Pangenomic and Phenotypic Characterization of Colombian Capsicum Germplasm Reveals the Genetic Basis of Fruit Quality Traits
Abstract
1. Introduction
2. Results
2.1. Phenotypic Traits
2.2. Genotypic Data
2.3. Population Structure and Genetic Clustering
2.4. Trait-Associated SNPs (QTNs)
2.5. Candidate Gene Identification
2.6. Comparative Analysis of Reference Genome and Pangenome
3. Discussion
3.1. Rampant Introgression Reshapes Capsicum Diversity in Northwest South America
3.2. Complex Polygenic and Pleiotropic Genomic Architectures Underly Fruit Quality Traits
3.3. Candidate Genes Guide Introgression Breeding of Fruit Quality Traits
3.4. Untapping Genomic Resources for Novel Breeding Targets
4. Materials and Methods
4.1. Plant Material and Experimental Design
4.2. Morphological Characterization of Fruit Traits
4.3. Physicochemical Characterization
4.4. Chemical Characterization
4.5. Quantification of Total Carotenoids
4.6. Descriptive and Multivariate Analysis of Phenotypic Traits
4.7. DNA Extraction and Genotyping by Sequencing
4.8. Sequence Processing, Alignment, and SNP Calling
4.9. Population Structure and Kinship Analysis
4.10. Identification of Loci Associated with Phenotypic Traits
4.11. Identification of Candidate Genes and Functional Annotation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT: Datos de Producción de Cultivos y Productos de Ganadería [Internet]. Food and Agriculture Organization of the United Nations. 2024. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 19 January 2025).
- Barik, S.; Ponnam, N.; Reddy, A.C.; Lakshmana, L.R.; Saha, K.; Acharya, G.C.; Madhavi Reddy, K. Breeding peppers for industrial uses: Progress and prospects. Ind. Crops Prod. 2022, 178, 114626. [Google Scholar] [CrossRef]
- de Sá Mendes, N.; de Andrade Gonçalves, É.C.B. The role of bioactive components found in peppers. Trends Food Sci. Technol. 2020, 99, 229–243. [Google Scholar] [CrossRef]
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem. 2019, 274, 872–885. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.S.; Alqahtani, A.; Ojo, O.A.; Shaheen, H.M.; Wasef, L.; Elzeiny, M.; Ismail, M.; Shalaby, M.; Murata, T.; Zaragoza-Bastida, A.; et al. Biological Properties, Bioactive Constituents, and Pharmacokinetics of Some Capsicum spp. and Capsaicinoids. Int. J. Mol. Sci. 2020, 21, 5179. Available online: https://www.mdpi.com/1422-0067/21/15/5179/htm (accessed on 13 July 2025). [CrossRef]
- Akhgari, A.; Sulli, M.; Ramata-Stunda, A.; Häkkinen, S.T.; Nohynek, L.; Salwinski, A.; Demurtas, O.C.; Boro-dušķis, M.; Pajumo, M.; Twyman, R.M.; et al. Capsicum chinense cell cultures: A biotechnological platform for the sustainable production of bioactive metabolites for the cosmetics market. Biocatal Agric. Biotechnol. 2025, 63, 103478. [Google Scholar] [CrossRef]
- Carrizo García, C.; Barboza, G.E.; Palombo, N.; Weiss-Schneeweiss, H. Diversification of chiles (Capsicum, Solanaceae) through time and space: New insights from genome-wide RAD-seq data. Front. Genet. 2022, 13, 1030536. [Google Scholar] [CrossRef]
- da Veiga, V.F.; Moreira Wiedemann, L.S.; Pereira de Araujo, C.; da Silva Antonio, A. Chapter 2. Biological Features of Capsicum. In Chemistry and Nutritional Effects of Capsicum; Royal Society of Chemistry: London, UK, 2023; pp. 15–32. [Google Scholar]
- Barboza, G.E.; García, C.C.; de Bem Bianchetti, L.; Romero, M.V.; Scaldaferro, M. Monograph of wild and cultivated chili peppers (Capsicum L., Solanaceae). PhytoKeys 2022, 200, 1–423. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9881532/ (accessed on 6 October 2024). [CrossRef]
- Hernández-Pérez, T.; Gómez-García Mdel, R.; Valverde, M.E.; Paredes-López, O. Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2972–2993. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12634 (accessed on 22 May 2023). [CrossRef]
- Karaman, K.; Pinar, H.; Ciftci, B.; Kaplan, M. Characterization of phenolics and tocopherol profile, capsaicinoid composition and bioactive properties of fruits in interspecies (Capsicum annuum X Capsicum frutescens) recombinant inbred pepper lines (RIL). Food Chem. 2023, 423, 136173. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0308814623007914 (accessed on 25 May 2023). [CrossRef]
- Berdugo-Cely, J.A.; Cortés, A.J.; López-Hernández, F.; Delgadillo-Durán, P.; Cerón-Souza, I.; Reyes-Herrera, P.H.; Navas-Arboleda, A.A.; Yockteng, R. Pleistocene-dated genomic divergence of avocado trees supports cryptic diversity in the Colombian germplasm. Tree Genet Genomes 2023, 19, 42. Available online: https://link.springer.com/article/10.1007/s11295-023-01616-8 (accessed on 13 July 2025). [CrossRef]
- Denning-James, K.E.; Chater, C.; Cortés, A.J.; Blair, M.W.; Peláez, D.; Hall, A.; De Vega, J.J. Genome-wide association mapping dissects the selective breeding of determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris L.). G3 Genes|Genomes|Genetics 2025, 15, jkaf090, Correction in G3 Genes|Genomes|Genetics 2025, 15, jkaf141. [Google Scholar] [CrossRef]
- Castaño, E.; Vega-Muñoz, M.A.; Grisales-Vásquez, N.Y.; Loaiza-Loaiza, O.A.; Henao-Rojas, J.C.; Montoya, G. Capsicum germplasm targeted valorization using physicochemical and phytochemical descriptors. Front. Sustain. Food Syst. 2025, 9, 1571012. [Google Scholar] [CrossRef]
- von Steimker, J.; Tripodi, P.; Wendenburg, R.; Tringovska, I.; Nankar, A.N.; Stoeva, V.; Pasev, G.; Klemmer, A.; Todorova, V.; Bulut, M.; et al. The genetic architecture of the pepper metabolome and the biosynthesis of its signature capsianoside metabolites. Curr. Biol. 2024, 34, 4209–4223.e3. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Li, X.X.; Qian, Q.; Shang, L. The developments and prospects of plant super-pangenomes: Demands, approaches, and applications. Plant Commun. 2025, 6, 101230. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, J.; Sun, H.; Xiong, C.; Sun, X.; Wang, X.; Wang, Z.; Jarret, R.; Wang, J.; Tang, B.; et al. Genomes of cultivated and wild Capsicum species provide insights into pepper domestication and population differentiation. Nat. Commun. 2023, 14, 5487. Available online: https://www.nature.com/articles/s41467-023-41251-4 (accessed on 18 June 2024). [CrossRef]
- Lopez-Moreno, H.; Basurto-Garduño, A.C.; Torres-Meraz, M.A.; Diaz-Valenzuela, E.; Arellano-Arciniega, S.; Zalapa, J.; Sawers, R.J.H.; Cibrián-Jaramillo, A.; Diaz-Garcia, L. Genetic analysis and QTL mapping of domestication-related traits in chili pepper (Capsicum annuum L.). Front Genet. 2023, 14, 1101401. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.G.; Yu, S.; Wu, K.; Yang, M.; Altaf, M.A.; Wu, Z.; Deng, Q.; Lu, X.; Fu, H.; Wang, Z.; et al. Genome-wide association study and candidate gene identification for agronomic traits in 182 upward-growing fruits of C. frutescens and C. annuum. Sci. Rep. 2024, 14, 14691. Available online: https://www.nature.com/articles/s41598-024-65332-6 (accessed on 2 August 2025). [CrossRef] [PubMed]
- Khan, M.I.; Lozada, N.; Nankar, A.N.; Khokhar, E.S.; Nourbakhsh, S.S. Genetic determinants of heat content in chile pepper (Capsicum spp.) revealed by multi-locus genome-wide association mapping. Euphytica 2025, 221, 121. Available online: https://link.springer.com/article/10.1007/s10681-025-03573-w (accessed on 2 August 2025). [CrossRef]
- Kondo, F.; Umeda, K.; Sudasinghe, S.P.; Yamaguchi, M.; Aratani, S.; Kumanomido, Y.; Nemoto, K.; Nagano, A.J.; Matsushima, K. Genetic analysis of pungency deficiency in Japanese chili pepper ‘Shishito’ (Capsicum annuum) revealed its unique heredity and brought the discovery of two genetic loci involved with the reduction of pungency. Mol. Genet. Genom. 2023, 298, 201–212. Available online: https://pubmed.ncbi.nlm.nih.gov/36374297/ (accessed on 2 August 2025). [CrossRef]
- Ro, N.; Oh, H.; Ko, H.C.; Yi, J.; Na, Y.W.; Haile, M. Genome-Wide Analysis of Fruit Color and Carotenoid Content in Capsicum Core Collection. Plants 2024, 13, 2562. Available online: https://www.mdpi.com/2223-7747/13/18/2562/htm (accessed on 3 August 2025). [CrossRef]
- Wang, Y.; Li, E.; Lu, J.; Wang, J.; Zang, Q.; Liang, Y.; Tian, R.; Zhang, C.; Jiang, F.; Cheng, Y. Genome-Wide Association Analysis of Sweet Pepper (Capsicum annuum) Based on Agronomic Traits Using PepperSNP50K. Plants 2025, 14, 1506. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC12114862/ (accessed on 20 July 2025). [CrossRef]
- von Steimker, J.; Wendenburg, R.; Klemmer, A.; Rosaria, M.; Fernie, A.R.; Alseekh, S.; Tripodi, P. Genome-wide association analysis and linkage mapping decipher the genetic control of primary metabolites and quality traits in Capsicum. Plant J. 2025, 122, e70300. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC12204056/ (accessed on 3 August 2025). [CrossRef]
- Hulse-Kemp, A.M.; Maheshwari, S.; Stoffel, K.; Hill, T.A.; Jaffe, D.; Williams, S.R.; Weisenfeld, N.; Ramakrishnan, S.; Kumar, V.; Shah, P.; et al. Reference quality assembly of the 3.5-Gb genome of Capsicum annuum from a single linked-read library. Hortic. Res. 2018, 5, 4. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5798813/ (accessed on 20 October 2024). [CrossRef]
- Huang, M.; Liu, X.; Zhou, Y.; Summers, R.M.; Zhang, Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 2019, 8, giy154. [Google Scholar] [CrossRef]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef]
- Song, J.; Liu, R.; Chen, G.; Lei, J.; Ning, Z.; Tang, X.; Xiaowan, X.; Chen, M.; Cao, B.; Chen, C.; et al. Two APETALA2/ETHYLENE RESPONSE FACTORS coordinately with CaMYC2 positively regulate capsaicinoid biosynthesis in pepper (Capsicum annuum). Hortic Plant J. 2025, 11, 275–289. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S2468014123001498#sec3 (accessed on 6 May 2025). [CrossRef]
- Chen, W.; Wang, X.; Sun, J.; Wang, X.; Zhu, Z.; Ayhan, D.H.; Yi, S.; Yan, M.; Zhang, L.; Meng, T.; et al. Two telomere-to-telomere gapless genomes reveal insights into Capsicum evolution and capsaicinoid biosynthesis. Nat. Commun. 2024, 15, 4295. Available online: https://www.nature.com/articles/s41467-024-48643-0 (accessed on 5 May 2025). [CrossRef] [PubMed]
- Kethom, W.; Tongyoo, P.; Mongkolporn, O. Genetic diversity and capsaicinoids content association of Thai chili landraces analyzed by whole genome sequencing-based SNPs. Sci. Hortic. 2019, 249, 401–406, Erratum in Sci. Hortic. 2019, 256, 108625. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S0304423819300998#abs0010 (accessed on 5 May 2025). [CrossRef]
- Tripodi, P.; Rabanus-Wallace, M.T.; Barchi, L.; Kale, S.; Esposito, S.; Acquadro, A.; Schafleitner, R.; Van Zonneveld, M.; Prohens, J.; Diez, M.J.; et al. Global range expansion history of pepper (Capsicum spp.) revealed by over 10,000 genebank accessions. Proc. Natl. Acad. Sci. USA 2021, 118, e2104315118. [Google Scholar] [CrossRef]
- Vallarino, J.G.; Hong, J.; Wang, S.; Wang, X.; Sade, N.; Orf, I.; Zhang, D.; Shi, J.; Shen, S.; Cuadros-Inostroza, Á.; et al. Limitations and advantages of using metabolite-based genome-wide association studies: Focus on fruit quality traits. Plant Sci. 2023, 333, 111748. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S0168945223001656 (accessed on 20 May 2025). [CrossRef] [PubMed]
- Xiao, Q.; Bai, X.; Zhang, C.; He, Y. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. J. Adv. Res. 2022, 35, 215–230. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S2090123221000886 (accessed on 20 May 2025). [CrossRef]
- Gasparini, K.; Figueiredo, Y.G.; Araújo, W.L.; Peres, L.E.; Zsögön, A. De novo domestication in the Solanaceae: Advances and challenges. Curr. Opin. Biotechnol. 2024, 89, 103177. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S0958166924001137#sec0020 (accessed on 20 May 2025). [CrossRef]
- Guo, Y.; Qi, Y.; Liu, K.; Luo, X.; Xiao, W.; Qiang, X.; Xing, J.; Yu, F.; Zhao, Z.; Wang, L.; et al. CRISPR–Cas9-mediated promoter editing of FERONIA-Like receptor 13 increases plant growth and disease resistance in rice. Crop J. 2024, 12, 1597–1606. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S2214514124002150 (accessed on 20 May 2025). [CrossRef]
- Hendelman, A.; Zebell, S.; Rodriguez-Leal, D.; Dukler, N.; Robitaille, G.; Wu, X.; Kostyun, J.; Tal, L.; Wang, P.; Bartlett, M.E.; et al. Conserved pleiotropy of an ancient plant homeobox gene uncovered by cis-regulatory dissection. Cell 2021, 184, 1724–1739.e16. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S0092867421001513 (accessed on 20 May 2025). [CrossRef]
- Kushwaha, S.B.; Nagesh, C.R.; Lele, S.S.; Viswanathan, C.; Prashat, G.R.; Goswami, S.; Kumar, R.R.; Kunchge, N.; Gokhale, J.S.; Vinutha, T. CRISPR/Cas technology in vegetable crops for improving biotic, abiotic stress and quality traits: Challenges and opportunities. Sci. Hortic. 2025, 341, 113957. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S0304423825000081 (accessed on 20 May 2025). [CrossRef]
- Ferriera Neres, D.; Wright, R.C. Pleiotropy, a feature or a bug? Toward co-ordinating plant growth, development, and environmental responses through engineering plant hormone signaling. Curr. Opin. Biotechnol. 2024, 88, 103151. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S0958166924000879 (accessed on 20 May 2025). [CrossRef]
- Reinert, S. Quantitative genetics of pleiotropy and its potential for plant sciences. J. Plant Physiol. 2022, 276, 153784. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S0176161722001705 (accessed on 20 May 2025). [CrossRef]
- Naves, E.R.; de Ávila Silva, L.; Sulpice, R.; Araújo, W.L.; Nunes-Nesi, A.; Peres, L.E.P.; Zsögön, A. Capsaicinoids: Pungency beyond Capsicum. Trends Plant Sci. 2019, 24, 109–120. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S1360138518302619 (accessed on 6 May 2025). [CrossRef] [PubMed]
- Thelen, J.J.; Mekhedov, S.; Ohlrogge, J.B. Brassicaceae Express Multiple Isoforms of Biotin Carboxyl Carrier Protein in a Tissue-Specific Manner. Plant Physiol. 2001, 125, 2016. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC88857/ (accessed on 29 May 2025). [CrossRef] [PubMed]
- Venkatesh, J.; Lee, S.Y.; Back, S.; Kim, T.G.; Kim, G.W.; Kim, J.M.; Kwon, J.K.; Kang, B.C. Update on the genetic and molecular regulation of the biosynthetic pathways underlying pepper fruit color and pungency. Curr. Plant Biol. 2023, 35–36, 100303. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S2214662823000324 (accessed on 21 May 2025). [CrossRef]
- Dörmann, P.; Voelker, T.A.; Ohlrogge, J.B. Accumulation of Palmitate in Arabidopsis Mediated by the Acyl-Acyl Carrier Protein Thioesterase FATB1. Plant Physiol. 2000, 123, 637. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC59031/ (accessed on 29 May 2025). [CrossRef]
- Martins-Noguerol, R.; DeAndrés-Gil, C.; Garcés, R.; Salas, J.J.; Martínez-Force, E.; Moreno-Pérez, A.J. Characterization of the acyl-ACP thioesterases from Koelreuteria paniculata reveals a new type of FatB thioesterase. Heliyon 2020, 6, e05237. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S2405844020320806 (accessed on 29 May 2025). [CrossRef] [PubMed]
- Gas-Pascual, E.; Berna, A.; Bach, T.J.; Schaller, H. Plant Oxidosqualene Metabolism: Cycloartenol Synthase–Dependent Sterol Biosynthesis in Nicotiana benthamiana. PLoS ONE 2014, 9, e109156. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4208727/ (accessed on 29 May 2025). [CrossRef] [PubMed]
- Villanueva, L.; Rijpstra, W.I.C.; Schouten, S.; Damsté, J.S.S. Genetic biomarkers of the sterol-biosynthetic pathway in microalgae. Environ. Microbiol. Rep. 2014, 6, 35–44. [Google Scholar] [CrossRef]
- Bode, H.B.; Zeggel, B.; Silakowski, B.; Wenzel, S.C.; Reichenbach, H.; Müller, R. Steroid biosynthesis in prokaryotes: Identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol. Microbiol. 2003, 47, 471–481. [Google Scholar] [CrossRef]
- Bohlmann, J.; Stauber, E.J.; Krock, B.; Oldham, N.J.; Gershenzon, J.; Baldwin, I.T. Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana attenuata and N. sylvestris. Phytochemistry 2002, 60, 109–116. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0031942202000808?via%3Dihub (accessed on 29 May 2025). [CrossRef]
- Song, N.; Ma, L.; Wang, W.; Sun, H.; Wang, L.; Baldwin, I.T.; Wu, J. An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. J. Exp. Bot. 2019, 70, 5895. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6812721/ (accessed on 29 May 2025). [CrossRef]
- Lopez-Ortiz, C.; Dutta, S.K.; Natarajan, P.; Peña-Garcia, Y.; Abburi, V.; Saminathan, T.; Nimmakayala, P.; Reddy, U.K. Genome-wide identification and gene expression pattern of ABC transporter gene family in Capsicum spp. PLoS ONE 2019, 14, e0215901. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6490891/ (accessed on 28 May 2025). [CrossRef]
- Palma, J.M.; Terán, F.; Contreras-Ruiz, A.; Rodríguez-Ruiz, M.; Corpas, F.J. Antioxidant Profile of Pepper (Capsicum annuum L.) Fruits Containing Diverse Levels of Capsaicinoids. Antioxidants 2020, 9, 878. Available online: https://www.mdpi.com/2076-3921/9/9/878/htm (accessed on 28 May 2025). [CrossRef]
- Stewart, C.; Mazourek, M.; Stellari, G.M.; O’Connell, M.; Jahn, M. Genetic control of pungency in C. chinense via the Pun1 locus. J. Exp. Bot. 2007, 58, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Watachi, M.; Nemoto, W.; Goto, T.; Yoshida, Y.; Yasuba, K.I.; Ohno, S.; Doi, M. Capsaicinoid biosynthesis in the pericarp of chili pepper fruits is associated with a placental septum-like transcriptome profile and tissue structure. Plant Cell Rep. 2021, 40, 1859–1874. Available online: https://nebulosa.icesi.edu.co:2158/article/10.1007/s00299-021-02750-0 (accessed on 28 May 2025). [CrossRef]
- Johnson, K.L.; Kibble, N.A.J.; Bacic, A.; Schultz, C.J. A Fasciclin-Like Arabinogalactan-Protein (FLA) Mutant of Arabidopsis thaliana, fla1, Shows Defects in Shoot Regeneration. PLoS ONE 2011, 6, e25154. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025154 (accessed on 28 May 2025). [CrossRef]
- Ma, Y.; MacMillan, C.P.; de Vries, L.; Mansfield, S.D.; Hao, P.; Ratcliffe, J.; Bacic, A.; Johnson, K.L. FLA11 and FLA12 glycoproteins fine-tune stem secondary wall properties in response to mechanical stresses. New Phytol. 2022, 233, 1750. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC9302641/ (accessed on 28 May 2025). [CrossRef] [PubMed]
- Brown, D.M.; Zeef, L.A.H.; Ellis, J.; Goodacre, R.; Turner, S.R. Identification of Novel Genes in Arabidopsis Involved in Secondary Cell Wall Formation Using Expression Profiling and Reverse Genetics. Plant Cell 2005, 17, 2281. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC1182489/ (accessed on 28 May 2025). [CrossRef] [PubMed]
- Sterling, J.D.; Atmodjo, M.A.; Inwood, S.E.; Kolli, V.S.K.; Quigley, H.F.; Hahn, M.G.; Mohnen, D. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc. Natl. Acad. Sci. USA 2006, 103, 5236. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC1458824/ (accessed on 28 May 2025). [CrossRef]
- Gao, S.; Lin, M.; Zhao, M.; Yan, J.; Lu, H.; Zhan, Y.; Xin, Y.; Zeng, F. Fraxinus mandshurica galacturonosyltransferase 1 and 12 play negative roles in cadmium tolerance via cell wall remodeling. Int. J. Biol. Macromol. 2025, 306, 141510. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0141813025020616 (accessed on 28 May 2025). [CrossRef] [PubMed]
- Anders, N.; Wilkinson, M.D.; Lovegrove, A.; Freeman, J.; Tryfona, T.; Pellny, T.K.; Weimar, T.; Mortimer, J.C.; Stott, K.; Baker, J.M.; et al. Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc. Natl. Acad. Sci. USA 2012, 109, 989–993. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3271882/ (accessed on 29 May 2025). [CrossRef]
- Showalter, A.M.; Basu, D. Extensin and arabinogalactan-protein biosynthesis: Glycosyltransferases, research challenges, and biosensors. Front. Plant Sci. 2016, 7, 195884. Available online: www.frontiersin.org (accessed on 29 May 2025). [CrossRef]
- Hu, H.; Wang, J.; Nie, S.; Zhao, J.; Batley, J.; Edwards, D. Plant pangenomics, current practice and future direction. Agric. Commun. 2024, 2, 100039. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S2949798124000152#bib26 (accessed on 21 May 2025). [CrossRef]
- Meng, Y.; Li, X.; Zhang, H.; Yu, Z.; Zhang, Z.; Fan, Y.; Yan, L. Research on the mining of candidate genes for pepper fruit color and development of SNP markers based on SLAF-seq technology. Sci. Rep. 2025, 15, 11392. Available online: https://www.nature.com/articles/s41598-025-95552-3 (accessed on 6 May 2025). [CrossRef]
- Meng, Y.; Zhang, H.; Zhang, Z.; Li, X.; Yu, Z.; Fan, Y.; Yan, L. SLAF-seq technology-based genome-wide association and population structure analyses of hot pepper and sweet pepper. BMC Genom. 2025, 26, 258. Available online: https://link.springer.com/articles/10.1186/s12864-025-11454-8 (accessed on 5 May 2025). [CrossRef]
- Nimmakayala, P.; Lopez-Ortiz, C.; Shahi, B.; Abburi, V.L.; Natarajan, P.; Kshetry, A.O.; Shinde, S.; Davenport, B.; Stommel, J.; Reddy, U.K. Exploration into natural variation for genes associated with fruit shape and size among Capsicum chinense collections. Genomics 2021, 113, 3002–3014. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S0888754321002780 (accessed on 6 May 2025). [CrossRef]
- Peláez, D.; Aguilar, P.A.; Mercado, M.; López-Hernández, F.; Guzmán, M.; Burbano-Erazo, E.; Denning-James, K.; Medina, C.I.; Blair, M.W.; De Vega, J.J.; et al. Genotype Selection, and Seed Uniformity and Multiplication to Ensure Common Bean (Phaseolus vulgaris L.) var. Liborino. Agronomy 2022, 12, 2285. Available online: https://www.mdpi.com/2073-4395/12/10/2285/htm (accessed on 13 July 2025). [CrossRef]
- Bahjat, N.M.; Yıldız, M.; Nadeem, M.A.; Morales, A.; Wohlfeiler, J.; Baloch, F.S.; Tunçtürk, M.; Koçak, M.; Chung, Y.S.; Grzebelus, D.; et al. Population structure, genetic diversity, and GWAS analyses with GBS-derived SNPs and silicodart markers unveil genetic potential for breeding and candidate genes for agronomic and root quality traits in an international sugar beet germplasm collection. BMC Plant Biol. 2025, 25, 523, Correction in BMC Plant Biol. 2025, 25, 672. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC12044756/ (accessed on 5 May 2025).
- Viáfara-Vega, R.A.; Cifuentes, H.G.; Cárdenas-Henao, H. Molecular characterization of cultivars of Capsicum annuum L. and Capsicum frutescens L. (Solanaceae) from Valle del Cauca, Colombia by SSR-HRM technique. Genet. Resour. Crop Evol. 2024, 72, 4539–4550. [Google Scholar] [CrossRef]
- Cortés, A.J.; Skeen, P.; Blair, M.W.; Chacón-Sánchez, M.I. Does the genomic landscape of species divergence in phaseolus beans coerce parallel signatures of adaptation and domestication? Front. Plant Sci. 2018, 871, 381850. [Google Scholar] [CrossRef]
- Cortés, A.J. Unlocking genebanks for climate adaptation. Nat. Clim. Change 2025, 15, 590–592. Available online: https://www.nature.com/articles/s41558-025-02336-8 (accessed on 13 July 2025). [CrossRef]
- López-Hernández, F.; Villanueva-Mejía, D.F.; Tofiño-Rivera, A.P.; Cortés, A.J. Genomic prediction of adaptation in common bean (Phaseolus vulgaris L.) × Tepary bean (P. acutifolius A. Gray) hybrids. Int. J. Mol. Sci. 2025, 26, 7370. [Google Scholar] [CrossRef]
- López-Hernández, F.; Burbano-Erazo, E.; León-Pacheco, R.I.; Cordero-Cordero, C.C.; Villanueva-Mejía, D.F.; Tofiño-Rivera, A.P.; Cortés, A.J. Multi-Environment Genome-Wide Association Studies of Yield Traits in Common Bean (Phaseolus vulgaris L.) × Tepary Bean (P. acutifolius A. Gray) Interspecific Advanced Lines in Humid and Dry Colombian Caribbean Subregion. Agronomy 2023, 13, 1396. Available online: https://www.mdpi.com/2073-4395/13/5/1396/htm (accessed on 7 June 2023). [CrossRef]
- Singh, N.; Wu, S.; Raupp, W.J.; Sehgal, S.; Arora, S.; Tiwari, V.; Vikram, P.; Singh, S.; Chhuneja, P.; Gill, B.S.; et al. Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. Sci. Rep. 2019, 9, 650. Available online: https://www.nature.com/articles/s41598-018-37269-0 (accessed on 22 April 2025). [CrossRef] [PubMed]
- Lozada, D.N.; Bosland, P.W.; Barchenger, D.W.; Haghshenas-Jaryani, M.; Sanogo, S.; Walker, S. Chile Pepper (Capsicum) Breeding and Improvement in the “Multi-Omics” Era. Front. Plant Sci. 2022, 13, 879182. [Google Scholar] [CrossRef]
- Sood, T.; Sood, S.; Sood, V.K.; Badiyal, A.; Anuradha; Kapoor, S.; Sood, V.; Kumar, N. Characterisation of bell pepper (Capsicum annuum L. var. grossum Sendt.) accessions for genetic diversity and population structure based on agro-morphological and microsatellite markers. Sci. Hortic. 2023, 321, 112308. [Google Scholar] [CrossRef]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci. 2017, 22, 961–975. Available online: https://pubmed.ncbi.nlm.nih.gov/28965742/ (accessed on 3 August 2025). [CrossRef] [PubMed]
- Abdul Aziz, M.; Masmoudi, K. Molecular breakthroughs in modern plant breeding techniques. Hortic. Plant J. 2025, 11, 15–41. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S2468014124000311#bib197 (accessed on 21 May 2025). [CrossRef]
- Zhou, Y.; Zhang, Z.; Bao, Z.; Li, H.; Lyu, Y.; Zan, Y.; Wu, Y.; Cheng, L.; Fang, Y.; Wu, K.; et al. Graph pangenome captures missing heritability and empowers tomato breeding. Nature 2022, 606, 527–534. Available online: https://www.nature.com/articles/s41586-022-04808-9 (accessed on 21 May 2025). [CrossRef] [PubMed]
- Mishra, S.; Srivastava, A.K.; Khan, A.W.; Tran, L.S.P.; Nguyen, H.T. The era of panomics-driven gene discovery in plants. Trends Plant Sci. 2024, 29, 995–1005. Available online: https://nebulosa.icesi.edu.co:2138/science/article/pii/S1360138524000633 (accessed on 21 May 2025). [CrossRef]
- Momo, J.; Kumar, A.; Islam, K.; Ahmad, I.; Rawoof, A.; Ramchiary, N. A comprehensive update on Capsicum proteomics: Advances and future prospects. J. Proteom. 2022, 261, 104578. [Google Scholar] [CrossRef]
- IPGRI; AVRDC; CATIE Descriptors for Capsicum (Capsicum spp.). International Plant Genetic Resources Institute. International Plant Genetic Resources Institute, Rome, Italy; the Asian Vegetable Research and Development Center, Taipei, Taiwan, and the Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica. 1995. Available online: https://cgspace.cgiar.org/items/ef0f3bcd-4878-4025-90ed-098a4c1b2918 (accessed on 10 August 2025).
- Suttisansanee, U.; Thiyajai, P.; Inthachat, W.; Pruesapan, K.; Wongwathanarat, K.; Charoenkiatkul, S.; Sahasakul, Y.; Temviriyanukul, P. Exploration of the nutritional and carotenoids profiles of vegetables in Thai cuisine as potential nutritious ingredients. Heliyon 2023, 9, e15951. Available online: http://www.cell.com/article/S2405844023031584/fulltext (accessed on 13 October 2024). [CrossRef]
- Ibañez, F.C.; Gómez, I.; Merino, G.; Beriain, M.J. Textural characteristics of safe dishes for dysphagic patients: A multivariate analysis approach. Int. J. Food Prop. 2019, 22, 593–606. Available online: https://www.tandfonline.com/doi/abs/10.1080/10942912.2019.1597881 (accessed on 28 April 2023). [CrossRef]
- AOAC Official method 934.01 loss on drying (moisture) at 95–100 °C for feeds dry matter on oven drying at 95–100 °C for feeds first. J. AOAC 1998, 577, 6155. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=671 (accessed on 13 October 2024).
- Hailu, G.; Derbew, B. Extent, Causes and Reduction Strategies of Postharvest Losses of Fresh Fruits and Vegetables—A Review. J. Biol. Agric. Healthc. 2015, 5, 49–64. Available online: https://www.iiste.org/Journals/index.php/JBAH/article/view/20627 (accessed on 7 February 2025).
- Penagos-Calvete, D.; Guauque-Medina, J.; Villegas-Torres, M.F.; Montoya, G. Analysis of triacylglycerides, carotenoids and capsaicinoids as disposable molecules from Capsicum agroindustry. Hortic. Environ. Biotechnol. 2019, 60, 227–238. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, 2024. Available online: https://www.r-project.org/ (accessed on 2 July 2025).
- Wei, T.; Simko, V. corrplot: Visualization of a Correlation Matrix [R package corrplot version 0.95). CRAN: Contributed Packages. 2024. Available online: https://CRAN.R-project.org/package=corrplot (accessed on 2 July 2025).
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019379 (accessed on 20 October 2024). [CrossRef]
- Babraham Bioinformatics. FastQC A Quality Control Tool for High Throughput Sequence Data. 2024. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 15 October 2024).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114. [Google Scholar] [CrossRef]
- Sirén, J.; Monlong, J.; Chang, X.; Novak, A.M.; Eizenga, J.M.; Markello, C.; Sibbesen, J.A.; Hickey, G.; Chang, P.C.; Carroll, A.; et al. Pangenomics enables genotyping of known structural variants in 5202 diverse genomes. Science 2021, 374, abg8871. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Ga-briel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. Available online: https://pubmed.ncbi.nlm.nih.gov/20644199/ (accessed on 15 October 2024). [CrossRef] [PubMed]
- Robinson, K.M.; Hawkins, A.S.; Santana-Cruz, I.; Adkins, R.S.; Shetty, A.C.; Nagaraj, S.; Sadzewicz, L.; Tallon, L.J.; Rasko, D.A.; Fraser, C.M.; et al. Aligner optimization increases accuracy and decreases compute times in multi-species sequence data. Microb. Genom. 2017, 3, e000122. [Google Scholar] [CrossRef]
- Garrison, E.; Sirén, J.; Novak, A.M.; Hickey, G.; Eizenga, J.M.; Dawson, E.T.; Jones, W.; Garg, S.; Markello, C.; Lin, M.F.; et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 2018, 36, 875–881. Available online: https://www.nature.com/articles/nbt.4227 (accessed on 12 May 2025). [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC2723002/ (accessed on 15 October 2024). [CrossRef]
- Abueg, L.A.L.; Afgan, E.; Allart, O.; Awan, A.H.; Bacon, W.A.; Baker, D.; Bassetti, M.; Batut, B.; Bernt, M.; Blank-enberg, D.; et al. The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update. Nucleic Acids Res. 2024, 52, W83–W94. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Jombart, T.; Bateman, A. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses [R Package Factoextra Version 1.0.7). CRAN: Contributed Packages. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 2 July 2025).
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. Available online: https://www.jstatsoft.org/index.php/jss/article/view/v061i06 (accessed on 2 July 2025). [CrossRef]
- Frichot, E.; Mathieu, F.; Trouillon, T.; Bouchard, G.; François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 2014, 196, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Z. GAPIT Version 3, Boosting Power and Accuracy for Genomic Association and Prediction. Genom. Proteom. Bioinform. 2021, 19, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Becker, L.C.; Becker, D.M.; Starmer, J.D.; Province, M.A. Avoiding the high Bonferroni penalty in genome-wide association studies. Genet. Epidemiol. 2010, 34, 100. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC2796708/ (accessed on 3 August 2025). [CrossRef] [PubMed]
- Ravinet, M.; Meier, J. Identifying Candidate Genes|Speciation & Population Genomics: A How-to-Guide. Github. 2021. Available online: https://speciationgenomics.github.io/candidate_genes/ (accessed on 4 May 2025).
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. Available online: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1832-y (accessed on 4 May 2025). [CrossRef]
- Kim, S.; Park, M.; Yeom, S.I.; Kim, Y.M.; Lee, J.M.; Lee, H.A.; Seo, E.; Choi, J.; Cheong, K.; Kim, K.T.; et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 2014, 46, 270–278. Available online: https://www.nature.com/articles/ng.2877 (accessed on 5 May 2025). [CrossRef]
- Qin, C.; Yu, C.; Shen, Y.; Fang, X.; Chen, L.; Min, J.; Cheng, J.; Zhao, S.; Xu, M.; Luo, Y.; et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc. Natl. Acad. Sci. USA 2014, 111, 5135–5140. [Google Scholar] [CrossRef]
- Koeda, S.; Sato, K.; Saito, H.; Nagano, A.J.; Yasugi, M.; Kudoh, H.; Tanaka, Y. Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum. Theor. Appl. Genet. 2019, 132, 65–80. Available online: https://link.springer.com/article/10.1007/s00122-018-3195-2 (accessed on 5 May 2025). [CrossRef]
- Wu, S.; Zhang, B.; Keyhaninejad, N.; Rodríguez, G.R.; Kim, H.J.; Chakrabarti, M.; Illa-Berenguer, E.; Taitano, N.K.; Gonzalo, M.J.; Díaz, A.; et al. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat. Commun. 2018, 9, 4734. Available online: https://www.nature.com/articles/s41467-018-07216-8 (accessed on 5 May 2025). [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega-Muñoz, M.A.; López-Hernández, F.; Cortés, A.J.; Roda, F.; Castaño, E.; Montoya, G.; Henao-Rojas, J.C. Pangenomic and Phenotypic Characterization of Colombian Capsicum Germplasm Reveals the Genetic Basis of Fruit Quality Traits. Int. J. Mol. Sci. 2025, 26, 8205. https://doi.org/10.3390/ijms26178205
Vega-Muñoz MA, López-Hernández F, Cortés AJ, Roda F, Castaño E, Montoya G, Henao-Rojas JC. Pangenomic and Phenotypic Characterization of Colombian Capsicum Germplasm Reveals the Genetic Basis of Fruit Quality Traits. International Journal of Molecular Sciences. 2025; 26(17):8205. https://doi.org/10.3390/ijms26178205
Chicago/Turabian StyleVega-Muñoz, Maira A., Felipe López-Hernández, Andrés J. Cortés, Federico Roda, Esteban Castaño, Guillermo Montoya, and Juan Camilo Henao-Rojas. 2025. "Pangenomic and Phenotypic Characterization of Colombian Capsicum Germplasm Reveals the Genetic Basis of Fruit Quality Traits" International Journal of Molecular Sciences 26, no. 17: 8205. https://doi.org/10.3390/ijms26178205
APA StyleVega-Muñoz, M. A., López-Hernández, F., Cortés, A. J., Roda, F., Castaño, E., Montoya, G., & Henao-Rojas, J. C. (2025). Pangenomic and Phenotypic Characterization of Colombian Capsicum Germplasm Reveals the Genetic Basis of Fruit Quality Traits. International Journal of Molecular Sciences, 26(17), 8205. https://doi.org/10.3390/ijms26178205