Idiopathic Inflammatory Myopathy—Molecular Mechanisms Underlying Its Pathogenesis and Physical Therapy Effects
Abstract
1. Introduction
1.1. Idiopathic Inflammatory Myopathies Characteristics
IIM | Characteristic Clinical Features | Histopathological Characteristics | MSA |
---|---|---|---|
DM | Heliotrope rash, Gottron’s papules, Gottron’s sign, shawl sign, holster sign, mechanic’s hands, periungual redness and telangiectasias | Perimysial and perivascular infiltration of mainly B cells, CD4+ T cells, macrophages and dendritic cells, perifascicular atrophy, capillary depletion [30] | Anti-Mi-2, anti-MDA-5, anti-NXP-2, anti-TIF-1γ, and anti-SAE-1/2 |
IBM | Asymmetric pattern of weakness, involvement of finger flexors, wrist flexors, ankle dorsiflexors and knee extensors | CD 8+ T cell infiltrate of non-necrotic fibers, rimmed vacuoles, cytoplasmic protein aggregates, mitochondrial abnormalities | Anti-cN1A [31] |
IMNM | Prominent muscle atrophy, severe proximal weakness, significantly elevated creatine kinase | Necrosis and regeneration of muscle fibers, scattered isolated CD68-prevalent cells, without CD8 invading or surrounding non-necrotic fibers [32] | Anti-SRP, anti-HMGCR |
ASyS | Myositis, Raynaud’s phenomenon, arthritis, mechanic’s hands, interstitial lung disease | Perimysial fibrosis with endothelial lesion, perifascicular ischemia, necrotic fibers [33] | Anti-Jo-1, Anti-PL-7, Anti-PL-12, Anti-EJ, Anti-OJ, Anti-KS, Anti-Zo, Anti-Ha |
PM | Proximal, symmetric weakness, diagnosis of exclusion | CD 8+ T cell infiltrate |
1.2. Current Treatment Options
2. Discussion
2.1. Mitochondrial Dysfunctions
2.2. Endoplasmic Reticulum Stress
2.3. Cell Death: Necroptosis, Pyroptosis, Apoptosis, and FAP Senescence
2.4. Myokines
2.5. Neutrophil Dysregulation
2.6. Interplay Between Immune and Nonimmune Mechanisms
3. Challenges and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AMA | Antimitochondrial antibodies |
ASyS | Antisynthetase syndrome |
ATF6 | Activating transcription factor 6 |
ATG12 | Autophagy related 12 |
cGAS | Cyclic GMP-AMP synthase |
cGAMP | Cyclic GMP-AMP |
CK | Creatine kinase |
cN1A | Cytosolic 5′-nucleotidase 1A |
DDIT3 | DNA damage-inducible transcript 3 |
DM | Dermatomyositis |
DMARDs | Disease modifying anti-rheumatic drugs |
Drp1 | Dynamin-related protein 1 |
eIF2α | Eukaryotic translation initiation factor 2 subunit alpha |
EMG | Electromyography |
ER | Endoplasmic reticulum |
Fis1 | Fission protein 1 |
GLP-1 | Glucagon-like peptide-1 |
GRP78/BiP | Glucose-regulated protein 78/binding immunoglobulin protein |
GSDMD | Gasdermin D |
HIIT | High-intensity interval training |
HMGβ1 | High-mobility group box 1 |
HMGCR | 3-hydroxy-3-methylglutaryl-coenzyme A reductase |
IBM | Inclusion body myositis |
IFN | Interferon |
IIM | Idiopathic inflammatory myopathy |
ILD | Interstitial lung disease |
IMNM | Immune-mediated necrotizing myopathy |
IVIG | Intravenous immunoglobulin |
IL | Interleukin |
MAA | Myositis-associated autoantibodies |
MDA-5 | Melanoma differentiation-associated gene 5 |
Mfn | Mitofusin |
MHC-1 | Major histocompatibility complex class I |
MLKL | Mixed lineage kinase domain-like protein |
MSA | Myositis-specific autoantibodies |
mtDNA | Mitochondrial DNA |
MyoD | Myogenic differentiation 1 |
NETs | Neutrophil extracellular traps |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NLRP | Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing |
NXP-2 | Nuclear matrix protein 2 |
OM | Overlap myositis |
OxPHOS | Oxidative phosphorylation |
P2X7 | P2X purinergic receptor 7 |
PBC | Primary biliary cholangitis |
PERK | Protein kinase RNA-like endoplasmic reticulum kinase |
PGAM5 | Phosphoglycerate mutase family member 5 |
PM | Polymyositis |
RIPK | Receptor-interacting protein kinase |
ROS | Reactve oxygen species |
RyR1 | Ryanodine receptor 1 |
SAE | Small ubiquitin-like modifier-1 activating enzyme |
SDHB | Succinate dehydrogenase subunit B |
sHSP | Small heat shock proteins |
SRP | Signal recognition particle |
STING | Stimulator of interferon genes |
TGFβ | Transforming growth factor beta |
TIF-1γ | Transcriptional intermediary factor 1 |
TLR9 | Toll-like receptor 9 |
TNFα | Tumor necrosis factor-alpha |
TOM20 | Translocase of outer mitochondrial membrane 20 |
UPR | Unfolded protein response |
References
- Jones, J.; Wortmann, R. Idiopathic inflammatory myopathies—A review. Clin. Rheumatol. 2015, 34, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Ashton, C.; Paramalingam, S.; Stevenson, B.; Brusch, A.; Needham, M. Idiopathic inflammatory myopathies: A review. Intern. Med. J. 2021, 51, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, A.; Chinoy, H. Recent developments in classification criteria and diagnosis guidelines for idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 2018, 30, 606–613. [Google Scholar] [CrossRef]
- Bohan, A.; Peter James, B. Polymyositis and Dermatomyositis. N. Engl. J. Med. 1975, 292, 344–347. [Google Scholar] [CrossRef]
- Tanboon, J.; Nishino, I. Classification of idiopathic inflammatory myopathies: Pathology perspectives. Curr. Opin. Neurol. 2019, 32, 704–714. [Google Scholar] [CrossRef]
- Selva-O’Callaghan, A.; Pinal-Fernandez, I.; Trallero-Araguás, E.; Milisenda, J.C.; Grau-Junyent, J.M.; Mammen, A.L. Classification and management of adult inflammatory myopathies. Lancet Neurol. 2018, 17, 816–828. [Google Scholar] [CrossRef]
- DeWane, M.E.; Waldman, R.; Lu, J. Dermatomyositis: Clinical features and pathogenesis. J. Am. Acad. Dermatol. 2020, 82, 267–281. [Google Scholar] [CrossRef]
- Schmidt, J. Current Classification and Management of Inflammatory Myopathies. J. Neuromuscul. Dis. 2018, 5, 109–129. [Google Scholar] [CrossRef]
- Snedden, A.M.; Kellett, K.A.B.; Lilleker, J.B.; Hooper, N.M.; Chinoy, H. The role of protein aggregation in the pathogenesis of inclusion body myositis. Clin. Exp. Rheumatol. 2022, 40, 414–424. [Google Scholar] [CrossRef]
- Greenberg, S.A. Inclusion body myositis: Clinical features and pathogenesis. Nat. Rev. Rheumatol. 2019, 15, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.S.; Campos, E.D.; Zanoteli, E. Inflammatory myopathies: An update for neurologists. Arq. Neuro-Psiquiatr. 2022, 80 (Suppl. 1), 238–248. [Google Scholar] [CrossRef]
- Halilu, F.; Christopher-Stine, L. Myositis-specific Antibodies: Overview and Clinical Utilization. Rheumatol. Immunol. Res. 2022, 3, 1–10. [Google Scholar] [CrossRef]
- Leclair, V.; Lundberg, I.E. New Myositis Classification Criteria-What We Have Learned Since Bohan and Peter. Curr. Rheumatol. Rep. 2018, 20, 18. [Google Scholar] [CrossRef]
- Hodgkinson, L.M.; Wu, T.T.; Fiorentino, D.F. Dermatomyositis autoantibodies: How can we maximize utility? Ann. Transl. Med. 2021, 9, 433. [Google Scholar] [CrossRef]
- Marasandra Ramesh, H.; Gude, S.S.; Venugopal, S.; Peddi, N.C.; Gude, S.S.; Vuppalapati, S. The Role of Myositis-Specific Autoantibodies in the Dermatomyositis Spectrum. Cureus 2022, 14, e22978. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, S.; Pöhler, G.H.; Seeliger, B.; Prasse, A.; Witte, T.; Thiele, T. Treatment strategies in MDA5-positive clinically amyopathic dermatomyositis: A single-center retrospective analysis. Clin. Exp. Med. 2024, 24, 37. [Google Scholar] [CrossRef] [PubMed]
- Selva-O’Callaghan, A.; Romero-Bueno, F.; Trallero-Araguás, E.; Gil-Vila, A.; Ruiz-Rodríguez, J.C.; Sánchez-Pernaute, O.; Pinal-Fernández, I. Pharmacologic Treatment of Anti-MDA5 Rapidly Progressive Interstitial Lung Disease. Curr. Treat. Options Rheumatol. 2021, 7, 319–333. [Google Scholar] [CrossRef]
- Allenbach, Y.; Benveniste, O.; Stenzel, W.; Boyer, O. Immune-mediated necrotizing myopathy: Clinical features and pathogenesis. Nat. Rev. Rheumatol. 2020, 16, 689–701. [Google Scholar] [CrossRef]
- Liang, E.; Rastegar, M. Immune-mediated necrotising myopathy: A rare cause of hyperCKaemia. BMJ Case Rep. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Uruha, A.; Suzuki, S.; Nakahara, J.; Hamanaka, K.; Takayama, K.; Suzuki, N.; Nishino, I. Clinical features and prognosis in anti-SRP and anti-HMGCR necrotising myopathy. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1038–1044. [Google Scholar] [CrossRef]
- Pinal-Fernandez, I.; Parks, C.; Werner, J.L.; Albayda, J.; Paik, J.J.; Danoff, S.K.; Casciola-Rosen, L.; Christopher-Stine, L.; Mammen, A.L. Longitudinal Course of Disease in a Large Cohort of Myositis Patients With Autoantibodies Recognizing the Signal Recognition Particle. Arthritis Care Res. 2017, 69, 263–270. [Google Scholar] [CrossRef]
- Fredi, M.; Cavazzana, I.; Franceschini, F. The clinico-serological spectrum of overlap myositis. Curr. Opin. Rheumatol. 2018, 30, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Marco, J.L.; Collins, B.F. Clinical manifestations and treatment of antisynthetase syndrome. Best Pract. Res. Clin. Rheumatol. 2020, 34, 101503. [Google Scholar] [CrossRef]
- Milisenda, J.C.; Selva-O’Callaghan, A.; Grau, J.M. The diagnosis and classification of polymyositis. J. Autoimmun. 2014, 48–49, 118–121. [Google Scholar] [CrossRef]
- Dalakas, M.C. Inflammatory Muscle Diseases. N. Engl. J. Med. 2015, 372, 1734–1747. [Google Scholar] [CrossRef]
- van der Meulen, M.F.G.; Bronner, I.M.; Hoogendijk, J.E.; Burger, H.; van Venrooij, W.J.; Voskuyl, A.E.; Dinant, H.J.; Linssen, W.H.J.P.; Wokke, J.H.J.; de Visser, M. Polymyositis. Neurology 2003, 61, 316–321. [Google Scholar] [CrossRef]
- Leclair, V.; Notarnicola, A.; Vencovsky, J.; Lundberg, I.E. Polymyositis: Does it really exist as a distinct clinical subset? Curr. Opin. Rheumatol. 2021, 33, 537–543. [Google Scholar] [CrossRef]
- Allenbach, Y.; Benveniste, O.; Goebel, H.-H.; Stenzel, W. Integrated classification of inflammatory myopathies. Neuropathol. Appl. Neurobiol. 2017, 43, 62–81. [Google Scholar] [CrossRef]
- Senécal, J.-L.; Raynauld, J.-P.; Troyanov, Y. Editorial: A New Classification of Adult Autoimmune Myositis. Arthritis Rheumatol. 2017, 69, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Kamperman, R.G.; van der Kooi, A.J.; de Visser, M.; Aronica, E.; Raaphorst, J. Pathophysiological Mechanisms and Treatment of Dermatomyositis and Immune Mediated Necrotizing Myopathies: A Focused Review. Int. J. Mol. Sci. 2022, 23, 4301. [Google Scholar] [CrossRef] [PubMed]
- Lucchini, M.; Maggi, L.; Pegoraro, E.; Filosto, M.; Rodolico, C.; Antonini, G.; Garibaldi, M.; Valentino, M.L.; Siciliano, G.; Tasca, G.; et al. Anti-cN1A Antibodies Are Associated with More Severe Dysphagia in Sporadic Inclusion Body Myositis. Cells 2021, 10, 1146. [Google Scholar] [CrossRef] [PubMed]
- Merlonghi, G.; Antonini, G.; Garibaldi, M. Immune-mediated necrotizing myopathy (IMNM): A myopathological challenge. Autoimmun. Rev. 2022, 21, 102993. [Google Scholar] [CrossRef]
- Tanboon, J.; Inoue, M.; Hirakawa, S.; Tachimori, H.; Hayashi, S.; Noguchi, S.; Okiyama, N.; Fujimoto, M.; Suzuki, S.; Nishino, I. Muscle pathology of antisynthetase syndrome according to antibody subtypes. Brain Pathol. 2023, 33, e13155. [Google Scholar] [CrossRef]
- Khoo, T.; Lilleker, J.B.; Thong, B.Y.-H.; Leclair, V.; Lamb, J.A.; Chinoy, H. Epidemiology of the idiopathic inflammatory myopathies. Nat. Rev. Rheumatol. 2023, 19, 695–712. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, J.; Hudson, M.; Vinet, E.; Fortin, P.R.; Bykerk, V.; Pineau, C.A.; Wang, M.; Bernatsky, S.; Baron, M. A comparison of health-related quality of life (HRQoL) across four systemic autoimmune rheumatic diseases (SARDs). PLoS ONE 2017, 12, e0189840. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, A.G.S.; Lilleker, J.B.; Amin, T.; Aragon, O.; Bechman, K.; Cuthbert, V.; Galloway, J.; Gordon, P.; Gregory, W.J.; Gunawardena, H.; et al. British Society for Rheumatology guideline on management of paediatric, adolescent and adult patients with idiopathic inflammatory myopathy. Rheumatology 2022, 61, 1760–1768. [Google Scholar] [CrossRef]
- Lightfoot, A.P.; Nagaraju, K.; McArdle, A.; Cooper, R.G. Understanding the origin of non-immune cell-mediated weakness in the idiopathic inflammatory myopathies—Potential role of ER stress pathways. Curr. Opin. Rheumatol. 2015, 27, 580–585. [Google Scholar] [CrossRef]
- Vernerová, L.; Horváthová, V.; Kropáčková, T.; Vokurková, M.; Klein, M.; Tomčík, M.; Oreská, S.; Špiritović, M.; Štorkánová, H.; Heřmánková, B.; et al. Alterations in activin A-myostatin-follistatin system associate with disease activity in inflammatory myopathies. Rheumatology 2020, 59, 2491–2501. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Ma, J.; Li, Z. Systematic review of physical exercise for patients with idiopathic inflammatory myopathies. Nurs. Health Sci. 2021, 23, 312–324. [Google Scholar] [CrossRef]
- Van Thillo, A.; Vulsteke, J.B.; Van Assche, D.; Verschueren, P.; De Langhe, E. Physical therapy in adult inflammatory myopathy patients: A systematic review. Clin. Rheumatol. 2019, 38, 2039–2051. [Google Scholar] [CrossRef]
- Alexanderson, H.; Boström, C. Exercise therapy in patients with idiopathic inflammatory myopathies and systemic lupus erythematosus—A systematic literature review. Best. Pract. Res. Clin. Rheumatol. 2020, 34, 101547. [Google Scholar] [CrossRef]
- Munters, L.A.; Loell, I.; Ossipova, E.; Raouf, J.; Dastmalchi, M.; Lindroos, E.; Chen, Y.W.; Esbjörnsson, M.; Korotkova, M.; Alexanderson, H.; et al. Endurance Exercise Improves Molecular Pathways of Aerobic Metabolism in Patients With Myositis. Arthritis Rheumatol. 2016, 68, 1738–1750. [Google Scholar] [CrossRef]
- Habers, G.E.; Takken, T. Safety and efficacy of exercise training in patients with an idiopathic inflammatory myopathy--a systematic review. Rheumatology 2011, 50, 2113–2124. [Google Scholar] [CrossRef]
- Baschung Pfister, P.; de Bruin, E.D.; Tobler-Ammann, B.C.; Maurer, B.; Knols, R.H. The relevance of applying exercise training principles when designing therapeutic interventions for patients with inflammatory myopathies: A systematic review. Rheumatol. Int. 2015, 35, 1641–1654. [Google Scholar] [CrossRef]
- Marchi, S.; Guilbaud, E.; Tait, S.W.G.; Yamazaki, T.; Galluzzi, L. Mitochondrial control of inflammation. Nat. Rev. Immunol. 2023, 23, 159–173. [Google Scholar] [CrossRef]
- Xu, X.; Pang, Y.; Fan, X. Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025, 10, 190. [Google Scholar] [CrossRef]
- Meyer, A.; Laverny, G.; Bernardi, L.; Charles, A.L.; Alsaleh, G.; Pottecher, J.; Sibilia, J.; Geny, B. Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation. Front. Immunol. 2018, 9, 536. [Google Scholar] [CrossRef] [PubMed]
- Sena, L.A.; Li, S.; Jairaman, A.; Prakriya, M.; Ezponda, T.; Hildeman, D.A.; Wang, C.R.; Schumacker, P.T.; Licht, J.D.; Perlman, H.; et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 2013, 38, 225–236. [Google Scholar] [CrossRef]
- Kaminski, M.M.; Sauer, S.W.; Klemke, C.D.; Süss, D.; Okun, J.G.; Krammer, P.H.; Gülow, K. Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: Mechanism of ciprofloxacin-mediated immunosuppression. J. Immunol. 2010, 184, 4827–4841. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhuang, H.; Feng, D. Quality control of mitochondrial nucleoids. Trends Cell Biol. 2025. [Google Scholar] [CrossRef]
- Irazoki, A.; Gordaliza-Alaguero, I.; Frank, E.; Giakoumakis, N.N.; Seco, J.; Palacín, M.; Gumà, A.; Sylow, L.; Sebastián, D.; Zorzano, A. Disruption of mitochondrial dynamics triggers muscle inflammation through interorganellar contacts and mitochondrial DNA mislocation. Nat. Commun. 2023, 14, 108. [Google Scholar] [CrossRef]
- Basualto-Alarcón, C.; Urra, F.A.; Bozán, M.F.; Jaña, F.; Trangulao, A.; Bevilacqua, J.A.; Cárdenas, J.C. Idiopathic inflammatory myopathy human derived cells retain their ability to increase mitochondrial function. PLoS ONE 2020, 15, e0242443. [Google Scholar] [CrossRef] [PubMed]
- Gasparotto, M.; Franco, C.; Zanatta, E.; Ghirardello, A.; Zen, M.; Iaccarino, L.; Fabris, B.; Doria, A.; Gatto, M. The interferon in idiopathic inflammatory myopathies: Different signatures and new therapeutic perspectives. A literature review. Autoimmun. Rev. 2023, 22, 103334. [Google Scholar] [CrossRef]
- Wischnewski, S.; Rausch, H.-W.; Ikenaga, C.; Leipe, J.; Lloyd, T.E.; Schirmer, L. Emerging mechanisms and therapeutics in inflammatory muscle diseases. Trends Pharmacol. Sci. 2025, 46, 249–263. [Google Scholar] [CrossRef]
- Lauletta, A.; Bosco, L.; Merlonghi, G.; Falzone, Y.M.; Cheli, M.; Bencivenga, R.P.; Zoppi, D.; Ceccanti, M.; Kleefeld, F.; Léonard-Louis, S.; et al. Mitochondrial pathology in inflammatory myopathies: A marker of worse clinical outcome. J. Neurol. 2025, 272, 480. [Google Scholar] [CrossRef] [PubMed]
- Ang, P.S.; Ezenwa, E.; Ko, K.; Hoffman, M.D. Refractory dermatomyositis responsive to anifrolumab. JAAD Case Rep. 2024, 43, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Baumer, M.; Upton, L.; Ong, S.; Smith, K.; West, D.; Kilian, A. Recalcitrant Dermatomyositis Treated With Anifrolumab. ACR Open Rheumatol. 2025, 7, e11792. [Google Scholar] [CrossRef]
- Meyer, A.; Laverny, G.; Allenbach, Y.; Grelet, E.; Ueberschlag, V.; Echaniz-Laguna, A.; Lannes, B.; Alsaleh, G.; Charles, A.L.; Singh, F.; et al. IFN-β-induced reactive oxygen species and mitochondrial damage contribute to muscle impairment and inflammation maintenance in dermatomyositis. Acta Neuropathol. 2017, 134, 655–666. [Google Scholar] [CrossRef]
- Abad, C.; Pinal-Fernandez, I.; Guillou, C.; Bourdenet, G.; Drouot, L.; Cosette, P.; Giannini, M.; Debrut, L.; Jean, L.; Bernard, S.; et al. IFNγ causes mitochondrial dysfunction and oxidative stress in myositis. Nat. Commun. 2024, 15, 5403. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Zhang, J.; Pu, C. 3-n-Butylphthalide reduces the oxidative damage of muscles in an experimental autoimmune myositis animal model. Exp. Ther. Med. 2017, 14, 2085–2093. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, J.; Zhang, J.; Pu, C. Effect of butylphthalide intervention on experimental autoimmune myositis in guinea pigs. Exp. Ther. Med. 2018, 15, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Chapa, J.A.; Macêdo, M.B.; Lood, C. The Emerging Role of Mitochondrial Dysfunction in the Pathogenesis of Idiopathic Inflammatory Myopathies. Rambam Maimonides Med. J. 2023, 14, e0006. [Google Scholar] [CrossRef] [PubMed]
- Albayda, J.; Khan, A.; Casciola-Rosen, L.; Corse, A.M.; Paik, J.J.; Christopher-Stine, L. Inflammatory myopathy associated with anti-mitochondrial antibodies: A distinct phenotype with cardiac involvement. Semin. Arthritis Rheum. 2018, 47, 552–556. [Google Scholar] [CrossRef]
- Yamanaka, T.; Fukatsu, T.; Ichinohe, Y.; Hirata, Y. Antimitochondrial antibodies-positive myositis accompanied by cardiac involvement. BMJ Case Rep. 2017, 2017. [Google Scholar] [CrossRef]
- Mutoh, T.; Takahashi, M.; Satake, H.; Daikoku, K.; Fujii, H. Anti-mitochondrial antibody-positive inflammatory myopathy with multiple arrhythmias resistant to high-dose glucocorticoids and intravenous cyclophosphamide: A case-based review. Clin. Rheumatol. 2025, 44, 2561–2571. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, X.; Han, Z.; Wu, X.; Li, G.; Chen, J.; Xu, B.; Gu, R.; Wang, L. Refractory ventricular tachycardia and heart failure due to anti-mitochondrial antibody-positive inflammatory myopathy. BMC Cardiovasc. Disord. 2023, 23, 57. [Google Scholar] [CrossRef]
- Højgaard, P.; Witting, N.; Rossing, K.; Pecini, R.; Hartvig Lindkær Jensen, T.; Hasbak, P.; Diederichsen, L.P. Cardiac arrest in anti-mitochondrial antibody associated inflammatory myopathy. Oxf. Med. Case Rep. 2021, 2021, omaa150. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, M.; Luo, Y.-B.; Sun, Y.; Shao, K.; Dai, T.; Li, W.; Zhao, Y.; Yan, C. Idiopathic inflammatory myopathies with anti-mitochondrial antibodies: Clinical features and treatment outcomes in a Chinese cohort. Neuromuscul. Disord. 2019, 29, 5–13. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Hu, J.; Jin, J.; Lu, J.; Shen, C.; Cai, Z. Associations between anti-mitochondrial antibodies and cardiac involvement in idiopathic inflammatory myopathy patients. Z. Für Rheumatol. 2024, 83, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, S.E.; Pinal-Fernandez, I.; Casal-Dominguez, M.; Albayda, J.; Paik, J.J.; Miller, F.W.; Rider, L.G.; Mammen, A.L.; Christopher-Stine, L. Anti-mitochondrial autoantibodies are associated with cardiomyopathy, dysphagia, and features of more severe disease in adult-onset myositis. Clin. Rheumatol. 2021, 40, 4095–4100. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kang, Y.C.; Kim, M.J.; Kim, S.U.; Kang, H.R.; Yeo, J.S.; Kim, Y.; Yu, S.-H.; Song, B.; Hwang, J.W.; et al. Mitochondrial transplantation as a novel therapeutic approach in idiopathic inflammatory myopathy. Ann. Rheum. Dis. 2025, 84, 609–619. [Google Scholar] [CrossRef]
- Koo, J.-H.; Kang, E.-B.; Cho, J.-Y. Resistance Exercise Improves Mitochondrial Quality Control in a Rat Model of Sporadic Inclusion Body Myositis. Gerontology 2019, 65, 240–252. [Google Scholar] [CrossRef]
- Liu, B.H.; Xu, C.Z.; Liu, Y.; Lu, Z.L.; Fu, T.L.; Li, G.R.; Deng, Y.; Luo, G.Q.; Ding, S.; Li, N.; et al. Mitochondrial quality control in human health and disease. Mil. Med. Res. 2024, 11, 32. [Google Scholar] [CrossRef]
- Song, Y.; Xu, Y.; Liu, Y.; Gao, J.; Feng, L.; Zhang, Y.; Shi, L.; Zhang, M.; Guo, D.; Qi, B.; et al. Mitochondrial Quality Control in the Maintenance of Cardiovascular Homeostasis: The Roles and Interregulation of UPS, Mitochondrial Dynamics and Mitophagy. Oxidative Med. Cell. Longev. 2021, 2021, 3960773. [Google Scholar] [CrossRef]
- Pickles, S.; Vigié, P.; Youle, R.J. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr. Biol. 2018, 28, R170–R185. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023, 8, 248. [Google Scholar] [CrossRef] [PubMed]
- Sugarman, M.C.; Kitazawa, M.; Baker, M.; Caiozzo, V.J.; Querfurth, H.W.; LaFerla, F.M. Pathogenic accumulation of APP in fast twitch muscle of IBM patients and a transgenic model. Neurobiol. Aging 2006, 27, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Cenini, G.; Rüb, C.; Bruderek, M.; Voos, W. Amyloid β-peptides interfere with mitochondrial preprotein import competence by a coaggregation process. Mol. Biol. Cell 2016, 27, 3257–3272. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.H.; Beal, M.F. Amyloid beta, mitochondrial dysfunction and synaptic damage: Implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol. Med. 2008, 14, 45–53. [Google Scholar] [CrossRef]
- Nemec, M.; Vernerová, L.; Laiferová, N.; Balážová, M.; Vokurková, M.; Kurdiová, T.; Oreská, S.; Kubínová, K.; Klein, M.; Špiritović, M.; et al. Altered dynamics of lipid metabolism in muscle cells from patients with idiopathic inflammatory myopathy is ameliorated by 6 months of training. J. Physiol. 2021, 599, 207–229. [Google Scholar] [CrossRef] [PubMed]
- Afroze, D.; Kumar, A. ER stress in skeletal muscle remodeling and myopathies. Febs J. 2019, 286, 379–398. [Google Scholar] [CrossRef]
- Sachdev, R.; Kappes-Horn, K.; Paulsen, L.; Duernberger, Y.; Pleschka, C.; Denner, P.; Kundu, B.; Reimann, J.; Vorberg, I. Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion. Mol. Neurobiol. 2018, 55, 8355–8373. [Google Scholar] [CrossRef] [PubMed]
- Pfaffenbach, K.T.; Pong, M.; Morgan, T.E.; Wang, H.; Ott, K.; Zhou, B.; Longo, V.D.; Lee, A.S. GRP78/BiP is a novel downstream target of IGF-1 receptor mediated signaling. J. Cell Physiol. 2012, 227, 3803–3811. [Google Scholar] [CrossRef]
- Gomes, L.C.; Scorrano, L. Mitochondrial elongation during autophagy: A stereotypical response to survive in difficult times. Autophagy 2011, 7, 1251–1253. [Google Scholar] [CrossRef]
- Gomes, L.C.; Benedetto, G.D.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef]
- Vidal, J.; Fernandez, E.A.; Wohlwend, M.; Laurila, P.P.; Lopez-Mejia, A.; Ochala, J.; Lobrinus, A.J.; Kayser, B.; Lopez-Mejia, I.C.; Place, N.; et al. Ryanodine receptor type 1 content decrease-induced endoplasmic reticulum stress is a hallmark of myopathies. J. Cachexia Sarcopenia Muscle 2023, 14, 2882–2897. [Google Scholar] [CrossRef]
- Ma, X.; Gao, H.J.; Zhang, Q.; Yang, M.G.; Bi, Z.J.; Ji, S.Q.; Li, Y.; Xu, L.; Bu, B.T. Endoplasmic Reticulum Stress Is Involved in Muscular Pathogenesis in Idiopathic Inflammatory Myopathies. Front. Cell Dev. Biol. 2022, 10, 791986. [Google Scholar] [CrossRef]
- Yamada, T.; Ashida, Y.; Tamai, K.; Kimura, I.; Yamauchi, N.; Naito, A.; Tokuda, N.; Westerblad, H.; Andersson, D.C.; Himori, K. Improved skeletal muscle fatigue resistance in experimental autoimmune myositis mice following high-intensity interval training. Arthritis Res. Ther. 2022, 24, 156. [Google Scholar] [CrossRef]
- Himori, K.; Ashida, Y.; Tatebayashi, D.; Abe, M.; Saito, Y.; Chikenji, T.; Westerblad, H.; Andersson, D.C.; Yamada, T. Eccentric Resistance Training Ameliorates Muscle Weakness in a Mouse Model of Idiopathic Inflammatory Myopathies. Arthritis Rheumatol. 2021, 73, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Hanna-Addams, S.; Liu, S.; Liu, H.; Chen, S.; Wang, Z. CK1α, CK1δ, and CK1ε are necrosome components which phosphorylate serine 227 of human RIPK3 to activate necroptosis. Proc. Natl. Acad. Sci. USA 2020, 117, 1962–1970. [Google Scholar] [CrossRef]
- Dhuriya, Y.K.; Sharma, D. Necroptosis: A regulated inflammatory mode of cell death. J. Neuroinflamm. 2018, 15, 199. [Google Scholar] [CrossRef]
- Ye, K.; Chen, Z.; Xu, Y. The double-edged functions of necroptosis. Cell Death Dis. 2023, 14, 163. [Google Scholar] [CrossRef]
- Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol. 2021, 18, 1106–1121. [Google Scholar] [CrossRef]
- Peng, Q.-L.; Zhang, Y.-M.; Liu, Y.-C.; Liang, L.; Li, W.-L.; Tian, X.-L.; Zhang, L.; Yang, H.-X.; Lu, X.; Wang, G.-C. Contribution of Necroptosis to Myofiber Death in Idiopathic Inflammatory Myopathies. Arthritis Rheumatol. 2022, 74, 1048–1058. [Google Scholar] [CrossRef]
- Kamiya, M.; Mizoguchi, F.; Kawahata, K.; Wang, D.; Nishibori, M.; Day, J.; Louis, C.; Wicks, I.P.; Kohsaka, H.; Yasuda, S. Targeting necroptosis in muscle fibers ameliorates inflammatory myopathies. Nat. Commun. 2022, 13, 166. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, M.; Mizoguchi, F.; Yasuda, S. Amelioration of inflammatory myopathies by glucagon-like peptide-1 receptor agonist via suppressing muscle fibre necroptosis. J. Cachexia Sarcopenia Muscle 2022, 13, 2118–2131. [Google Scholar] [CrossRef]
- Ma, M.; Chai, K.; Deng, R. Study of the correlation between the noncanonical pathway of pyroptosis and idiopathic inflammatory myopathy. Int. Immunopharmacol. 2021, 98, 107810. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Chikenji, T.S.; Matsumura, T.; Nakano, M.; Fujimiya, M. Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nat. Commun. 2020, 11, 889. [Google Scholar] [CrossRef] [PubMed]
- Molina, T.; Fabre, P.; Dumont, N.A. Fibro-adipogenic progenitors in skeletal muscle homeostasis, regeneration and diseases. Open Biol. 2021, 11, 210110. [Google Scholar] [CrossRef]
- Liu, L.; Yue, X.; Sun, Z.; Hambright, W.S.; Wei, J.; Li, Y.; Matre, P.; Cui, Y.; Wang, Z.; Rodney, G.; et al. Reduction of senescent fibro-adipogenic progenitors in progeria-aged muscle by senolytics rescues the function of muscle stem cells. J. Cachexia Sarcopenia Muscle 2022, 13, 3137–3148. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef] [PubMed]
- Gomarasca, M.; Banfi, G.; Lombardi, G. Chapter Four—Myokines: The endocrine coupling of skeletal muscle and bone. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 94, pp. 155–218. [Google Scholar]
- Díaz, B.B.; González, D.A.; Gannar, F.; Pérez, M.C.R.; de León, A.C. Myokines, physical activity, insulin resistance and autoimmune diseases. Immunol. Lett. 2018, 203, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Amato, A.A.; Hanna, M.G.; Machado, P.M.; Badrising, U.A.; Chinoy, H.; Benveniste, O.; Karanam, A.K.; Wu, M.; Tankó, L.B.; Schubert-Tennigkeit, A.A.; et al. Efficacy and Safety of Bimagrumab in Sporadic Inclusion Body Myositis: Long-term Extension of RESILIENT. Neurology 2021, 96, e1595–e1607. [Google Scholar] [CrossRef]
- Li, C.K.; Knopp, P.; Moncrieffe, H.; Singh, B.; Shah, S.; Nagaraju, K.; Varsani, H.; Gao, B.; Wedderburn, L.R. Overexpression of MHC class I heavy chain protein in young skeletal muscle leads to severe myositis: Implications for juvenile myositis. Am. J. Pathol. 2009, 175, 1030–1040. [Google Scholar] [CrossRef]
- Milisenda, J.C.; Pinal-Fernandez, I.; Lloyd, T.E.; Grau-Junyent, J.M.; Christopher-Stine, L.; Corse, A.M.; Mammen, A.L. The pattern of MHC class I expression in muscle biopsies from patients with myositis and other neuromuscular disorders. Rheumatology 2023, 62, 3156–3160. [Google Scholar] [CrossRef]
- Thoma, A.; Earl, K.E.; Goljanek-Whysall, K.; Lightfoot, A.P. Major histocompatibility complex I-induced endoplasmic reticulum stress mediates the secretion of pro-inflammatory muscle-derived cytokines. J. Cell Mol. Med. 2022, 26, 6032–6041. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, H.; Yang, B.; Cao, J. The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm. Sin. B 2023, 13, 1976–1989. [Google Scholar] [CrossRef]
- Bhattarai, S.; Ghannam, K.; Krause, S.; Benveniste, O.; Marg, A.; de Bruin, G.; Xin, B.-T.; Overkleeft, H.S.; Spuler, S.; Stenzel, W.; et al. The immunoproteasomes are key to regulate myokines and MHC class I expression in idiopathic inflammatory myopathies. J. Autoimmun. 2016, 75, 118–129. [Google Scholar] [CrossRef]
- Wang, H.; Kim, S.J.; Lei, Y.; Wang, S.; Wang, H.; Huang, H.; Zhang, H.; Tsung, A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct. Target. Ther. 2024, 9, 235. [Google Scholar] [CrossRef] [PubMed]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Masucci, M.T.; Minopoli, M.; Del Vecchio, S.; Carriero, M.V. The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Front. Immunol. 2020, 11, 1749. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Libby, P.; Soehnlein, O.; Aramburu, I.V.; Papayannopoulos, V.; Silvestre-Roig, C. Neutrophil extracellular traps: From physiology to pathology Cardiovasc. Res. 2021, 118, 2737–2753. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Zhao, P.; Zhu, J.; Bai, L.; Ma, W.; Li, F.; Zhang, C.; Zhao, L.; Wang, L.; Zhang, S. Neutrophil extracellular traps induce pyroptosis of pulmonary microvascular endothelial cells by activating the NLRP3 inflammasome. Clin. Exp. Immunol. 2024, 217, 89–98. [Google Scholar] [CrossRef]
- Ma, W.; Zhu, J.; Bai, L.; Zhao, P.; Li, F.; Zhang, S. The role of neutrophil extracellular traps and proinflammatory damage-associated molecular patterns in idiopathic inflammatory myopathies. Clin. Exp. Immunol. 2023, 213, 202–208. [Google Scholar] [CrossRef]
- Feng, Y.; Su, Q.; Zhu, J.; Cui, X.; Guo, J.; Yang, J.; Zhang, S. cGAS-STING mediates neutrophil extracellular traps-induced EMT in myositis-associated interstitial lung disease: STING as a potential therapeutic target. Int. Immunopharmacol. 2025, 149, 114144. [Google Scholar] [CrossRef]
- Fousert, E.; Toes, R.; Desai, J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells 2020, 9, 915. [Google Scholar] [CrossRef]
- Lee, K.H.; Kronbichler, A.; Park, D.D.-Y.; Park, Y.; Moon, H.; Kim, H.; Choi, J.H.; Choi, Y.; Shim, S.; Lyu, I.S.; et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun. Rev. 2017, 16, 1160–1173. [Google Scholar] [CrossRef]
- Radic, M.; Muller, S. LL-37, a Multi-Faceted Amphipathic Peptide Involved in NETosis. Cells 2022, 11, 2463. [Google Scholar] [CrossRef]
- Zhang, S.; Shu, X.; Tian, X.; Chen, F.; Lu, X.; Wang, G. Enhanced formation and impaired degradation of neutrophil extracellular traps in dermatomyositis and polymyositis: A potential contributor to interstitial lung disease complications. Clin. Exp. Immunol. 2014, 177, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Seto, N.; Torres-Ruiz, J.J.; Carmona-Rivera, C.; Pinal-Fernandez, I.; Pak, K.; Purmalek, M.M.; Hosono, Y.; Fernandes-Cerqueira, C.; Gowda, P.; Arnett, N.; et al. Neutrophil dysregulation is pathogenic in idiopathic inflammatory myopathies. JCI Insight 2020, 5, e134189. [Google Scholar] [CrossRef]
- Bai, L.; Zhu, J.; Ma, W.; Li, F.; Zhao, P.; Zhang, S. Neutrophil extracellular traps are involved in the occurrence of interstitial lung disease in a murine experimental autoimmune myositis model. Clin. Exp. Immunol. 2024, 215, 126–136. [Google Scholar] [CrossRef]
- Zhang, S.; Jia, X.; Zhang, Q.; Zhang, L.; Yang, J.; Hu, C.; Shi, J.; Jiang, X.; Lu, J.; Shen, H. Neutrophil extracellular traps activate lung fibroblast to induce polymyositis-related interstitial lung diseases via TLR9-miR-7-Smad2 pathway. J. Cell Mol. Med. 2020, 24, 1658–1669. [Google Scholar] [CrossRef]
- Li, F.; Zhao, P.; Zhao, L.; Bai, L.; Su, Q.; Feng, Y.; Ma, W.; Zhu, J.; Yang, J.; Zhang, S. Colchicine Alleviates Interstitial Lung Disease in an Experimental Autoimmune Myositis Murine Model by Inhibiting the Formation of Neutrophil Extracellular Traps. Inflammation 2024, 48, 2692–2703. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Meyer, A.; Sibilia, J.; Geny, B. In the idiopathic inflammatory myopathies, reactive oxygen species are at the crossroad between immune and non-immune cell-mediated mechanisms. Ann. Rheum. Dis. 2015, 74, e62. [Google Scholar] [CrossRef] [PubMed]
- Vorobjeva, N.V.; Chernyak, B.V. NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry 2020, 85, 1178–1190. [Google Scholar] [CrossRef]
- Hu, M.; Li, H.; Li, G.; Wang, Y.; Liu, J.; Zhang, M.; Shen, D.; Wang, X. NETs promote ROS production to induce human amniotic epithelial cell apoptosis via ERK1/2 signaling in spontaneous preterm birth. Am. J. Reprod. Immunol. 2023, 89, e13656. [Google Scholar] [CrossRef]
- Zhan, X.; Wu, R.; Kong, X.H.; You, Y.; He, K.; Sun, X.Y.; Huang, Y.; Chen, W.X.; Duan, L. Elevated neutrophil extracellular traps by HBV-mediated S100A9-TLR4/RAGE-ROS cascade facilitate the growth and metastasis of hepatocellular carcinoma. Cancer Commun. 2023, 43, 225–245. [Google Scholar] [CrossRef]
- Ravindran, M.; Khan, M.A.; Palaniyar, N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules 2019, 9, 365. [Google Scholar] [CrossRef]
- Azzouz, D.; Khan, M.A.; Palaniyar, N. ROS induces NETosis by oxidizing DNA and initiating DNA repair. Cell Death Discov. 2021, 7, 113. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, Y.; Chen, D.; Sun, Y.; Li, D.; Meng, Y.; Zhou, Q.; Zeng, F.; Deng, G.; Chen, X. Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity. J. Transl. Int. Med. 2025, 13, 10–32. [Google Scholar] [CrossRef]
- Morgan, M.J.; Liu, Z.-g. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.K.; Chang, W.T.; Lin, I.L.; Chen, Y.F.; Padalwar, N.B.; Cheng, K.C.; Teng, Y.N.; Wang, C.H.; Chiu, C.C. The Role of Necroptosis in ROS-Mediated Cancer Therapies and Its Promising Applications. Cancers 2020, 12, 2185. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guo, X.; Zhou, Y.; Du, J.; Lu, C.; Zhang, L.; Sun, S.; Wang, S.; Li, Y. Kynurenic acid inhibits macrophage pyroptosis by suppressing ROS production via activation of the NRF2 pathway. Mol. Med. Rep. 2023, 28, 211. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Cheng, J.; Zhu, T.; Zhou, Z.; Xia, P. Methyl 3,4-dihydrobenzoate attenuates muscle fiber necroptosis and macrophage pyroptosis by regulating oxidative stress in inflammatory myopathies. Int. Immunopharmacol. 2025, 154, 114608. [Google Scholar] [CrossRef] [PubMed]
- Dalakas, M.C. Mechanisms of disease: Signaling pathways and immunobiology of inflammatory myopathies. Nat. Clin. Pr. Rheumatol. 2006, 2, 219–227. [Google Scholar] [CrossRef]
- Kim, S.; Joe, Y.; Kim, H.J.; Kim, Y.S.; Jeong, S.O.; Pae, H.O.; Ryter, S.W.; Surh, Y.J.; Chung, H.T. Endoplasmic reticulum stress-induced IRE1α activation mediates cross-talk of GSK-3β and XBP-1 to regulate inflammatory cytokine production. J. Immunol. 2015, 194, 4498–4506. [Google Scholar] [CrossRef]
- Lundberg, I.E.; Fujimoto, M.; Vencovsky, J.; Aggarwal, R.; Holmqvist, M.; Christopher-Stine, L.; Mammen, A.L.; Miller, F.W. Idiopathic inflammatory myopathies. Nat. Rev. Dis. Primers 2021, 7, 87. [Google Scholar] [CrossRef]
- Loredo Martinez, M.; Zampieri, S.; Franco, C.; Ghirardello, A.; Doria, A.; Gatto, M. Nonimmune mechanisms in idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 2020, 32, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Coley, W.; Rayavarapu, S.; Nagaraju, K. Role of non-immune mechanisms of muscle damage in idiopathic inflammatory myopathies. Arthritis Res. Ther. 2012, 14, 209. [Google Scholar] [CrossRef] [PubMed]
- Ceribelli, A.; De Santis, M.; Isailovic, N.; Gershwin, M.E.; Selmi, C. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: A Critical Review. Clin. Rev. Allergy Immunol. 2017, 52, 58–70. [Google Scholar] [CrossRef]
- Manole, E.; Bastian, A.E.; Butoianu, N.; Goebel, H.H. Myositis non-inflammatory mechanisms: An up-dated review. J. Immunoass. Immunochem. 2017, 38, 115–126. [Google Scholar] [CrossRef]
- Miller, F.W.; Lamb, J.A.; Schmidt, J.; Nagaraju, K. Risk factors and disease mechanisms in myositis. Nat. Rev. Rheumatol. 2018, 14, 255–268. [Google Scholar] [CrossRef]
- Sebastian, A.; Wiland, P. Diagnosis and treatment options for inclusion body myositis—A case report. Rheumatol. Forum 2024, 10, 165–179. [Google Scholar] [CrossRef]
- Keller, C.W.; Schmidt, J.; Lünemann, J.D. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann. Clin. Transl. Neurol. 2017, 4, 422–445. [Google Scholar] [CrossRef]
- Lilleker, J.B.; Naddaf, E.; Saris, C.G.J.; Schmidt, J.; de Visser, M.; Weihl, C.C.; Alexanderson, H.; Alfano, L.; Allenbach, Y.; Badrising, U.; et al. 272nd ENMC international workshop: 10 Years of progress—Revision of the ENMC 2013 diagnostic criteria for inclusion body myositis and clinical trial readiness. 16–18 June 2023, Hoofddorp, The Netherlands. Neuromuscul. Disord. 2024, 37, 36–51. [Google Scholar] [CrossRef]
- Dooley, K. New ENMC Criteria for the Diagnosis of Inclusion Body Myositis. Available online: https://cureibm.org/new-enmc-criteria-for-the-diagnosis-of-inclusion-body-myositis/ (accessed on 27 June 2025).
- Martins, E.F.; Cappello, C.H.; Shinjo, S.K.; Appenzeller, S.; de Souza, J.M. Idiopathic Inflammatory Myopathies: Recent Evidence Linking Pathogenesis and Clinical Features. Int. J. Mol. Sci. 2025, 26, 3302. [Google Scholar] [CrossRef] [PubMed]
- Tanboon, J.; Uruha, A.; Stenzel, W.; Nishino, I. Where are we moving in the classification of idiopathic inflammatory myopathies? Curr. Opin. Neurol. 2020, 33, 590–603. [Google Scholar] [CrossRef]
- Seki, M.; Uruha, A.; Ohnuki, Y.; Kamada, S.; Noda, T.; Onda, A.; Ohira, M.; Isami, A.; Hiramatsu, S.; Hibino, M.; et al. Inflammatory myopathy associated with PD-1 inhibitors. J. Autoimmun. 2019, 100, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Marder, G.; Quach, T.; Chadha, P.; Nandkumar, P.; Tsang, J.; Levine, T.; Schiopu, E.; Furie, R.; Davidson, A.; Narain, S. Belimumab treatment of adult idiopathic inflammatory myopathy. Rheumatology 2024, 63, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Charles-Schoeman, C.; Schessl, J.; Bata-Csörgő, Z.; Dimachkie, M.M.; Griger, Z.; Moiseev, S.; Oddis, C.; Schiopu, E.; Vencovský, J.; et al. Trial of Intravenous Immune Globulin in Dermatomyositis. N. Engl. J. Med. 2022, 387, 1264–1278. [Google Scholar] [CrossRef]
- Aggarwal, R.; Lundberg, I.E.; Song, Y.W.; Shaibani, A.; Werth, V.P.; Maldonado, M.A. Efficacy and Safety of Subcutaneous Abatacept Plus Standard Treatment for Active Idiopathic Inflammatory Myopathy: Phase 3 Randomized Controlled Trial. Arthritis Rheumatol. 2025, 77, 765–776. [Google Scholar] [CrossRef]
- Volkov, J.; Nunez, D.; Mozaffar, T.; Stadanlick, J.; Werner, M.; Vorndran, Z.; Ellis, A.; Williams, J.; Cicarelli, J.; Lam, Q.; et al. Case study of CD19 CAR T therapy in a subject with immune-mediate necrotizing myopathy treated in the RESET-Myositis phase I/II trial. Mol. Ther. 2024, 32, 3821–3828. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Tan, B.; Zhu, L.; Zhang, Y.; Lin, L.; Xiao, Y.; Sun, A.; Wan, X.; Liu, S.; et al. Allogeneic CD19-targeted CAR-T therapy in patients with severe myositis and systemic sclerosis. Cell 2024, 187, 4890–4904.e4899. [Google Scholar] [CrossRef]
- Connolly, C.M.; Gupta, L.; Fujimoto, M.; Machado, P.M.; Paik, J.J. Idiopathic inflammatory myopathies: Current insights and future frontiers. Lancet Rheumatol. 2024, 6, e115–e127. [Google Scholar] [CrossRef]
- Moon, S.-J.; Jung, S.M.; Baek, I.-W.; Park, K.-S.; Kim, K.-J. Molecular signature of neutrophil extracellular trap mediating disease module in idiopathic inflammatory myopathy. J. Autoimmun. 2023, 138, 103063. [Google Scholar] [CrossRef] [PubMed]
- Pinal-Fernandez, I.; Quintana, A.; Milisenda, J.C.; Casal-Dominguez, M.; Muñoz-Braceras, S.; Derfoul, A.; Torres-Ruiz, J.; Pak, K.; Dell’Orso, S.; Naz, F.; et al. Transcriptomic profiling reveals distinct subsets of immune checkpoint inhibitor induced myositis. Ann. Rheum. Dis. 2023, 82, 829–836. [Google Scholar] [CrossRef]
- Karasawa, R.; Jarvis, J.N. Using the tools of proteomics to understand the pathogenesis of idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 2019, 31, 617–622. [Google Scholar] [CrossRef]
- McLeish, E.; Slater, N.; Mastaglia, F.L.; Needham, M.; Coudert, J.D. From data to diagnosis: How machine learning is revolutionizing biomarker discovery in idiopathic inflammatory myopathies. Brief. Bioinform. 2023, 25, bbad514. [Google Scholar] [CrossRef] [PubMed]
Idiopathic Inflammatory Myopathy Management | ||
---|---|---|
Pharmacological | Non-Pharmacological | Refractory Disease |
Glucocorticoids | Exercise program | IVIG |
DMARDs (azathioprine, methotrexate, cyclosporine, tacrolimus) | Psychological well-being and quality of life assessment | Cyclophosphamide |
Addressing steroid adverse effects | Rituximab | |
Cancer screening | Abatacept |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markowska, A.; Tarnacka, B. Idiopathic Inflammatory Myopathy—Molecular Mechanisms Underlying Its Pathogenesis and Physical Therapy Effects. Int. J. Mol. Sci. 2025, 26, 8369. https://doi.org/10.3390/ijms26178369
Markowska A, Tarnacka B. Idiopathic Inflammatory Myopathy—Molecular Mechanisms Underlying Its Pathogenesis and Physical Therapy Effects. International Journal of Molecular Sciences. 2025; 26(17):8369. https://doi.org/10.3390/ijms26178369
Chicago/Turabian StyleMarkowska, Aleksandra, and Beata Tarnacka. 2025. "Idiopathic Inflammatory Myopathy—Molecular Mechanisms Underlying Its Pathogenesis and Physical Therapy Effects" International Journal of Molecular Sciences 26, no. 17: 8369. https://doi.org/10.3390/ijms26178369
APA StyleMarkowska, A., & Tarnacka, B. (2025). Idiopathic Inflammatory Myopathy—Molecular Mechanisms Underlying Its Pathogenesis and Physical Therapy Effects. International Journal of Molecular Sciences, 26(17), 8369. https://doi.org/10.3390/ijms26178369