, J.J.; Miller, F.W.; Rider, L.G.; Mammen, A.L.; Christopher-Stine, L. Anti-mitochondrial autoantibodies are associated with cardiomyopathy, dysphagia, and features of more severe disease in adult-onset myositis. Clin. Rheumatol. 2021, 40, 4095–4100. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kang, Y.C.; Kim, M.J.; Kim, S.U.; Kang, H.R.; Yeo, J.S.; Kim, Y.; Yu, S.-H.; Song, B.; Hwang, J.W.; et al. Mitochondrial transplantation as a novel therapeutic approach in idiopathic inflammatory myopathy. Ann. Rheum. Dis. 2025, 84, 609–619. [Google Scholar] [CrossRef]
- Koo, J.-H.; Kang, E.-B.; Cho, J.-Y. Resistance Exercise Improves Mitochondrial Quality Control in a Rat Model of Sporadic Inclusion Body Myositis. Gerontology 2019, 65, 240–252. [Google Scholar] [CrossRef]
- Liu, B.H.; Xu, C.Z.; Liu, Y.; Lu, Z.L.; Fu, T.L.; Li, G.R.; Deng, Y.; Luo, G.Q.; Ding, S.; Li, N.; et al. Mitochondrial quality control in human health and disease. Mil. Med. Res. 2024, 11, 32. [Google Scholar] [CrossRef]
- Song, Y.; Xu, Y.; Liu, Y.; Gao, J.; Feng, L.; Zhang, Y.; Shi, L.; Zhang, M.; Guo, D.; Qi, B.; et al. Mitochondrial Quality Control in the Maintenance of Cardiovascular Homeostasis: The Roles and Interregulation of UPS, Mitochondrial Dynamics and Mitophagy. Oxidative Med. Cell. Longev. 2021, 2021, 3960773. [Google Scholar] [CrossRef]
- Pickles, S.; Vigié, P.; Youle, R.J. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr. Biol. 2018, 28, R170–R185. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023, 8, 248. [Google Scholar] [CrossRef] [PubMed]
- Sugarman, M.C.; Kitazawa, M.; Baker, M.; Caiozzo, V.J.; Querfurth, H.W.; LaFerla, F.M. Pathogenic accumulation of APP in fast twitch muscle of IBM patients and a transgenic model. Neurobiol. Aging 2006, 27, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Cenini, G.; Rüb, C.; Bruderek, M.; Voos, W. Amyloid β-peptides interfere with mitochondrial preprotein import competence by a coaggregation process. Mol. Biol. Cell 2016, 27, 3257–3272. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.H.; Beal, M.F. Amyloid beta, mitochondrial dysfunction and synaptic damage: Implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol. Med. 2008, 14, 45–53. [Google Scholar] [CrossRef]
- Nemec, M.; Vernerová, L.; Laiferová, N.; Balážová, M.; Vokurková, M.; Kurdiová, T.; Oreská, S.; Kubínová, K.; Klein, M.; Špiritović, M.; et al. Altered dynamics of lipid metabolism in muscle cells from patients with idiopathic inflammatory myopathy is ameliorated by 6 months of training. J. Physiol. 2021, 599, 207–229. [Google Scholar] [CrossRef] [PubMed]
- Afroze, D.; Kumar, A. ER stress in skeletal muscle remodeling and myopathies. Febs J. 2019, 286, 379–398. [Google Scholar] [CrossRef]
- Sachdev, R.; Kappes-Horn, K.; Paulsen, L.; Duernberger, Y.; Pleschka, C.; Denner, P.; Kundu, B.; Reimann, J.; Vorberg, I. Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion. Mol. Neurobiol. 2018, 55, 8355–8373. [Google Scholar] [CrossRef] [PubMed]
- Pfaffenbach, K.T.; Pong, M.; Morgan, T.E.; Wang, H.; Ott, K.; Zhou, B.; Longo, V.D.; Lee, A.S. GRP78/BiP is a novel downstream target of IGF-1 receptor mediated signaling. J. Cell Physiol. 2012, 227, 3803–3811. [Google Scholar] [CrossRef]
- Gomes, L.C.; Scorrano, L. Mitochondrial elongation during autophagy: A stereotypical response to survive in difficult times. Autophagy 2011, 7, 1251–1253. [Google Scholar] [CrossRef]
- Gomes, L.C.; Benedetto, G.D.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef]
- Vidal, J.; Fernandez, E.A.; Wohlwend, M.; Laurila, P.P.; Lopez-Mejia, A.; Ochala, J.; Lobrinus, A.J.; Kayser, B.; Lopez-Mejia, I.C.; Place, N.; et al. Ryanodine receptor type 1 content decrease-induced endoplasmic reticulum stress is a hallmark of myopathies. J. Cachexia Sarcopenia Muscle 2023, 14, 2882–2897. [Google Scholar] [CrossRef]
- Ma, X.; Gao, H.J.; Zhang, Q.; Yang, M.G.; Bi, Z.J.; Ji, S.Q.; Li, Y.; Xu, L.; Bu, B.T. Endoplasmic Reticulum Stress Is Involved in Muscular Pathogenesis in Idiopathic Inflammatory Myopathies. Front. Cell Dev. Biol. 2022, 10, 791986. [Google Scholar] [CrossRef]
- Yamada, T.; Ashida, Y.; Tamai, K.; Kimura, I.; Yamauchi, N.; Naito, A.; Tokuda, N.; Westerblad, H.; Andersson, D.C.; Himori, K. Improved skeletal muscle fatigue resistance in experimental autoimmune myositis mice following high-intensity interval training. Arthritis Res. Ther. 2022, 24, 156. [Google Scholar] [CrossRef]
- Himori, K.; Ashida, Y.; Tatebayashi, D.; Abe, M.; Saito, Y.; Chikenji, T.; Westerblad, H.; Andersson, D.C.; Yamada, T. Eccentric Resistance Training Ameliorates Muscle Weakness in a Mouse Model of Idiopathic Inflammatory Myopathies. Arthritis Rheumatol. 2021, 73, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Hanna-Addams, S.; Liu, S.; Liu, H.; Chen, S.; Wang, Z. CK1α, CK1δ, and CK1ε are necrosome components which phosphorylate serine 227 of human RIPK3 to activate necroptosis. Proc. Natl. Acad. Sci. USA 2020, 117, 1962–1970. [Google Scholar] [CrossRef]
- Dhuriya, Y.K.; Sharma, D. Necroptosis: A regulated inflammatory mode of cell death. J. Neuroinflamm. 2018, 15, 199. [Google Scholar] [CrossRef]
- Ye, K.; Chen, Z.; Xu, Y. The double-edged functions of necroptosis. Cell Death Dis. 2023, 14, 163. [Google Scholar] [CrossRef]
- Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol. 2021, 18, 1106–1121. [Google Scholar] [CrossRef]
- Peng, Q.-L.; Zhang, Y.-M.; Liu, Y.-C.; Liang, L.; Li, W.-L.; Tian, X.-L.; Zhang, L.; Yang, H.-X.; Lu, X.; Wang, G.-C. Contribution of Necroptosis to Myofiber Death in Idiopathic Inflammatory Myopathies. Arthritis Rheumatol. 2022, 74, 1048–1058. [Google Scholar] [CrossRef]
- Kamiya, M.; Mizoguchi, F.; Kawahata, K.; Wang, D.; Nishibori, M.; Day, J.; Louis, C.; Wicks, I.P.; Kohsaka, H.; Yasuda, S. Targeting necroptosis in muscle fibers ameliorates inflammatory myopathies. Nat. Commun. 2022, 13, 166. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, M.; Mizoguchi, F.; Yasuda, S. Amelioration of inflammatory myopathies by glucagon-like peptide-1 receptor agonist via suppressing muscle fibre necroptosis. J. Cachexia Sarcopenia Muscle 2022, 13, 2118–2131. [Google Scholar] [CrossRef]
- Ma, M.; Chai, K.; Deng, R. Study of the correlation between the noncanonical pathway of pyroptosis and idiopathic inflammatory myopathy. Int. Immunopharmacol. 2021, 98, 107810. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Chikenji, T.S.; Matsumura, T.; Nakano, M.; Fujimiya, M. Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nat. Commun. 2020, 11, 889. [Google Scholar] [CrossRef] [PubMed]
- Molina, T.; Fabre, P.; Dumont, N.A. Fibro-adipogenic progenitors in skeletal muscle homeostasis, regeneration and diseases. Open Biol. 2021, 11, 210110. [Google Scholar] [CrossRef]
- Liu, L.; Yue, X.; Sun, Z.; Hambright, W.S.; Wei, J.; Li, Y.; Matre, P.; Cui, Y.; Wang, Z.; Rodney, G.; et al. Reduction of senescent fibro-adipogenic progenitors in progeria-aged muscle by senolytics rescues the function of muscle stem cells. J. Cachexia Sarcopenia Muscle 2022, 13, 3137–3148. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [PubMed]
- Gomarasca, M.; Banfi, G.; Lombardi, G. Chapter Four—Myokines: The endocrine coupling of skeletal muscle and bone. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 94, pp. 155–218. [Google Scholar]
- Díaz, B.B.; González, D.A.; Gannar, F.; Pérez, M.C.R.; de León, A.C. Myokines, physical activity, insulin resistance and autoimmune diseases. Immunol. Lett. 2018, 203, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Amato, A.A.; Hanna, M.G.; Machado, P.M.; Badrising, U.A.; Chinoy, H.; Benveniste, O.; Karanam, A.K.; Wu, M.; Tankó, L.B.; Schubert-Tennigkeit, A.A.; et al. Efficacy and Safety of Bimagrumab in Sporadic Inclusion Body Myositis: Long-term Extension of RESILIENT. Neurology 2021, 96, e1595–e1607. [Google Scholar] [CrossRef]
- Li, C.K.; Knopp, P.; Moncrieffe, H.; Singh, B.; Shah, S.; Nagaraju, K.; Varsani, H.; Gao, B.; Wedderburn, L.R. Overexpression of MHC class I heavy chain protein in young skeletal muscle leads to severe myositis: Implications for juvenile myositis. Am. J. Pathol. 2009, 175, 1030–1040. [Google Scholar] [CrossRef]
- Milisenda, J.C.; Pinal-Fernandez, I.; Lloyd, T.E.; Grau-Junyent, J.M.; Christopher-Stine, L.; Corse, A.M.; Mammen, A.L. The pattern of MHC class I expression in muscle biopsies from patients with myositis and other neuromuscular disorders. Rheumatology 2023, 62, 3156–3160. [Google Scholar] [CrossRef]
- Thoma, A.; Earl, K.E.; Goljanek-Whysall, K.; Lightfoot, A.P. Major histocompatibility complex I-induced endoplasmic reticulum stress mediates the secretion of pro-inflammatory muscle-derived cytokines. J. Cell Mol. Med. 2022, 26, 6032–6041. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, H.; Yang, B.; Cao, J. The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm. Sin. B 2023, 13, 1976–1989. [Google Scholar] [CrossRef]
- Bhattarai, S.; Ghannam, K.; Krause, S.; Benveniste, O.; Marg, A.; de Bruin, G.; Xin, B.-T.; Overkleeft, H.S.; Spuler, S.; Stenzel, W.; et al. The immunoproteasomes are key to regulate myokines and MHC class I expression in idiopathic inflammatory myopathies. J. Autoimmun. 2016, 75, 118–129. [Google Scholar] [CrossRef]
- Wang, H.; Kim, S.J.; Lei, Y.; Wang, S.; Wang, H.; Huang, H.; Zhang, H.; Tsung, A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct. Target. Ther. 2024, 9, 235. [Google Scholar] [CrossRef] [PubMed]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Masucci, M.T.; Minopoli, M.; Del Vecchio, S.; Carriero, M.V. The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Front. Immunol. 2020, 11, 1749. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Libby, P.; Soehnlein, O.; Aramburu, I.V.; Papayannopoulos, V.; Silvestre-Roig, C. Neutrophil extracellular traps: From physiology to pathology Cardiovasc. Res. 2021, 118, 2737–2753. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Zhao, P.; Zhu, J.; Bai, L.; Ma, W.; Li, F.; Zhang, C.; Zhao, L.; Wang, L.; Zhang, S. Neutrophil extracellular traps induce pyroptosis of pulmonary microvascular endothelial cells by activating the NLRP3 inflammasome. Clin. Exp. Immunol. 2024, 217, 89–98. [Google Scholar] [CrossRef]
- Ma, W.; Zhu, J.; Bai, L.; Zhao, P.; Li, F.; Zhang, S. The role of neutrophil extracellular traps and proinflammatory damage-associated molecular patterns in idiopathic inflammatory myopathies. Clin. Exp. Immunol. 2023, 213, 202–208. [Google Scholar] [CrossRef]
- Feng, Y.; Su, Q.; Zhu, J.; Cui, X.; Guo, J.; Yang, J.; Zhang, S. cGAS-STING mediates neutrophil extracellular traps-induced EMT in myositis-associated interstitial lung disease: STING as a potential therapeutic target. Int. Immunopharmacol. 2025, 149, 114144. [Google Scholar] [CrossRef]
- Fousert, E.; Toes, R.; Desai, J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells 2020, 9, 915. [Google Scholar] [CrossRef]
- Lee, K.H.; Kronbichler, A.; Park, D.D.-Y.; Park, Y.; Moon, H.; Kim, H.; Choi, J.H.; Choi, Y.; Shim, S.; Lyu, I.S.; et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun. Rev. 2017, 16, 1160–1173. [Google Scholar] [CrossRef]
- Radic, M.; Muller, S. LL-37, a Multi-Faceted Amphipathic Peptide Involved in NETosis. Cells 2022, 11, 2463. [Google Scholar] [CrossRef]
- Zhang, S.; Shu, X.; Tian, X.; Chen, F.; Lu, X.; Wang, G. Enhanced formation and impaired degradation of neutrophil extracellular traps in dermatomyositis and polymyositis: A potential contributor to interstitial lung disease complications. Clin. Exp. Immunol. 2014, 177, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Seto, N.; Torres-Ruiz, J.J.; Carmona-Rivera, C.; Pinal-Fernandez, I.; Pak, K.; Purmalek, M.M.; Hosono, Y.; Fernandes-Cerqueira, C.; Gowda, P.; Arnett, N.; et al. Neutrophil dysregulation is pathogenic in idiopathic inflammatory myopathies. JCI Insight 2020, 5, e134189. [Google Scholar] [CrossRef]
- Bai, L.; Zhu, J.; Ma, W.; Li, F.; Zhao, P.; Zhang, S. Neutrophil extracellular traps are involved in the occurrence of interstitial lung disease in a murine experimental autoimmune myositis model. Clin. Exp. Immunol. 2024, 215, 126–136. [Google Scholar] [CrossRef]
- Zhang, S.; Jia, X.; Zhang, Q.; Zhang, L.; Yang, J.; Hu, C.; Shi, J.; Jiang, X.; Lu, J.; Shen, H. Neutrophil extracellular traps activate lung fibroblast to induce polymyositis-related interstitial lung diseases via TLR9-miR-7-Smad2 pathway. J. Cell Mol. Med. 2020, 24, 1658–1669. [Google Scholar] [CrossRef]
- Li, F.; Zhao, P.; Zhao, L.; Bai, L.; Su, Q.; Feng, Y.; Ma, W.; Zhu, J.; Yang, J.; Zhang, S. Colchicine Alleviates Interstitial Lung Disease in an Experimental Autoimmune Myositis Murine Model by Inhibiting the Formation of Neutrophil Extracellular Traps. Inflammation 2024, 48, 2692–2703. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Meyer, A.; Sibilia, J.; Geny, B. In the idiopathic inflammatory myopathies, reactive oxygen species are at the crossroad between immune and non-immune cell-mediated mechanisms. Ann. Rheum. Dis. 2015, 74, e62. [Google Scholar] [CrossRef] [PubMed]
- Vorobjeva, N.V.; Chernyak, B.V. NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry 2020, 85, 1178–1190. [Google Scholar] [CrossRef]
- Hu, M.; Li, H.; Li, G.; Wang, Y.; Liu, J.; Zhang, M.; Shen, D.; Wang, X. NETs promote ROS production to induce human amniotic epithelial cell apoptosis via ERK1/2 signaling in spontaneous preterm birth. Am. J. Reprod. Immunol. 2023, 89, e13656. [Google Scholar] [CrossRef]
- Zhan, X.; Wu, R.; Kong, X.H.; You, Y.; He, K.; Sun, X.Y.; Huang, Y.; Chen, W.X.; Duan, L. Elevated neutrophil extracellular traps by HBV-mediated S100A9-TLR4/RAGE-ROS cascade facilitate the growth and metastasis of hepatocellular carcinoma. Cancer Commun. 2023, 43, 225–245. [Google Scholar] [CrossRef]
- Ravindran, M.; Khan, M.A.; Palaniyar, N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules 2019, 9, 365. [Google Scholar] [CrossRef]
- Azzouz, D.; Khan, M.A.; Palaniyar, N. ROS induces NETosis by oxidizing DNA and initiating DNA repair. Cell Death Discov. 2021, 7, 113. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, Y.; Chen, D.; Sun, Y.; Li, D.; Meng, Y.; Zhou, Q.; Zeng, F.; Deng, G.; Chen, X. Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity. J. Transl. Int. Med. 2025, 13, 10–32. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z.-g. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.K.; Chang, W.T.; Lin, I.L.; Chen, Y.F.; Padalwar, N.B.; Cheng, K.C.; Teng, Y.N.; Wang, C.H.; Chiu, C.C. The Role of Necroptosis in ROS-Mediated Cancer Therapies and Its Promising Applications. Cancers 2020, 12, 2185. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guo, X.; Zhou, Y.; Du, J.; Lu, C.; Zhang, L.; Sun, S.; Wang, S.; Li, Y. Kynurenic acid inhibits macrophage pyroptosis by suppressing ROS production via activation of the NRF2 pathway. Mol. Med. Rep. 2023, 28, 211. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Cheng, J.; Zhu, T.; Zhou, Z.; Xia, P. Methyl 3,4-dihydrobenzoate attenuates muscle fiber necroptosis and macrophage pyroptosis by regulating oxidative stress in inflammatory myopathies. Int. Immunopharmacol. 2025, 154, 114608. [Google Scholar] [CrossRef] [PubMed]
- Dalakas, M.C. Mechanisms of disease: Signaling pathways and immunobiology of inflammatory myopathies. Nat. Clin. Pr. Rheumatol. 2006, 2, 219–227. [Google Scholar] [CrossRef]
- Kim, S.; Joe, Y.; Kim, H.J.; Kim, Y.S.; Jeong, S.O.; Pae, H.O.; Ryter, S.W.; Surh, Y.J.; Chung, H.T. Endoplasmic reticulum stress-induced IRE1α activation mediates cross-talk of GSK-3β and XBP-1 to regulate inflammatory cytokine production. J. Immunol. 2015, 194, 4498–4506. [Google Scholar] [CrossRef]
- Lundberg, I.E.; Fujimoto, M.; Vencovsky, J.; Aggarwal, R.; Holmqvist, M.; Christopher-Stine, L.; Mammen, A.L.; Miller, F.W. Idiopathic inflammatory myopathies. Nat. Rev. Dis. Primers 2021, 7, 87. [Google Scholar] [CrossRef]
- Loredo Martinez, M.; Zampieri, S.; Franco, C.; Ghirardello, A.; Doria, A.; Gatto, M. Nonimmune mechanisms in idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 2020, 32, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Coley, W.; Rayavarapu, S.; Nagaraju, K. Role of non-immune mechanisms of muscle damage in idiopathic inflammatory myopathies. Arthritis Res. Ther. 2012, 14, 209. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ceribelli, A.; De Santis, M.; Isailovic, N.; Gershwin, M.E.; Selmi, C. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: A Critical Review. Clin. Rev. Allergy Immunol. 2017, 52, 58–70. [Google Scholar] [CrossRef]
- Manole, E.; Bastian, A.E.; Butoianu, N.; Goebel, H.H. Myositis non-inflammatory mechanisms: An up-dated review. J. Immunoass. Immunochem. 2017, 38, 115–126. [Google Scholar] [CrossRef]
- Miller, F.W.; Lamb, J.A.; Schmidt, J.; Nagaraju, K. Risk factors and disease mechanisms in myositis. Nat. Rev. Rheumatol. 2018, 14, 255–268. [Google Scholar] [CrossRef]
- Sebastian, A.; Wiland, P. Diagnosis and treatment options for inclusion body myositis—A case report. Rheumatol. Forum 2024, 10, 165–179. [Google Scholar] [CrossRef]
- Keller, C.W.; Schmidt, J.; Lünemann, J.D. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann. Clin. Transl. Neurol. 2017, 4, 422–445. [Google Scholar] [CrossRef]
- Lilleker, J.B.; Naddaf, E.; Saris, C.G.J.; Schmidt, J.; de Visser, M.; Weihl, C.C.; Alexanderson, H.; Alfano, L.; Allenbach, Y.; Badrising, U.; et al. 272nd ENMC international workshop: 10 Years of progress—Revision of the ENMC 2013 diagnostic criteria for inclusion body myositis and clinical trial readiness. 16–18 June 2023, Hoofddorp, The Netherlands. Neuromuscul. Disord. 2024, 37, 36–51. [Google Scholar] [CrossRef]
- Dooley, K. New ENMC Criteria for the Diagnosis of Inclusion Body Myositis. Available online: https://cureibm.org/new-enmc-criteria-for-the-diagnosis-of-inclusion-body-myositis/ (accessed on 27 June 2025).
- Martins, E.F.; Cappello, C.H.; Shinjo, S.K.; Appenzeller, S.; de Souza, J.M. Idiopathic Inflammatory Myopathies: Recent Evidence Linking Pathogenesis and Clinical Features. Int. J. Mol. Sci. 2025, 26, 3302. [Google Scholar] [CrossRef] [PubMed]
- Tanboon, J.; Uruha, A.; Stenzel, W.; Nishino, I. Where are we moving in the classification of idiopathic inflammatory myopathies? Curr. Opin. Neurol. 2020, 33, 590–603. [Google Scholar] [CrossRef]
- Seki, M.; Uruha, A.; Ohnuki, Y.; Kamada, S.; Noda, T.; Onda, A.; Ohira, M.; Isami, A.; Hiramatsu, S.; Hibino, M.; et al. Inflammatory myopathy associated with PD-1 inhibitors. J. Autoimmun. 2019, 100, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Marder, G.; Quach, T.; Chadha, P.; Nandkumar, P.; Tsang, J.; Levine, T.; Schiopu, E.; Furie, R.; Davidson, A.; Narain, S. Belimumab treatment of adult idiopathic inflammatory myopathy. Rheumatology 2024, 63, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Charles-Schoeman, C.; Schessl, J.; Bata-Csörgő, Z.; Dimachkie, M.M.; Griger, Z.; Moiseev, S.; Oddis, C.; Schiopu, E.; Vencovský, J.; et al. Trial of Intravenous Immune Globulin in Dermatomyositis. N. Engl. J. Med. 2022, 387, 1264–1278. [Google Scholar] [CrossRef]
- Aggarwal, R.; Lundberg, I.E.; Song, Y.W.; Shaibani, A.; Werth, V.P.; Maldonado, M.A. Efficacy and Safety of Subcutaneous Abatacept Plus Standard Treatment for Active Idiopathic Inflammatory Myopathy: Phase 3 Randomized Controlled Trial. Arthritis Rheumatol. 2025, 77, 765–776. [Google Scholar] [CrossRef]
- Volkov, J.; Nunez, D.; Mozaffar, T.; Stadanlick, J.; Werner, M.; Vorndran, Z.; Ellis, A.; Williams, J.; Cicarelli, J.; Lam, Q.; et al. Case study of CD19 CAR T therapy in a subject with immune-mediate necrotizing myopathy treated in the RESET-Myositis phase I/II trial. Mol. Ther. 2024, 32, 3821–3828. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Tan, B.; Zhu, L.; Zhang, Y.; Lin, L.; Xiao, Y.; Sun, A.; Wan, X.; Liu, S.; et al. Allogeneic CD19-targeted CAR-T therapy in patients with severe myositis and systemic sclerosis. Cell 2024, 187, 4890–4904.e4899. [Google Scholar] [CrossRef]
- Connolly, C.M.; Gupta, L.; Fujimoto, M.; Machado, P.M.; Paik, J.J. Idiopathic inflammatory myopathies: Current insights and future frontiers. Lancet Rheumatol. 2024, 6, e115–e127. [Google Scholar] [CrossRef]
- Moon, S.-J.; Jung, S.M.; Baek, I.-W.; Park, K.-S.; Kim, K.-J. Molecular signature of neutrophil extracellular trap mediating disease module in idiopathic inflammatory myopathy. J. Autoimmun. 2023, 138, 103063. [Google Scholar] [CrossRef] [PubMed]
- Pinal-Fernandez, I.; Quintana, A.; Milisenda, J.C.; Casal-Dominguez, M.; Muñoz-Braceras, S.; Derfoul, A.; Torres-Ruiz, J.; Pak, K.; Dell’Orso, S.; Naz, F.; et al. Transcriptomic profiling reveals distinct subsets of immune checkpoint inhibitor induced myositis. Ann. Rheum. Dis. 2023, 82, 829–836. [Google Scholar] [CrossRef]
- Karasawa, R.; Jarvis, J.N. Using the tools of proteomics to understand the pathogenesis of idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 2019, 31, 617–622. [Google Scholar] [CrossRef]
- McLeish, E.; Slater, N.; Mastaglia, F.L.; Needham, M.; Coudert, J.D. From data to diagnosis: How machine learning is revolutionizing biomarker discovery in idiopathic inflammatory myopathies. Brief. Bioinform. 2023, 25, bbad514, Correction in Brief. Bioinform. 2024, 25, bbae100. https://doi.org/10.1093/bib/bbae100. [Google Scholar] [CrossRef] [PubMed]


| Idiopathic Inflammatory Myopathy Management | ||
|---|---|---|
| Pharmacological | Non-Pharmacological | Refractory Disease |
| Glucocorticoids | Exercise program | IVIG |
| DMARDs (azathioprine, methotrexate, cyclosporine, tacrolimus) | Psychological well-being and quality of life assessment | Cyclophosphamide |
| Addressing steroid adverse effects | Rituximab | |
| Cancer screening | Abatacept | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markowska, A.; Tarnacka, B. Idiopathic Inflammatory Myopathy—Molecular Mechanisms Underlying Its Pathogenesis and Physical Therapy Effects. Int. J. Mol. Sci. 2025, 26, 8369. https://doi.org/10.3390/ijms26178369
Markowska A, Tarnacka B. Idiopathic Inflammatory Myopathy—Molecular Mechanisms Underlying Its Pathogenesis and Physical Therapy Effects. International Journal of Molecular Sciences. 2025; 26(17):8369. https://doi.org/10.3390/ijms26178369
Chicago/Turabian StyleMarkowska, Aleksandra, and Beata Tarnacka. 2025. "Idiopathic Inflammatory Myopathy—Molecular Mechanisms Underlying Its Pathogenesis and Physical Therapy Effects" International Journal of Molecular Sciences 26, no. 17: 8369. https://doi.org/10.3390/ijms26178369
APA StyleMarkowska, A., & Tarnacka, B. (2025). Idiopathic Inflammatory Myopathy—Molecular Mechanisms Underlying Its Pathogenesis and Physical Therapy Effects. International Journal of Molecular Sciences, 26(17), 8369. https://doi.org/10.3390/ijms26178369

