Regulatory Characterization of Two Cop Systems for Copper Resistance in Pseudomonas putida
Abstract
1. Introduction
2. Results
2.1. Roles of copAB1 and copAB2 Clusters in Copper Resistance
2.2. Functional Redundancy of CopRS1 and CopRS2 in Copper Resistance Regulation
2.3. Regulation of Cop Genes by the CopRS Two-Component Systems
2.4. Identification of the Transcription Start Sites of Cop Genes
2.5. DNA Binding of CopR1 and CopR2 to the Cop Promoters
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions
4.2. Construction of P. putida Mutants and Complemented Strains
4.3. Growth Assay in the Presence of Cu2+
4.4. Construction of Reporter Plasmids and β-Galactosidase Activity Measurement
4.5. Identification of Transcription Start Site
4.6. Purification of CopR1 and CopR2
4.7. EMSAs
4.8. DNase I Footprinting Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merchant, S.S.; Helmann, J.D. Elemental economy: Microbial strategies for optimizing growth in the face of nutrient limitation. Adv. Microb. Physiol. 2012, 60, 91–210. [Google Scholar]
- Sullivan, M.J.; Terán, I.; Goh, K.G.K.; Ulett, G.C. Resisting death by metal: Metabolism and Cu/Zn homeostasis in bacteria. Emerg. Top. Life Sci. 2024, 8, 45–56. [Google Scholar] [CrossRef]
- Andrei, A.; Öztürk, Y.; Khalfaoui-Hassani, B.; Rauch, J.; Marckmann, D.; Trasnea, P.I.; Daldal, F.; Koch, H.G. Cu homeostasis in bacteria: The ins and outs. Membranes 2020, 10, 242. [Google Scholar] [CrossRef]
- Stewart, L.J.; Thaqi, D.; Kobe, B.; Mcewan, A.G.; Waldron, K.J.; Djoko, K.Y. Handling of nutrient copper in the bacterial envelope. Metallomics 2019, 11, 50–63. [Google Scholar] [CrossRef]
- Bhamidimarri, S.P.; Young, T.; Shanmugam, M.; Soderholm, S.; Basle, A.; Bumann, D.; Van Den Berg, B. Acquisition of ionic copper by the bacterial outer membrane protein OprC through a novel binding site. PLoS Biol. 2021, 19, e3001446. [Google Scholar] [CrossRef]
- Ekici, S.; Yang, H.; Koch, H.G.; Daldal, F. Novel transporter required for biogenesis of cbb3-type cytochrome c oxidase in Rhodobacter capsulatus. mBio 2012, 3, e00293-11. [Google Scholar] [CrossRef] [PubMed]
- Chillappagari, S.; Seubert, A.; Trip, H.; Kuipers, O.P.; Marahiel, M.A.; Miethke, M. Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis. J. Bacteriol. 2010, 192, 2512–2524. [Google Scholar] [CrossRef] [PubMed]
- Zabek-Adamska, A.; Drozdz, R.; Naskalski, J.W. Dynamics of reactive oxygen species generation in the presence of copper(II)-histidine complex and cysteine. Acta Biochim. Pol. 2013, 60, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, S.; Zhang, J. The copper resistance mechanism in a newly isolated Pseudoxanthomonas spadix ZSY-33. Environ. Microbiol. Rep. 2023, 15, 484–496. [Google Scholar] [CrossRef]
- Aliaga, M.E.; López-Alarcón, C.; Bridi, R.; Speisky, H. Redox-implications associated with the formation of complexes between copper ions and reduced or oxidized glutathione. J. Inorg. Biochem. 2016, 154, 78–88. [Google Scholar] [CrossRef]
- Rae, T.D.; Schmidt, P.J.; Pufahl, R.A.; Culotta, V.C.; O’halloran, T.V. Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science 1999, 284, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Changela, A.; Chen, K.; Xue, Y.; Holschen, J.; Outten, C.E.; O’halloran, T.V.; Mondragón, A. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 2003, 301, 1383–1387. [Google Scholar] [CrossRef]
- Singleton, C.; Hearnshaw, S.; Zhou, L.; Le Brun, N.E.; Hemmings, A.M. Mechanistic insights into Cu(I) cluster transfer between the chaperone CopZ and its cognate Cu(I)-transporting P-type ATPase, CopA. Biochem. J. 2009, 424, 347–356. [Google Scholar] [CrossRef]
- Raimunda, D.; Padilla-Benavides, T.; Vogt, S.; Boutigny, S.; Tomkinson, K.N.; Finney, L.A.; Argüello, J.M. Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa. Metallomics 2013, 5, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Stolle, P.; Hou, B.; Brüser, T. The Tat substrate CueO is transported in an incomplete folding state. J. Biol. Chem. 2016, 291, 13520–13528. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Nies, D.H.; Mcevoy, M.M.; Rensing, C. Switch or funnel: How RND-type transport systems control periplasmic metal homeostasis. J. Bacteriol. 2011, 193, 2381–2387. [Google Scholar] [CrossRef]
- Mealman, T.D.; Blackburn, N.J.; Mcevoy, M.M. Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli. Curr. Top. Membr. 2012, 69, 163–196. [Google Scholar]
- Outten, F.W.; Huffman, D.L.; Hale, J.A.; O’halloran, T.V. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 2001, 276, 30670–30677. [Google Scholar] [CrossRef]
- Hausrath, A.C.; Ramirez, N.A.; Ly, A.T.; Mcevoy, M.M. The bacterial copper resistance protein CopG contains a cysteine-bridged tetranuclear copper cluster. J. Biol. Chem. 2020, 295, 11364–11376. [Google Scholar] [CrossRef]
- Lim, C.K.; Cooksey, D.A. Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae. J. Bacteriol. 1993, 175, 4492–4498. [Google Scholar] [CrossRef]
- Brown, N.L.; Barrett, S.R.; Camakaris, J.; Lee, B.T.; Rouch, D.A. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol. Microbiol. 1995, 17, 1153–1166. [Google Scholar] [CrossRef] [PubMed]
- Adaikkalam, V.; Swarup, S. Characterization of copABCD operon from a copper-sensitive Pseudomonas putida strain. Can. J. Microbiol. 2005, 51, 209–216. [Google Scholar] [CrossRef]
- Cooksey, D.A. Copper uptake and resistance in bacteria. Mol. Microbiol. 1993, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Nayeri, N.; Górecki, K.; Becares, E.R.; Wang, K.; Mahato, D.R.; Andersson, M.; Abeyrathna, S.S.; Lindkvist-Petersson, K.; Meloni, G.; et al. PcoB is a defense outer membrane protein that facilitates cellular uptake of copper. Protein Sci. 2022, 31, e4364. [Google Scholar] [CrossRef]
- Cha, J.S.; Cooksey, D.A. Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Appl. Environ. Microbiol. 1993, 59, 1671–1674. [Google Scholar] [CrossRef]
- Rademacher, C.; Masepohl, B. Copper-responsive gene regulation in bacteria. Microbiology 2012, 158, 2451–2464. [Google Scholar] [CrossRef]
- Outten, F.W.; Outten, C.E.; Hale, J.; O’halloran, T.V. Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. J. Biol. Chem. 2000, 275, 31024–31029. [Google Scholar] [CrossRef]
- Quintana, J.; Novoa-Aponte, L.; Argüello, J.M. Copper homeostasis networks in the bacterium Pseudomonas aeruginosa. J. Biol. Chem. 2017, 292, 15691–15704. [Google Scholar] [CrossRef] [PubMed]
- Novoa-Aponte, L.; Ramírez, D.; Arguello, J.M. The interplay of the metallosensor CueR with two distinct CopZ chaperones defines copper homeostasis in Pseudomonas aeruginosa. J. Biol. Chem. 2019, 294, 4934–4945. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, B.; Jiang, Y.; Liu, C.; Zhou, W.; Chen, M.; Yang, Y.; Hu, Y.; Liu, B. Structural basis of copper-efflux-regulator-dependent transcription activation. iScience 2021, 24, 102449. [Google Scholar] [CrossRef]
- Schelder, S.; Zaade, D.; Litsanov, B.; Bott, M.; Brocker, M. The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress. PLoS ONE 2011, 6, e22143. [Google Scholar] [CrossRef]
- Gudipaty, S.A.; Larsen, A.S.; Rensing, C.; Mcevoy, M.M. Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiol. Lett. 2012, 330, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Elsen, S.; Simon, V.; Attrée, I. Cross-regulation and cross-talk of conserved and accessory two-component regulatory systems orchestrate Pseudomonas copper resistance. PLoS Genet. 2024, 20, e1011325. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Sengupta, K.; Genova, L.A.; Santiago, A.G.; Jung, W.; Krzemiński, Ł.; Chakraborty, U.K.; Zhang, W.; Chen, P. Metal-induced sensor mobilization turns on affinity to activate regulator for metal detoxification in live bacteria. Proc. Natl. Acad. Sci. USA 2020, 117, 13248–13255. [Google Scholar] [CrossRef] [PubMed]
- Novoa-Aponte, L.; Xu, C.; Soncini, F.C.; Argüello, J.M. The two-component system CopRS maintains subfemtomolar levels of free copper in the periplasm of Pseudomonas aeruginosa using a phosphatase-based mechanism. mSphere 2020, 5, e01193-20. [Google Scholar] [CrossRef]
- Nikel, P.I.; De Lorenzo, V. Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. Metab. Eng. 2018, 50, 142–155. [Google Scholar] [CrossRef]
- Bagdasarian, M.; Lurz, R.; Rückert, B.; Franklin, F.C.; Bagdasarian, M.M.; Frey, J.; Timmis, K.N. Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 1981, 16, 237–247. [Google Scholar] [CrossRef]
- Cánovas, D.; Cases, I.; De Lorenzo, V. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ. Microbiol. 2003, 5, 1242–1256. [Google Scholar] [CrossRef]
- Cha, J.S.; Cooksey, D.A. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA 1991, 88, 8915–8919. [Google Scholar] [CrossRef]
- Zhang, X.X.; Rainey, P.B. Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Environ. Microbiol. Rep. 2008, 10, 3284–3294. [Google Scholar] [CrossRef]
- Gómez-Santos, N.; Pérez, J.; Sánchez-Sutil, M.C.; Moraleda-Muñoz, A.; Muñoz-Dorado, J. CorE from Myxococcus xanthus is a copper-dependent RNA polymerase sigma factor. PLoS Genet. 2011, 7, e1002106. [Google Scholar] [CrossRef]
- Martínez-Bueno, M.A.; Tobes, R.; Rey, M.; Ramos, J.L. Detection of multiple extracytoplasmic function (ECF) sigma factors in the genome of Pseudomonas putida KT2440 and their counterparts in Pseudomonas aeruginosa PA01. Environ. Microbiol. 2002, 4, 842–855. [Google Scholar] [CrossRef]
- Winsor, G.L.; Griffiths, E.J.; Lo, R.; Dhillon, B.K.; Shay, J.A.; Brinkman, F.S.L. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the genome database. Nucleic Acids Res. 2016, 44, D646–D653. [Google Scholar] [CrossRef]
- Yamamoto, K.; Ishihama, A. Transcriptional response of Escherichia coli to external copper. Mol. Microbiol. 2005, 56, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Granja-Travez, R.S.; Bugg, T.D.H. Characterization of multicopper oxidase CopA from Pseudomonas putida KT2440 and Pseudomonas fluorescens Pf-5: Involvement in bacterial lignin oxidation. Arch. Biochem. Biophys. 2018, 660, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.R.; Wang, C.Y.; Zhao, H.M.; Chen, G.C.; Chen, X.C. A subcellular level study of copper speciation reveals the synergistic mechanism of microbial cells and EPS involved in copper binding in bacterial biofilms. Environ. Pollut. 2020, 263, 114485. [Google Scholar] [CrossRef]
- Lin, H.R.; Wang, C.Y.; Zhao, H.M.; Chen, G.C.; Chen, X.C. Interaction between copper and extracellular nucleic acids in the EPS of unsaturated Pseudomonas putida CZ1 biofilm. Environ. Sci. Pollut. Res. Int. 2018, 25, 24172–24180. [Google Scholar] [CrossRef]
- He, M.; Tao, Y.; Mu, K.; Feng, H.; Fan, Y.; Liu, T.; Huang, Q.; Xiao, Y.; Chen, W. Coordinated regulation of chemotaxis and resistance to copper by CsoR in Pseudomonas putida. Elife 2025, 13, RP100914. [Google Scholar] [CrossRef] [PubMed]
- Louis, G.; Cherry, P.; Michaux, C.; Rahuel-Clermont, S.; Dieu, M.; Tilquin, F.; Maertens, L.; Van Houdt, R.; Renard, P.; Perpete, E.; et al. A cytoplasmic chemoreceptor and reactive oxygen species mediate bacterial chemotaxis to copper. J. Biol. Chem. 2023, 299, 105207. [Google Scholar] [CrossRef]
- Hu, Y.H.; Wang, H.L.; Zhang, M.; Sun, L. Molecular analysis of the copper-responsive CopRSCD of a pathogenic Pseudomonas fluorescens strain. J. Microbiol. 2009, 47, 277–286. [Google Scholar] [CrossRef]
- Giner-Lamia, J.; López-Maury, L.; Reyes, J.C.; Florencio, F.J. The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 2012, 159, 1806–1818. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Y.; Giometti, C.S.; Tollaksen, S.L.; Khare, T.; Wu, L.; Klingeman, D.M.; Fields, M.W.; Zhou, J. Knock-out of SO1377 gene, which encodes the member of a conserved hypothetical bacterial protein family COG2268, results in alteration of iron metabolism, increased spontaneous mutation and hydrogen peroxide sensitivity in Shewanella oneidensis MR-1. BMC Genomics 2006, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Kovach, M.E.; Elzer, P.H.; Hill, D.S.; Robertson, G.T.; Farris, M.A.; Roop, R.M., 2nd; Peterson, K.M. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Xiao, Y.; Liu, H.; He, J.; Chen, W.; Huang, Q. FleN and FleQ play a synergistic role in regulating lapA and bcs operons in Pseudomonas putida KT2440. Environ. Microbiol. Rep. 2017, 9, 571–580. [Google Scholar] [CrossRef]
- Liu, H.Z.; Xiao, Y.J.; Nie, H.L.; Huang, Q.Y.; Chen, W.L. Influence of (p)ppGpp on biofilm regulation in Pseudomonas putida KT2440. Microbiol. Res. 2017, 204, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zheng, K.; Chen, H.C.; Liu, Z.F. Capping-RACE: A simple, accurate, and sensitive 5′ RACE method for use in prokaryotes. Nucleic Acids Res. 2018, 46, e129. [Google Scholar] [CrossRef]
- Liu, H.Z.; Zhang, Y.; Wang, Y.S.; Xie, X.B.; Shi, Q.S. The connection between Czc and Cad systems involved in cadmium resistance in Pseudomonas putida. Int. J. Mol. Sci. 2021, 22, 9697. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Song, Y.; Yang, P.; Wang, Q.; Huang, P.; Zhang, Z.; Zhou, G.; Shi, Q.; Xie, X. Regulatory Characterization of Two Cop Systems for Copper Resistance in Pseudomonas putida. Int. J. Mol. Sci. 2025, 26, 8172. https://doi.org/10.3390/ijms26178172
Liu H, Song Y, Yang P, Wang Q, Huang P, Zhang Z, Zhou G, Shi Q, Xie X. Regulatory Characterization of Two Cop Systems for Copper Resistance in Pseudomonas putida. International Journal of Molecular Sciences. 2025; 26(17):8172. https://doi.org/10.3390/ijms26178172
Chicago/Turabian StyleLiu, Huizhong, Yafeng Song, Ping Yang, Qian Wang, Ping Huang, Zhiqing Zhang, Gang Zhou, Qingshan Shi, and Xiaobao Xie. 2025. "Regulatory Characterization of Two Cop Systems for Copper Resistance in Pseudomonas putida" International Journal of Molecular Sciences 26, no. 17: 8172. https://doi.org/10.3390/ijms26178172
APA StyleLiu, H., Song, Y., Yang, P., Wang, Q., Huang, P., Zhang, Z., Zhou, G., Shi, Q., & Xie, X. (2025). Regulatory Characterization of Two Cop Systems for Copper Resistance in Pseudomonas putida. International Journal of Molecular Sciences, 26(17), 8172. https://doi.org/10.3390/ijms26178172