Deciphering the Molecular Interplay Between RXLR-Encoded Avr Genes and NLRs During Phytophthora infestans Infection in Potato: A Comprehensive Review
Abstract
1. Introduction
2. RXLR Effectors: Key Players in Pathogen Virulence
2.1. Structural Characteristics of RXLR Effectors
2.2. Diversity and Evolution of RXLR Effectors in P. infestans
2.3. Functional Categorization and Host-Targeting Specificity
3. NLR Proteins: The Guardians of Plant Immunity
3.1. Structural Organization and Domain Architecture of NLR Proteins
3.2. Mechanisms of NLR Activation and Signaling in Plant Immunity
4. Recognition Mechanisms Between RXLR Effectors and NLRs
4.1. Direct and Indirect Modes of Effector Recognition by NLRs
4.2. Mechanisms of Effector Evasion and Host Counterstrategies
4.2.1. Effector Polymorphism
4.2.2. Taking the Side of the Plants in the Fight
4.2.3. Engineering and Pyramiding of R-Genes
4.2.4. NLR Clusters
4.3. Technological Advances in Studying RXLR-NLR Interactions
4.3.1. Genome Sequencing and Pan-NLRomes
4.3.2. Effector-Omics and High-Throughput Screening
4.3.3. Structural Biology
4.3.4. Functional Genomics
4.3.5. Dual RNA Sequencing Method
5. Genetic Improvements for Durable Resistance
6. Conclusions
Funding
Conflicts of Interest
References
- Hu, X.; Jiang, H.; Liu, Z.; Gao, M.; Liu, G.; Tian, S.; Zeng, F. The Global Potato-Processing Industry: A Review of Production, Products, Quality and Sustainability. Foods 2025, 14, 1758. [Google Scholar] [CrossRef]
- Zaheer, K.; Akhtar, M.H. Potato Production, Usage, and Nutrition—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Birch, P.R.J.; Bryan, G.; Fenton, B.; Gilroy, E.M.; Hein, I.; Jones, J.T.; Prashar, A.; Taylor, M.A.; Torrance, L.; Toth, I.K. Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Secur. 2012, 4, 477–508. [Google Scholar] [CrossRef]
- Ivanov, A.A.; Ukladov, E.O.; Golubeva, T.S. Phytophthora infestans: An Overview of Methods and Attempts to Combat Late Blight. J. Fungi 2021, 7, 1071. [Google Scholar] [CrossRef] [PubMed]
- Yuen, J. Pathogens which threaten food security: Phytophthora infestans, the potato late blight pathogen. Food Secur. 2021, 13, 247–253. [Google Scholar] [CrossRef]
- Paluchowska, P.; Sliwka, J.; Yin, Z. Late blight resistance genes in potato breeding. Planta 2022, 255, 127. [Google Scholar] [CrossRef]
- Kamoun, S.; Smart, C.D. Late blight of potato and tomato in the genomics era. Plant Dis. 2005, 89, 692–699. [Google Scholar] [CrossRef]
- Whisson, S.C.; Boevink, P.C.; Wang, S.; Birch, P.R.J. The cell biology of late blight disease. Curr. Opin. Microbiol. 2016, 34, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Raffaele, S.; Farrer, R.A.; Cano, L.M.; Studholme, D.J.; MacLean, D.; Thines, M.; Jiang, R.H.Y.; Zody, M.C.; Kunjeti, S.G.; Donofrio, N.M.; et al. Genome Evolution Following Host Jumps in the Irish Potato Famine Pathogen Lineage. Science 2010, 330, 1540–1543. [Google Scholar] [CrossRef]
- Koeck, M.; Hardham, A.R.; Dodds, P.N. The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cell. Microbiol. 2011, 13, 1849–1857. [Google Scholar] [CrossRef]
- Whisson, S.C.; Boevink, P.C.; Moleleki, L.; Avrova, A.O.; Morales, J.G.; Gilroy, E.M.; Armstrong, M.R.; Grouffaud, S.; Van West, P.; Chapman, S.; et al. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 2007, 450, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Dodds, P.N.; Rafiqi, M.; Gan, P.H.P.; Hardham, A.R.; Jones, D.A.; Ellis, J.G. Effectors of biotrophic fungi and oomycetes: Pathogenicity factors and triggers of host resistance. New Phytol. 2009, 183, 993–1000. [Google Scholar] [CrossRef]
- Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 2010, 11, 539–548. [Google Scholar] [CrossRef]
- Abuley, I.K.; Hansen, H.H. Control of late blight (Phytophthora infestans) and early blight (Alternaria solani) in potatoes. In Applied Crop Protection 2019; Aarhus Universitet-DCA-Nationalt Center for Fødevarer og Jordbrug: Tjele, Denmark, 2020; pp. 90–98. [Google Scholar]
- Tamborski, J.; Krasileva, K.V. Evolution of Plant NLRs: From Natural History to Precise Modifications. Annu. Rev. Plant Biol. 2020, 71, 355–378. [Google Scholar] [CrossRef]
- Fry, W. Phytophthora infestans: The plant (and R gene) destroyer. Mol. Plant Pathol. 2008, 9, 385–402. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Tsuda, K.; Parker, J.E. Effector-Triggered Immunity: From Pathogen Perception to Robust Defense. Annu. Rev. Plant Biol. 2015, 66, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, I.; Shah, K.K.; Tripathi, S.; Modi, B.; Subedi, S.; Shrestha, J. Late blight of potato and its management through the application of different fungicides and organic amendments: A review. J. Agric. Nat. Resour. 2021, 4, 301–320. [Google Scholar] [CrossRef]
- Saville, A.; Graham, K.; Grünwald, N.J.; Myers, K.; Fry, W.E.; Ristaino, J.B. Fungicide Sensitivity of U.S. Genotypes of Phytophthora infestans to Six Oomycete-Targeted Compounds. Plant Dis. 2015, 99, 659–666. [Google Scholar] [CrossRef]
- Maurice, S.; Montes, M.S.; Nielsen, B.J.; Bødker, L.; Martin, M.D.; Jønck, C.G.; Kjøller, R.; Rosendahl, S. Population genomics of an outbreak of the potato late blight pathogen, Phytophthora infestans, reveals both clonality and high genotypic diversity. Mol. Plant Pathol. 2019, 20, 1134–1146. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, P.; Jena, A.; Deuri, R.; Singh, S.; Sarmah, S. Review on Molecular Epidemiology in Relation to Devastating Late Blight Pathogen, P. infestans, de Bary. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 4651–4685. [Google Scholar] [CrossRef]
- Saharan, G.S.; Mehta, N.K.; Meena, P.D. Molecular Mechanisms of Disease Resistance; Springer Nature: Singapore, 2021; pp. 1–75. [Google Scholar]
- Bradshaw, J.E. A Brief History of the Impact of Potato Genetics on the Breeding of Tetraploid Potato Cultivars for Tuber Propagation. Potato Res. 2022, 65, 461–501. [Google Scholar] [CrossRef]
- Jo, K.R.; Kim, C.J.; Kim, S.J.; Kim, T.Y.; Bergervoet, M.; Jongsma, M.A.; Visser, R.G.; Jacobsen, E.; Vossen, J.H. Development of late blight resistant potatoes by cisgene stacking. BMC Biotechnol. 2014, 14, 50. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Boonekamp, P.M.; Hutten, R.; Jacobsen, E.; Lotz, L.A.P.; Kessel, G.J.T.; Vossen, J.H.; Visser, R.G.F. Durable Late Blight Resistance in Potato Through Dynamic Varieties Obtained by Cisgenesis: Scientific and Societal Advances in the DuRPh Project. Potato Res. 2016, 59, 35–66. [Google Scholar] [CrossRef]
- Van Der Vossen, E.; Sikkema, A.; Hekkert, B.T.L.; Gros, J.; Stevens, P.; Muskens, M.; Wouters, D.; Pereira, A.; Stiekema, W.; Allefs, S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J. 2003, 36, 867–882. [Google Scholar] [CrossRef]
- Haas, B.J.; Kamoun, S.; Zody, M.C.; Jiang, R.H.Y.; Handsaker, R.E.; Cano, L.M.; Grabherr, M.; Kodira, C.D.; Raffaele, S.; Torto-Alalibo, T.; et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 2009, 461, 393–398. [Google Scholar] [CrossRef]
- Lin, X.; Olave-Achury, A.; Heal, R.; Pais, M.; Witek, K.; Ahn, H.-K.; Zhao, H.; Bhanvadia, S.; Karki, H.S.; Song, T.; et al. A potato late blight resistance gene protects against multiple Phytophthora species by recognizing a broadly conserved RXLR-WY effector. Mol. Plant 2022, 15, 1457–1469. [Google Scholar] [CrossRef]
- Birch, P.R.J.; Armstrong, M.; Bos, J.; Boevink, P.; Gilroy, E.M.; Taylor, R.M.; Wawra, S.; Pritchard, L.; Conti, L.; Ewan, R.; et al. Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. J. Exp. Bot. 2009, 60, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Cho, K.-S.; Seo, J.-H.; Sohn, K.H.; Prokchorchik, M. Improved Genome Sequence and Gene Annotation Resource for the Potato Late Blight Pathogen Phytophthora infestans. Mol. Plant-Microbe Interact. 2020, 33, 1025–1028. [Google Scholar] [CrossRef]
- Boyd, L.A.; Ridout, C.; O’Sullivan, D.M.; Leach, J.E.; Leung, H. Plant–pathogen interactions: Disease resistance in modern agriculture. Trends Genet. 2013, 29, 233–240. [Google Scholar] [CrossRef]
- Ren, Y.; Armstrong, M.; Qi, Y.; McLellan, H.; Zhong, C.; Du, B.; Birch, P.R.J.; Tian, Z. Phytophthora infestans RXLR Effectors Target Parallel Steps in an Immune Signal Transduction Pathway. Plant Physiol. 2019, 180, 2227–2239. [Google Scholar] [CrossRef]
- Kale, S.D. Oomycete and fungal effector entry, a microbial Trojan horse. New Phytol. 2012, 193, 874–881. [Google Scholar] [CrossRef]
- Mach, J. Phytophthora infestans RXLR effectors target vesicle trafficking. Plant Cell 2021, 33, 1401–1402. [Google Scholar] [CrossRef]
- Petre, B.; Contreras, M.P.; Bozkurt, T.O.; Schattat, M.H.; Sklenar, J.; Schornack, S.; Abd-El-Haliem, A.; Castells-Graells, R.; Lozano-Durán, R.; Dagdas, Y.F.; et al. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. Plant Cell 2021, 33, 1447–1471. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, S.; Wang, W.; Xu, L.; Welsh, L.R.J.; Gierlinski, M.; Whisson, S.C.; Hemsley, P.A.; Boevink, P.C.; Birch, P.R.J. Uptake of oomycete RXLR effectors into host cells by clathrin-mediated endocytosis. Plant Cell 2023, 35, 2504–2526. [Google Scholar] [CrossRef] [PubMed]
- Boutemy, L.S.; King, S.R.F.; Win, J.; Hughes, R.K.; Clarke, T.A.; Blumenschein, T.M.A.; Kamoun, S.; Banfield, M.J. Structures of Phytophthora RXLR Effector Proteins. J. Biol. Chem. 2011, 286, 35834–35842. [Google Scholar] [CrossRef]
- Bos, J.I.B.; Armstrong, M.R.; Gilroy, E.M.; Boevink, P.C.; Hein, I.; Taylor, R.M.; Zhendong, T.; Engelhardt, S.; Vetukuri, R.R.; Harrower, B.; et al. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc. Natl. Acad. Sci. USA 2010, 107, 9909–9914, Correction in Proc. Natl. Acad. Sci. USA 2020, 117, 28531–28533. [Google Scholar] [CrossRef]
- Vleeshouwers, V.G.; Rietman, H.; Krenek, P.; Champouret, N.; Young, C.; Oh, S.K.; Wang, M.; Bouwmeester, K.; Vosman, B.; Visser, R.G.; et al. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE 2008, 3, e2875. [Google Scholar] [CrossRef]
- Senchou, V.; Weide, R.; Carrasco, A.; Bouyssou, H.; Pont-Lezica, R.; Govers, F.; Canut, H. High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif. Cell. Mol. Life Sci. 2004, 61, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Gouget, A.; Senchou, V.; Govers, F.; Sanson, A.; Barre, A.; Rougé, P.; Pont-Lezica, R.; Canut, H. Lectin Receptor Kinases Participate in Protein-Protein Interactions to Mediate Plasma Membrane-Cell Wall Adhesions in Arabidopsis. Plant Physiol. 2006, 140, 81–90. [Google Scholar] [CrossRef]
- Bouwmeester, K.; De Sain, M.; Weide, R.; Gouget, A.; Klamer, S.; Canut, H.; Govers, F. The Lectin Receptor Kinase LecRK-I.9 Is a Novel Phytophthora Resistance Component and a Potential Host Target for a RXLR Effector. PLoS Pathog. 2011, 7, e1001327. [Google Scholar] [CrossRef]
- Champouret, N.; Bouwmeester, K.; Rietman, H.; van der Lee, T.; Maliepaard, C.; Heupink, A.; van de Vondervoort, P.J.I.; Jacobsen, E.; Visser, R.G.F.; van der Vossen, E.A.G.; et al. Phytophthora infestans Isolates Lacking Class I ipiO Variants Are Virulent on Rpi-blb1 Potato. Mol. Plant-Microbe Interact. 2009, 22, 1535–1545. [Google Scholar] [CrossRef]
- Barrio-Hernandez, I.; Yeo, J.; Jänes, J.; Mirdita, M.; Gilchrist, C.L.M.; Wein, T.; Varadi, M.; Velankar, S.; Beltrao, P.; Steinegger, M. Clustering predicted structures at the scale of the known protein universe. Nature 2023, 622, 637–645. [Google Scholar] [CrossRef]
- Win, J.; Krasileva, K.V.; Kamoun, S.; Shirasu, K.; Staskawicz, B.J.; Banfield, M.J. Sequence Divergent RXLR Effectors Share a Structural Fold Conserved across Plant Pathogenic Oomycete Species. PLoS Pathog. 2012, 8, e1002400. [Google Scholar] [CrossRef]
- Raffaele, S.; Kamoun, S. Genome evolution in filamentous plant pathogens: Why bigger can be better. Nat. Rev. Microbiol. 2012, 10, 417–430. [Google Scholar] [CrossRef]
- Cooke, L.R.; Schepers, H.T.A.M.; Hermansen, A.; Bain, R.A.; Bradshaw, N.J.; Ritchie, F.; Shaw, D.S.; Evenhuis, A.; Kessel, G.J.T.; Wander, J.G.N.; et al. Epidemiology and Integrated Control of Potato Late Blight in Europe. Potato Res. 2011, 54, 183–222. [Google Scholar] [CrossRef]
- Jiang, R.H.Y.; Tripathy, S.; Govers, F.; Tyler, B.M. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc. Natl. Acad. Sci. USA 2008, 105, 4874–4879. [Google Scholar] [CrossRef]
- Goss, E.M.; Press, C.M.; Grünwald, N.J. Evolution of RXLR-Class Effectors in the Oomycete Plant Pathogen Phytophthora ramorum. PLoS ONE 2013, 8, e79347. [Google Scholar] [CrossRef]
- Gao, R.-F.; Wang, J.-Y.; Liu, K.-W.; Yoshida, K.; Hsiao, Y.-Y.; Shi, Y.-X.; Tsai, K.-C.; Chen, Y.-Y.; Mitsuda, N.; Liang, C.-K.; et al. Comparative analysis of Phytophthora genomes reveals oomycete pathogenesis in crops. Heliyon 2021, 7, e06317, Correction in Heliyon 2021, 7, e07332. [Google Scholar] [CrossRef]
- Win, J.; Morgan, W.; Bos, J.; Krasileva, K.V.; Cano, L.M.; Chaparro-Garcia, A.; Ammar, R.; Staskawicz, B.J.; Kamoun, S. Adaptive Evolution Has Targeted the C-Terminal Domain of the RXLR Effectors of Plant Pathogenic Oomycetes. Plant Cell 2007, 19, 2349–2369. [Google Scholar] [CrossRef]
- Kronmiller, B.A.; Feau, N.; Shen, D.; Tabima, J.F.; Ali, S.S.; Armitage Andrew, D.; Arredondo, F.; Bailey, B.A.; Bollmann, S.R.; Dale, A.; et al. Comparative Genomic Analysis of 31 Phytophthora Genomes Reveals Genome Plasticity and Horizontal Gene Transfer. Mol. Plant-Microbe Interact. 2023, 36, 26–46. [Google Scholar] [CrossRef]
- McGowan, J.; Fitzpatrick, D.A. Chapter Five-Recent advances in oomycete genomics. Adv. Genet. 2020, 105, 175–228. [Google Scholar]
- Wang, S.; McLellan, H.; Bukharova, T.; He, Q.; Murphy, F.; Shi, J.; Sun, S.; Van Weymers, P.; Ren, Y.; Thilliez, G.; et al. Phytophthora infestans RXLR effectors act in concert at diverse subcellular locations to enhance host colonization. J. Exp. Bot. 2019, 70, 343–356. [Google Scholar] [CrossRef]
- Vleeshouwers, V.G.A.A.; Oliver, R.P. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. Mol. Plant-Microbe Interact. 2014, 27, 196–206. [Google Scholar] [CrossRef]
- Coomber, A.; Saville, A.; Ristaino, J.B. Evolution of Phytophthora infestans on its potato host since the Irish potato famine. Nat. Commun. 2024, 15, 6488. [Google Scholar] [CrossRef]
- Naveed, Z.A.; Wei, X.; Chen, J.; Mubeen, H.; Ali, G.S. The PTI to ETI Continuum in Phytophthora-Plant Interactions. Front. Plant Sci. 2020, 11, 593905. [Google Scholar] [CrossRef]
- Armstrong, M.R.; Whisson, S.C.; Pritchard, L.; Bos, J.I.B.; Venter, E.; Avrova, A.O.; Rehmany, A.P.; Böhme, U.; Brooks, K.; Cherevach, I.; et al. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc. Natl. Acad. Sci. USA 2005, 102, 7766–7771. [Google Scholar] [CrossRef]
- Yang, L.; Ouyang, H.B.; Fang, Z.G.; Zhu, W.; Wu, E.J.; Luo, G.H.; Shang, L.P.; Zhan, J. Evidence for intragenic recombination and selective sweep in an effector gene of Phytophthora infestans. Evol. Appl. 2018, 11, 1342–1353. [Google Scholar] [CrossRef]
- Volynchikova, E.; Kim, K.D. Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops. Mycobiology 2022, 50, 269–293. [Google Scholar] [CrossRef]
- Morgan, W.; Kamoun, S. RXLR effectors of plant pathogenic oomycetes. Curr. Opin. Microbiol. 2007, 10, 332–338. [Google Scholar] [CrossRef]
- Anderson, R.G.; Deb, D.; Fedkenheuer, K.; McDowell, J.M. Recent Progress in RXLR Effector Research. Mol. Plant-Microbe Interact. 2015, 28, 1063–1072. [Google Scholar] [CrossRef]
- Gilroy, E.M.; Taylor, R.M.; Hein, I.; Boevink, P.; Sadanandom, A.; Birch, P.R.J. CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. New Phytol. 2011, 190, 653–666. [Google Scholar] [CrossRef]
- Franceschetti, M.; Maqbool, A.; Jiménez-Dalmaroni, M.J.; Pennington, H.G.; Kamoun, S.; Banfield, M.J. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiol. Mol. Biol. Rev. 2017, 81, e00066-16. [Google Scholar] [CrossRef]
- Van Damme, M.; Huibers, R.P.; Elberse, J.; Van Den Ackerveken, G. Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J. 2008, 54, 785–793. [Google Scholar] [CrossRef]
- Saunders, D.G.O.; Breen, S.; Win, J.; Schornack, S.; Hein, I.; Bozkurt, T.O.; Champouret, N.; Vleeshouwers, V.G.A.A.; Birch, P.R.J.; Gilroy, E.M.; et al. Host Protein BSL1 Associates with Phytophthora infestans RXLR Effector AVR2 and the Solanum demissum Immune Receptor R2 to Mediate Disease Resistance. Plant Cell 2012, 24, 3420–3434. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Sun, X.; Qi, Y.; Zhou, J.; Wu, X.; Tian, Z. Phytophthora infestans RXLR effector Pi04089 perturbs diverse defense-related genes to suppress host immunity. BMC Plant Biol. 2021, 21, 582. [Google Scholar] [CrossRef]
- Andolfo, G.; Sanseverino, W.; Rombauts, S.; Van De Peer, Y.; Bradeen, J.M.; Carputo, D.; Frusciante, L.; Ercolano, M.R. Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol. 2013, 197, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Bittel, P.; Robatzek, S. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr. Opin. Plant Biol. 2007, 10, 335–341. [Google Scholar] [CrossRef]
- Yu, X.Q.; Niu, H.Q.; Liu, C.; Wang, H.L.; Yin, W.; Xia, X. PTI-ETI synergistic signal mechanisms in plant immunity. Plant Biotechnol. J. 2024, 22, 2113–2128. [Google Scholar] [CrossRef] [PubMed]
- Jupe, F.; Pritchard, L.; Etherington, G.J.; Mackenzie, K.; Cock, P.J.; Wright, F.; Sharma, S.K.; Bolser, D.; Bryan, G.J.; Jones, J.D.; et al. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genom. 2012, 13, 75. [Google Scholar] [CrossRef]
- Martin, E.C.; Ion, C.F.; Ifrimescu, F.; Spiridon, L.; Bakker, J.; Goverse, A.; Petrescu, A.-J. NLRscape: An atlas of plant NLR proteins. Nucleic Acids Res. 2023, 51, D1470–D1482. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.P.; Lüdke, D.; Pai, H.; Toghani, A.; Kamoun, S. NLR receptors in plant immunity: Making sense of the alphabet soup. EMBO Rep. 2023, 24, e57495. [Google Scholar] [CrossRef]
- Adachi, H.; Contreras, M.P.; Harant, A.; Wu, C.-h.; Derevnina, L.; Sakai, T.; Duggan, C.; Moratto, E.; Bozkurt, T.O.; Maqbool, A.; et al. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 2019, 8, e49956. [Google Scholar] [CrossRef]
- Collier, S.M.; Hamel, L.-P.; Moffett, P. Cell Death Mediated by the N-Terminal Domains of a Unique and Highly Conserved Class of NB-LRR Protein. Mol. Plant-Microbe Interact. 2011, 24, 918–931. [Google Scholar] [CrossRef]
- Takken, F.L.W.; Albrecht, M.; Tameling, W.I.L. Resistance proteins: Molecular switches of plant defence. Curr. Opin. Plant Biol. 2006, 9, 383–390. [Google Scholar] [CrossRef]
- Foster, S.J.; Park, T.-H.; Pel, M.; Brigneti, G.; Śliwka, J.; Jagger, L.; van der Vossen, E.; Jones, J.D.G. Rpi-vnt1.1, a Tm-22 Homolog from Solanum venturii, Confers Resistance to Potato Late Blight. Mol. Plant-Microbe Interact. 2009, 22, 589–600. [Google Scholar] [CrossRef]
- Pel, M.A.; Foster, S.J.; Park, T.-H.; Rietman, H.; van Arkel, G.; Jones, J.D.G.; Van Eck, H.J.; Jacobsen, E.; Visser, R.G.F.; Van der Vossen, E.A.G. Mapping and Cloning of Late Blight Resistance Genes from Solanum venturii Using an Interspecific Candidate Gene Approach. Mol. Plant-Microbe Interact. 2009, 22, 601–615. [Google Scholar] [CrossRef]
- Moffett, P. Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J. 2002, 21, 4511–4519. [Google Scholar] [CrossRef] [PubMed]
- Monino-Lopez, D.; Nijenhuis, M.; Kodde, L.; Kamoun, S.; Salehian, H.; Schentsnyi, K.; Stam, R.; Lokossou, A.; Abd-El-Haliem, A.; Visser, R.G.F.; et al. Allelic variants of the NLR protein Rpi-chc1 differentially recognize members of the Phytophthora infestans PexRD12/31 effector superfamily through the leucine-rich repeat domain. Plant J. 2021, 107, 182–197. [Google Scholar] [CrossRef] [PubMed]
- Jupe, F.; Witek, K.; Verweij, W.; Śliwka, J.; Pritchard, L.; Etherington, G.J.; Maclean, D.; Cock, P.J.; Leggett, R.M.; Bryan, G.J.; et al. Resistance gene enrichment sequencing RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 2013, 76, 530–544. [Google Scholar] [CrossRef] [PubMed]
- Bonardi, V.; Dangl, J.L. How complex are intracellular immune receptor signaling complexes? Front. Plant Sci. 2012, 3, 237. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; John Dodds, P.N. Direct recognition of pathogen effectors by plant NLR immune receptors and downstream signalling. Essays Biochem. 2022, 66, 471–483. [Google Scholar] [CrossRef]
- Lin, X.; Jia, Y.; Heal, R.; Prokchorchik, M.; Sindalovskaya, M.; Olave-Achury, A.; Makechemu, M.; Fairhead, S.; Noureen, A.; Heo, J.; et al. Solanum americanum genome-assisted discovery of immune receptors that detect potato late blight pathogen effectors. Nat. Genet. 2023, 55, 1579–1588, Correction in Nat. Genet. 2023, 55, 1779. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, J.; Hu, M.; Wu, S.; Qi, J.; Wang, G.; Han, Z.; Qi, Y.; Gao, N.; Wang, H.-W.; et al. Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 2019, 364, eaav5868. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.G.; Vance, R.E.; Dangl, J.L. Intracellular innate immune surveillance devices in plants and animals. Science 2016, 354, aaf6395. [Google Scholar] [CrossRef]
- Ma, S.; Lapin, D.; Liu, L.; Sun, Y.; Song, W.; Zhang, X.; Logemann, E.; Yu, D.; Wang, J.; Jirschitzka, J.; et al. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 2020, 370, eabe3069. [Google Scholar] [CrossRef]
- Shepherd, S.; Yuen, E.L.H.; Carella, P.; Bozkurt, T.O. The wheels of destruction: Plant NLR immune receptors are mobile and structurally dynamic disease resistance proteins. Curr. Opin. Plant Biol. 2023, 74, 102372. [Google Scholar] [CrossRef] [PubMed]
- Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef]
- Anbu, S.; Swart, V.; Van Den Berg, N. Unmasking the invaders: NLR-mal function in plant defense. Front. Plant Sci. 2023, 14, 1307294. [Google Scholar] [CrossRef]
- Song, J.; Bradeen, J.M.; Naess, S.K.; Raasch, J.A.; Wielgus, S.M.; Haberlach, G.T.; Liu, J.; Kuang, H.; Austin-Phillips, S.; Buell, C.R.; et al. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc. Natl. Acad. Sci. USA 2003, 100, 9128–9133. [Google Scholar] [CrossRef]
- Wawra, S.; Agacan, M.; Boddey, J.A.; Davidson, I.; Gachon, C.M.M.; Zanda, M.; Grouffaud, S.; Whisson, S.C.; Birch, P.R.J.; Porter, A.J.; et al. Avirulence Protein 3a (AVR3a) from the Potato Pathogen Phytophthora infestans Forms Homodimers through Its Predicted Translocation Region and Does Not Specifically Bind Phospholipids. J. Biol. Chem. 2012, 287, 38101–38109. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Mpina, M.H.; Birch, P.R.J.; Bouwmeester, K.; Govers, F. Phytophthora infestans RXLR effector AVR1 interacts with exocyst component Sec5 to manipulate plant immunity. Plant Physiol. 2015, 169, 1975–1990. [Google Scholar] [CrossRef]
- Ballvora, A.; Ercolano, M.R.; Weiû, J.; Meksem, K.; Bormann, C.A.; Oberhagemann, P.; Salamini, F.; Gebhardt, C. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J. 2002, 30, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Chen, X.; Guo, Y.; Zhang, X.; Zhang, H.; Li, F.; Huang, G.; Meng, Y.; Shan, W. Phytophthora infestans RXLR effector PITG20303 targets a potato MKK1 protein to suppress plant immunity. New Phytol. 2021, 229, 501–515, Erratum in New Phytol. 2021, 230, 399–878. [Google Scholar] [CrossRef]
- Jiang, R.; Li, J.; Tian, Z.; Du, J.; Armstrong, M.; Baker, K.; Tze-Yin Lim, J.; Vossen, J.H.; He, H.; Portal, L.; et al. Potato late blight field resistance from QTL dPI09c is conferred by the NB-LRR gene R8. J. Exp. Bot. 2018, 69, 1545–1555. [Google Scholar] [CrossRef]
- Vossen, J.H.; van Arkel, G.; Bergervoet, M.; Jo, K.-R.; Jacobsen, E.; Visser, R.G.F. The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties. Theor. Appl. Genet. 2016, 129, 1785–1796. [Google Scholar] [CrossRef]
- Du, Y.; Weide, R.; Zhao, Z.; Msimuko, P.; Govers, F.; Bouwmeester, K. RXLR effector diversity in Phytophthora infestans isolates determines recognition by potato resistance proteins; the case study AVR1 and R1. Stud. Mycol. 2018, 89, 85–93. [Google Scholar] [CrossRef]
- Jiang, R.; He, Q.; Song, J.; Liu, Z.; Yu, J.; Hu, K.; Liu, H.; Mu, Y.; Wu, J.; Tian, Z.; et al. A Phytophthora infestans RXLR effector AVR8 suppresses plant immunity by targeting a desumoylating isopeptidase DeSI2. Plant J. 2023, 115, 398–413. [Google Scholar] [CrossRef]
- Ahn, H.K.; Lin, X.; Olave-Achury, A.C.; Derevnina, L.; Contreras, M.P.; Kourelis, J.; Wu, C.-H.; Kamoun, S.; Jones, J.D.G. Effector-dependent activation and oligomerization of plant NRC class helper NLRs by sensor NLR immune receptors Rpi-amr3 and Rpi-amr1. EMBO J. 2023, 42, e111484. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Xu, H.; Huang, J.; Sun, B.; Zhang, F.; Savage, Z.; Duggan, C.; Yan, T.; Wu, C.-H.; Wang, Y.; et al. Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. Proc. Natl. Acad. Sci. USA 2020, 117, 9613–9620. [Google Scholar] [CrossRef]
- Bozkurt, T.O.; Schornack, S.; Win, J.; Shindo, T.; Ilyas, M.; Oliva, R.; Cano, L.M.; Jones, A.M.E.; Huitema, E.; van der Hoorn, R.A.L.; et al. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc. Natl. Acad. Sci. USA 2011, 108, 20832–20837. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.-K.; Kwon, S.-Y.; Choi, D. Rpi-blb2-Mediated Hypersensitive Cell Death Caused by Phytophthora infestans AVRblb2 Requires SGT1, but not EDS1, NDR1, Salicylic Acid-, Jasmonic Acid-, or Ethylene-Mediated Signaling. Plant Pathol. J. 2014, 30, 254–260. [Google Scholar] [CrossRef]
- Oh, S.-K.; Kim, H.; Choi, D. Rpi-blb2-mediated late blight resistance in Nicotiana benthamiana requires SGT1 and salicylic acid-mediated signaling but not RAR1 or HSP90. FEBS Lett. 2014, 588, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Naveed, Z.A.; Bibi, S.; Ali, G.S. The Phytophthora RXLR Effector Avrblb2 Modulates Plant Immunity by Interfering With Ca2+ Signaling Pathway. Front. Plant Sci. 2019, 10, 374. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, D.; Wang, H.; Breen, S.; Malec, M.; Naqvi, S.; Yang, L.; Welsh, L.; Hemsley, P.; Zhendong, T.; Brunner, F.; et al. AVR2 Targets BSL Family Members, Which Act as Susceptibility Factors to Suppress Host Immunity. Plant Physiol. 2019, 180, 571–581. [Google Scholar] [CrossRef]
- Shao, Z.-Q.; Xue, J.-Y.; Wu, P.; Zhang, Y.-M.; Wu, Y.; Hang, Y.-Y.; Wang, B.; Chen, J.-Q. Large-Scale Analyses of Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes Reveal Three Anciently Diverged Classes with Distinct Evolutionary Patterns. Plant Physiol. 2016, 170, 2095–2109. [Google Scholar] [CrossRef]
- Rodewald, J.; Trognitz, B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Mol. Plant Pathol. 2013, 14, 740–757. [Google Scholar] [CrossRef]
- Li, G.; Huang, S.; Guo, X.; Li, Y.; Yang, Y.; Guo, Z.; Kuang, H.; Rietman, H.; Bergervoet, M.; Vleeshouwers, V.G.; et al. Cloning and characterization of r3b; members of the r3 superfamily of late blight resistance genes show sequence and functional divergence. Mol. Plant Microbe Interact. 2011, 24, 1132–1142. [Google Scholar] [CrossRef]
- Van Poppel, P.M.J.A.; Jiang, R.H.Y.; Śliwka, J.; Govers, F. Recognition of Phytophthora infestans Avr4 by potato R4 is triggered by C-terminal domains comprising W motifs. Mol. Plant Pathol. 2009, 10, 611–620. [Google Scholar] [CrossRef]
- Oh, S.-K.; Young, C.; Lee, M.; Oliva, R.; Bozkurt, T.O.; Cano, L.M.; Win, J.; Bos, J.I.B.; Liu, H.-Y.; Van Damme, M.; et al. In Planta Expression Screens of Phytophthora infestans RXLR Effectors Reveal Diverse Phenotypes, Including Activation of the Solanum bulbocastanum Disease Resistance Protein Rpi-blb2. The Plant Cell 2009, 21, 2928–2947. [Google Scholar] [CrossRef]
- Vleeshouwers, V.G.; Raffaele, S.; Vossen, J.H.; Champouret, N.; Oliva, R.; Segretin, M.E.; Rietman, H.; Cano, L.M.; Lokossou, A.; Kessel, G.; et al. Understanding and exploiting late blight resistance in the age of effectors. Annu. Rev. Phytopathol. 2011, 49, 507–531. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kaur, A.; Harrower, B.; Armstrong, M.; Dou, D.; Wang, X.; Hein, I. Identification and mapping of Rpi-blb4 in diploid wild potato species Solanum bulbocastanum. Crop J. 2023, 11, 1828–1835. [Google Scholar] [CrossRef]
- Pais, M.; Yoshida, K.; Giannakopoulou, A.; Pel, M.A.; Cano, L.M.; Oliva, R.F.; Witek, K.; Lindqvist-Kreuze, H.; Vleeshouwers, V.G.A.A.; Kamoun, S. Gene expression polymorphism underpins evasion of host immunity in an asexual lineage of the Irish potato famine pathogen. BMC Evol. Biol. 2018, 18, 93. [Google Scholar] [CrossRef]
- Wang, H.; Trusch, F.; Turnbull, D.; Aguilera-Galvez, C.; Breen, S.; Naqvi, S.; Jones, J.D.G.; Hein, I.; Tian, Z.; Vleeshouwers, V.; et al. Evolutionarily distinct resistance proteins detect a pathogen effector through its association with different host targets. New Phytol. 2021, 232, 1368–1381. [Google Scholar] [CrossRef]
- Śliwka, J.; Świątek, M.; Tomczyńska, I.; Stefańczyk, E.; Chmielarz, M.; Zimnoch-Guzowska, E. Influence of genetic background and plant age on expression of the potato late blight resistance gene Rpi-phu1 during incompatible interactions with Phytophthora infestans. Plant Pathol. 2013, 62, 1072–1080. [Google Scholar] [CrossRef]
- Witek, K.; Lin, X.; Karki, H.S.; Jupe, F.; Witek, A.I.; Steuernagel, B.; Stam, R.; Van Oosterhout, C.; Fairhead, S.; Heal, R.; et al. A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nature Plants 2021, 7, 198–208. [Google Scholar] [CrossRef]
- Gilroy, E.M.; Breen, S.; Whisson, S.C.; Squires, J.; Hein, I.; Kaczmarek, M.; Turnbull, D.; Boevink, P.C.; Lokossou, A.; Cano, L.M.; et al. Presence/absence, differential expression and sequence polymorphisms between PiAVR2 and PiAVR2-like in Phytophthora infestans determine virulence on R2 plants. New Phytol. 2011, 191, 763–776. [Google Scholar] [CrossRef]
- Yang, L.-N.; Liu, H.; Duan, G.-H.; Huang, Y.-M.; Liu, S.; Fang, Z.-G.; Wu, E.J.; Shang, L.; Zhan, J. The Phytophthora infestans AVR2 Effector Escapes R2 Recognition Through Effector Disordering. Mol. Plant-Microbe Interact. 2020, 33, 921–931. [Google Scholar] [CrossRef]
- Bos, J.I.B.; Kanneganti, T.-D.; Young, C.; Cakir, C.; Huitema, E.; Win, J.; Armstrong, M.R.; Birch, P.R.J.; Kamoun, S. The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant J. 2006, 48, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, Q.; Feng, R.; Li, L.; Ding, L.; Fan, G.; Li, W.; Du, Y.; Zhang, M.; Huang, G.; et al. Negative regulators of plant immunity derived from cinnamyl alcohol dehydrogenases are targeted by multiple Phytophthora Avr3a-like effectors. New Phytol. 2019; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Oliva, R.F.; Cano, L.M.; Raffaele, S.; Win, J.; Bozkurt, T.O.; Belhaj, K.; Oh, S.-K.; Thines, M.; Kamoun, S. A Recent Expansion of the RXLR Effector Gene Avrblb2 Is Maintained in Global Populations of Phytophthora infestans Indicating Different Contributions to Virulence. Mol. Plant-Microbe Interact. 2015, 28, 901–912. [Google Scholar] [CrossRef]
- van Poppel, P.M.J.A.; Guo, J.; van de Vondervoort, P.J.I.; Jung, M.W.M.; Birch, P.R.J.; Whisson, S.C.; Govers, F. The Phytophthora infestans Avirulence Gene Avr4 Encodes an RXLR-dEER Effector. Mol. Plant-Microbe Interact. 2008, 21, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Waheed, A.; Wang, Y.-P.; Nkurikiyimfura, O.; Li, W.-Y.; Liu, S.-T.; Lurwanu, Y.; Lu, G.-D.; Wang, Z.-H.; Yang, L.-N.; Zhan, J. Effector Avr4 in Phytophthora infestans Escapes Host Immunity Mainly Through Early Termination. Front. Microbiol. 2021, 12, 646062. [Google Scholar] [CrossRef]
- Aguilera-Galvez, C.; Chu, Z.; Omy, S.H.; Wouters, D.; Gilroy, E.M.; Vossen, J.H.; Visser, R.G.F.; Birch, P.; Jones, J.D.G.; Vleeshouwers, V.G.A.A. The Rpi-mcq1 resistance gene family recognizes Avr2 of Phytophthora infestans but is distinct from R2. bioRxiv 2020. [Google Scholar] [CrossRef]
- Chapman, S.; Stevens, L.J.; Boevink, P.C.; Engelhardt, S.; Alexander, C.J.; Harrower, B.; Champouret, N.; McGeachy, K.; Van Weymers, P.S.M.; Chen, X.; et al. Detection of the Virulent Form of AVR3a from Phytophthora infestans following Artificial Evolution of Potato Resistance Gene R3a. PLoS ONE 2014, 9, e110158. [Google Scholar] [CrossRef] [PubMed]
- Elnahal, A.S.M.; Li, J.; Wang, X.; Zhou, C.; Wen, G.; Wang, J.; Lindqvist-Kreuze, H.; Meng, Y.; Shan, W. Identification of Natural Resistance Mediated by Recognition of Phytophthora infestans Effector Gene Avr3aEM in Potato. Front. Plant Sci. 2020, 11, 919. [Google Scholar] [CrossRef]
- Zhu, S.; Li, Y.; Vossen, J.H.; Visser, R.G.F.; Jacobsen, E. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res. 2012, 21, 89–99. [Google Scholar] [CrossRef]
- Berindean, I.V.; Taoutaou, A.; Rida, S.; Ona, A.D.; Stefan, M.F.; Costin, A.; Racz, I.; Muntean, L. Modern Breeding Strategies and Tools for Durable Late Blight Resistance in Potato. Plants 2024, 13, 1711. [Google Scholar] [CrossRef]
- Lokossou, A.A.; Rietman, H.; Wang, M.; Krenek, P.; van der Schoot, H.; Henken, B.; Hoekstra, R.; Vleeshouwers, V.G.A.A.; van der Vossen, E.A.G.; Visser, R.G.F.; et al. Diversity, Distribution, and Evolution of Solanum bulbocastanum Late Blight Resistance Genes. Mol. Plant-Microbe Interact. 2010, 23, 1206–1216. [Google Scholar] [CrossRef]
- Sakai, T.; Contreras, M.P.; Martinez-Anaya, C.; Lüdke, D.; Kamoun, S.; Wu, C.-H.; Adachi, H. The NRC0 gene cluster of sensor and helper NLR immune receptors is functionally conserved across asterid plants. Plant Cell 2024, 36, 3344–3361. [Google Scholar] [CrossRef]
- Wu, C.-H.; Abd-El-Haliem, A.; Bozkurt, T.O.; Belhaj, K.; Terauchi, R.; Vossen, J.H.; Kamoun, S. NLR network mediates immunity to diverse plant pathogens. Proc. Natl. Acad. Sci. USA 2017, 114, 8113–8118. [Google Scholar] [CrossRef]
- Saffer, A.; Tateosian, L.; Saville, A.C.; Yang, Y.-P.; Ristaino, J.B. Reconstructing historic and modern potato late blight outbreaks using text analytics. Sci. Rep. 2024, 14, 2523. [Google Scholar] [CrossRef] [PubMed]
- Potato Genome Sequencing Consortium; Xu, X.; Pan, S.; Cheng, S.; Zhang, B.; Mu, D.; Ni, P.; Zhang, G.; Yang, S.; Li, R.; et al. Genome sequence and analysis of the tuber crop potato. Nature 2011, 475, 189–195. [Google Scholar] [CrossRef]
- Pham, G.M.; Hamilton, J.P.; Wood, J.C.; Burke, J.T.; Zhao, H.; Vaillancourt, B.; Ou, S.; Jiang, J.; Buell, C.R. Construction of a chromosome-scale long-read reference genome assembly for potato. GigaScience 2020, 9, giaa100. [Google Scholar] [CrossRef] [PubMed]
- Barragan, A.C.; Weigel, D. Plant NLR diversity: The known unknowns of pan-NLRomes. Plant Cell 2021, 33, 814–831. [Google Scholar] [CrossRef]
- Achakkagari, S.R.; Bozan, I.; Camargo-Tavares, J.C.; McCoy, H.J.; Portal, L.; Soto, J.; Bizimungu, B.; Anglin, N.L.; Manrique-Carpintero, N.; Lindqvist-Kreuze, H.; et al. The phased Solanum okadae genome and Petota pangenome analysis of 23 other potato wild relatives and hybrids. Sci. Data 2024, 11, 454. [Google Scholar] [CrossRef]
- Hardigan, M.A.; Laimbeer, F.P.E.; Newton, L.; Crisovan, E.; Hamilton, J.P.; Vaillancourt, B.; Wiegert-Rininger, K.; Wood, J.C.; Douches, D.S.; Farré, E.M.; et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc. Natl. Acad. Sci. USA 2017, 114, E9999–E10008. [Google Scholar] [CrossRef] [PubMed]
- Benoit, M.; Jenike, K.M.; Satterlee, J.W.; Ramakrishnan, S.; Gentile, I.; Hendelman, A.; Passalacqua, M.J.; Suresh, H.; Shohat, H.; Robitaille, G.M.; et al. Solanum pan-genetics reveals paralogues as contingencies in crop engineering. Nature 2025, 640, 135–145. [Google Scholar] [CrossRef]
- Ghislain, M.; Douches, D.S. The Genes and Genomes of the Potato; Springer International Publishing: Cham, Switzerland, 2020; pp. 139–162. [Google Scholar]
- Wang, S.; McLellan, H.; Boevink, P.C.; Birch, P.R.J. RxLR Effectors: Master Modulators, Modifiers and Manipulators. Mol. Plant-Microbe Interact. 2023, 36, 754–763. [Google Scholar] [CrossRef]
- He, Q.; McLellan, H.; Hughes, R.K.; Boevink, P.C.; Armstrong, M.; Lu, Y.; Banfield, M.J.; Tian, Z.; Birch, P.R.J. Phytophthora infestans effector SFI 3 targets potato UBK to suppress early immune transcriptional responses. New Phytol. 2019, 222, 438–454. [Google Scholar] [CrossRef]
- Laflamme, B.; Dillon, M.M.; Martel, A.; Almeida, R.N.D.; Desveaux, D.; Guttman, D.S. The pan-genome effector-triggered immunity landscape of a host-pathogen interaction. Science 2020, 367, 763–768. [Google Scholar] [CrossRef]
- McLellan, H.; Armstrong, M.R.; Birch, P.R.J. Yeast Two-Hybrid Screening for Identification of Protein-Protein Interactions in Solanum tuberosum; Springer: New York, NY USA, 2021; pp. 95–110. [Google Scholar]
- Zhang, P.; Li, J.; Gou, X.; Zhu, L.; Yang, Y.; Li, Y.; Zhang, Y.; Ding, L.; Ansabayeva, A.; Meng, Y.; et al. The Phytophthora infestans effector Pi05910 suppresses and destabilizes host glycolate oxidase StGOX4 to promote plant susceptibility. Mol. Plant Pathol. 2024, 25, e70021. [Google Scholar] [CrossRef]
- McLellan, H.; Harvey, S.E.; Steinbrenner, J.; Armstrong, M.R.; He, Q.; Clewes, R.; Pritchard, L.; Wang, W.; Wang, S.; Nussbaumer, T.; et al. Exploiting breakdown in nonhost effector-target interactions to boost host disease resistance. Proc. Natl. Acad. Sci. USA 2022, 119, e2114064119. [Google Scholar] [CrossRef]
- Huh, S.U. Interaction of Potato Autophagy-Related StATG8 Family Proteins with Pathogen Effector and WRKY Transcription Factor in the Nucleus. Microorganisms 2025, 13, 1589. [Google Scholar] [CrossRef]
- Weßling, R.; Epple, P.; Altmann, S.; He, Y.; Yang, L.; Stefan; McDonald, N.; Wiley, K.; Kai; Gläßer, C.; et al. Convergent Targeting of a Common Host Protein-Network by Pathogen Effectors from Three Kingdoms of Life. Cell Host Microbe 2014, 16, 364–375. [Google Scholar] [CrossRef]
- Xiang, H.; Stojilkovic, B.; Gheysen, G. Decoding Plant–Pathogen Interactions: A Comprehensive Exploration of Effector–Plant Transcription Factor Dynamics. Mol. Plant Pathol. 2025, 26, e70057. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Li, L.; Bao, J.; Wang, J.; Liu, X.; Lin, F.; Zhu, X. A glance at structural biology in advancing rice blast fungus research. Virulence 2024, 15, 2403566. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Lee, S.E.; Agrawal, G.K.; Rakwal, R.; Park, S.; Wang, Y.; Kim, S.T. Understanding the plant-pathogen interactions in the context of proteomics-generated apoplastic proteins inventory. Front. Plant Sci. 2015, 6, 352. [Google Scholar] [CrossRef]
- Wirthmueller, L.; Maqbool, A.; Banfield, M.J. On the front line: Structural insights into plant–pathogen interactions. Nat. Rev. Microbiol. 2013, 11, 761–776. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Forderer, A.; Yu, D.; Chai, J. Structural biology of plant defence. New Phytol. 2021, 229, 692–711. [Google Scholar] [CrossRef]
- Shah, N.H.; Kuriyan, J. Understanding molecular mechanisms in cell signaling through natural and artificial sequence variation. Nat. Struct. Mol. Biol. 2019, 26, 25–34. [Google Scholar] [CrossRef]
- Rout, M.P.; Sali, A. Principles for Integrative Structural Biology Studies. Cell 2019, 177, 1384–1403. [Google Scholar] [CrossRef]
- Nguyen, N.P.; Gotberg, J.; Ersoy, I.; Bunyak, F.; White, T. DRPnet–Automated Particle Picking in Cryo-Electron Micrographs using Deep Regression. BMC Bioinform. 2021, 22, 55. [Google Scholar] [CrossRef]
- Waltz, F.; Giegé, P.; Hashem, Y. Purification and Cryo-electron Microscopy Analysis of Plant Mitochondrial Ribosomes. Bio Protoc 2021, 11, e4111. [Google Scholar] [CrossRef] [PubMed]
- Madhuprakash, J.; Toghani, A.; Pai, H.; Harvey, M.; Bentham, A.R.; Seager, B.A.; Yuen, E.L.H.; De La Concepción, J.C.; Lawson, D.M.; Stevenson, C.E.M.; et al. An effector from the potato late blight pathogen bridges ENTH-domain protein TOL9a to an activated helper NLR to suppress immunity. bioRxiv 2025. [Google Scholar] [CrossRef]
- Shepherd, D.C.; Dalvi, S.; Ghosal, D. From cells to atoms: Cryo-EM as an essential tool to investigate pathogen biology, host–pathogen interaction, and drug discovery. Mol. Microbiol. 2022, 117, 610–617. [Google Scholar] [CrossRef]
- Duan, M.-R.; Ren, H.; Mao, P.; Wei, C.-H.; Liang, Y.-H.; Li, Y.; Su, X.-D. Crystallization and preliminary X-ray analysis of the C-terminal WRKY domain of Arabidopsis thaliana WRKY1 transcription factor. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2005, 1750, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, A.; Hughes, R.K.; Dagdas, Y.F.; Tregidgo, N.; Zess, E.; Belhaj, K.; Round, A.; Bozkurt, T.O.; Kamoun, S.; Banfield, M.J. Structural Basis of Host Autophagy-related Protein 8 (ATG8) Binding by the Irish Potato Famine Pathogen Effector Protein PexRD54. J. Biol. Chem. 2016, 291, 20270–20282. [Google Scholar] [CrossRef]
- Wawra, S.; Trusch, F.; Matena, A.; Apostolakis, K.; Linne, U.; Zhukov, I.; Stanek, J.; Koźmiński, W.; Davidson, I.; Secombes, C.J.; et al. The RxLR Motif of the Host Targeting Effector AVR3a of Phytophthora infestans Is Cleaved before Secretion. Plant Cell 2017, 29, 1184–1195. [Google Scholar] [CrossRef]
- Sala, D.; Engelberger, F.; McHaourab, H.S.; Meiler, J. Modeling conformational states of proteins with AlphaFold. Curr. Opin. Struct. Biol. 2023, 81, 102645. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Fick, A.; Fick, J.L.M.; Swart, V.; Van Den Berg, N. In silico prediction method for plant Nucleotide-binding leucine-rich repeat- and pathogen effector interactions. Plant J. 2025, 122, e70169. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.; Zeng, J.; Zhang, J.; Fan, G.; Song, G. Unleashing the power within short-read RNA-seq for plant research: Beyond differential expression analysis and toward regulomics. Front. Plant Sci. 2022, 13, 1038109. [Google Scholar] [CrossRef] [PubMed]
- Initiative, T.A.G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408, 796–815. [Google Scholar] [CrossRef]
- Gao, L.; Tu, Z.J.; Millett, B.P.; Bradeen, J.M. Insights into organ-specific pathogen defense responses in plants: RNA-seq analysis of potato tuber-Phytophthora infestans interactions. BMC Genom. 2013, 14, 340. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Duan, S.; Armstrong, M.R.; Xu, J.; Zheng, J.; Hu, J.; Chen, X.; Hein, I.; Li, G.; Jin, L. Comparative Transcriptome Profiling Reveals Compatible and Incompatible Patterns of Potato Toward Phytophthora infestans. G3 Genes Genomes Genet. 2020, 10, 623–634. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, Y.; Kang, Y.; Zhang, R.; Wang, Y.; Chen, Z.; Yang, X.; Jiao, S.; Wang, X.; Qin, S. Transcriptome analysis reveals various genes involved in the regulation of potato to late blight. Chem. Biol. Technol. Agric. 2024, 11, 50. [Google Scholar] [CrossRef]
- Bhatia, N.; Tiwari, J.K.; Kumari, C.; Zinta, R.; Sharma, S.; Buckseth, T.; Thakur, A.K.; Singh, R.K.; Kumar, V. Transcriptome analysis reveals genes associated with late blight resistance in potato. Sci. Rep. 2024, 14, 15501. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Hu, R.P.; Fan, Z.H.; Chen, Q.H.; Jiang, Y.S.; Huang, W.Z.; Tao, X. Dual RNA Sequencing Reveals the Genome-Wide Expression Profiles During the Compatible and Incompatible Interactions Between. Front. Plant Sci. 2022, 13, 817199. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Bradeen, J.M. Contrasting Potato Foliage and Tuber Defense Mechanisms against the Late Blight Pathogen Phytophthora infestans. PLoS ONE 2016, 11, e0159969. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Z.; Yang, Y.; Ma, Y.; Yu, X.; Wei, W.; Song, C.; Guo, X.; Yang, X. Gene Profiling of Compatible and Incompatible Interactions between Potato and Phytophthora infestans. Am. J. Potato Res. 2020, 97, 376–392. [Google Scholar] [CrossRef]
- Hayden, K.J.; Garbelotto, M.; Knaus, B.J.; Cronn, R.C.; Rai, H.; Wright, J.W. Dual RNA-seq of the plant pathogen Phytophthora ramorum and its tanoak host. Tree Genet. Genomes 2014, 10, 489–502. [Google Scholar] [CrossRef]
- Westermann, A.J.; Barquist, L.; Vogel, J. Resolving host–pathogen interactions by dual RNA-seq. PLoS Pathog. 2017, 13, e1006033. [Google Scholar] [CrossRef]
- Du, H.; Yang, J.; Chen, B.; Zhang, X.; Xu, X.; Wen, C.; Geng, S. Dual RNA-seq Reveals the Global Transcriptome Dynamics of Ralstonia solanacearum and Pepper (Capsicum annuum) Hypocotyls During Bacterial Wilt Pathogenesis. Phytopathology 2022, 112, 630–642. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Q.; Jing, M.; Guo, B.; Wu, J.; Wang, H.; Wang, Y.; Lin, L.; Wang, Y.; Ye, W.; et al. Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression. New Phytol. 2017, 214, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Tang, X.; Sun, Y.N.; Li, Y.; Wang, Y.J.; Jiang, Y.S.; Shao, H.H.; Yong, B.; Li, H.H.; Tao, X. Comparative Metabolomic Profiling of Compatible and Incompatible Interactions Between Potato and Phytophthora infestans. Front. Microbiol. 2022, 13, 857160. [Google Scholar] [CrossRef] [PubMed]
- Cooke, D.E.L.; Lees, A.K. Markers, old and new, for examining Phytophthora infestans diversity. Plant Pathol. 2004, 53, 692–704. [Google Scholar] [CrossRef]
- Witek, K.; Jupe, F.; Witek, A.I.; Baker, D.; Clark, M.D.; Jones, J.D.G. Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing. Nat. Biotechnol. 2016, 34, 656–660. [Google Scholar] [CrossRef] [PubMed]
R Gene Class | Solanum tuberosum |
---|---|
Coiled coil (CC) | 163 (0.466%) |
Toll-interleukin-1 (TIR) | 43 (0.123%) |
Receptor-like protein (RLP) | 403 (1.151%) |
Receptor-like kinase (RLK) | 301 (0.86%) |
Others | 421 (1.203%) |
Rpi Gene | Origin (Solanum Species) | Chr | Recognized Effector (Avr/RxLR) | Notes on Interaction | References |
---|---|---|---|---|---|
Wild tuber-bearing potato relatives | |||||
R1 | S. demissum | V | Avr1 | Avr1 triggers R1-mediated HR; deletion of C-terminal “T-region” enables HR. Race-specific resistance; first late blight R gene cloned. Overcome by modern virulent races. | Du, Weide [99] |
R2 | IV | Avr2 | Avr2 triggers R2-mediated HR, by binding host BSL1 and R2 (guard model). Member of R2/Rpi-blb3 locus on chr4; provides resistance to some P. infestans races but defeated by others. | Saunders, Breen [66], Rodewald and Trognitz [109] | |
R3a | XI | Avr3a | Avr3aKI variant triggers R3a HR; Avr3aEM escapes recognition. | Armstrong, Whisson [58] | |
R3b (StR3b) | XI | Avr3b | Distinct R3 locus gene (82% identical to R3a) that specifically recognizes the Avr3b effector, which triggers HR; however, recognition requires SGT1/HSP90 (co-factor). R3b-mediated resistance is ineffective against races lacking Avr3b. | Li, Huang [110] | |
R4 | XI | Avr4 | C-terminal W-motifs of Avr4 (W2+W1 or W3) are required for R4 recognition. | Van Poppel, Jiang [111] | |
R8 | IX | Avr8 | Avr8 destabilizes StDeSI2 through 26S proteosome inhibitor. | Vossen, van Arkel [98], Jiang, He [100] | |
Rpi-blb1 (RB) | S. bulbocastanum | VIII | IPI-O1/IPI-O2 (Avr-blb1) | Broad-spectrum resistance; recognizes class I/II IPI-O effectors (Avrblb1) that most isolates carry, by detecting when IPI-O1 binds the LecRK-I.9 (SEN1) receptor triggering HR. Homologous genes (e.g., Rpi-sto1, Rpi-pta1) in related species confer similar broad resistance. | Vleeshouwers, Rietman [39], Champouret, Bouwmeester [43] |
Rpi-blb2 | VI | Avrblb2 (IPI-O family) | Confers strong broad resistance. Avrblb2 binds to calmodulin at the plasma membrane. Triggers HR via Rpi-blb2 which targets and inhibits host protease C14. Rpi-blb2 is an Mi-1 homolog (shares ~82% identity) despite differing pathogen targets. | Oh, Young [112] | |
Rpi-blb3 | IV | Avr2 | Ortholog of R2; recognizes same Avr2 effector and confers partial resistance (some isolates still could infect). | Vleeshouwers, Raffaele [113] | |
Rpi-blb4 | V | Unknown | Newly identified resistance in S. bulbocastanum accession BLB7650, mapped to chromosome 5 via RenSeq. Confers late-blight resistance in that accession (details emerging). | Li, Kaur [114] | |
Rpi-vnt1.1 | S. venturii | IX | Avr_vnt1 | Confers broad resistance to most P. infestans isolates. Avrvnt1 binds chloroplast enzyme GLYK, activating Rpi-vnt1.1 in a light-dependent manner. Identical in sequence to Rpi-phu1 from S. phureja. Ineffective only against a few rare Avr-vnt1 virulent strains. | Foster, Park [77], Pais, Yoshida [115] |
Rpi-mcq1 | S. mochiquense | IX | Avr2 | Unrelated CC-NLR; recognizes Avr2 independently of R2/Rpi-blb3 by employing BSL2 and BSL3. Identified via positional cloning in S. mochiquense and allele mining in related species. Represents an independent evolutionary origin of Avr2 recognition on chr9. | Wang, Trusch [116] |
Rpi-pta1 | S. papita | VIII | IPI-O1/IPI-O2 (Avr-blb1) | Rpi-blb1 homolog from S. papita, which is functionally equivalent to Rpi-sto1. Provides broad resistance by recognizing Avrblb1 (IPI-O) effectors. | Vleeshouwers, Rietman [39] |
Rpi-chc1.1 | S. chacoense | X | Avr-chc1.1 (PexRD12 family) | One allele of the Rpi-chc1 locus that recognizes multiple members of PexRD12 (Avr-chc1.1) subfamily. | Monino-Lopez, Nijenhuis [80] |
Rpi-chc1.2 | S. chacoense | X | Avr-chc1.2 (PexRD31 family) | Second allele at the Rpi-chc1 locus; recognizes multiple members of PexRD31 (Avr-chc1.2) subfamily. Shows no overlap with Rpi-chc1.1 in effector recognition. | |
Rpi-phu1 | S. phureja (diploid) | IX | Avr-vnt1 | Same gene as Rpi-vnt1.1 (sequence-identical) mapping to chromosome 9. Discovered in Andean S. phureja landraces; confers broad resistance similarly to Rpi-vnt1.1. | Śliwka, Świątek [117] |
Rpi-sto1 | S. stoloniferum | VIII | IPI-O1/IPI-O2 (Avr-blb1) | Functional homolog of Rpi-blb1 and recognizes same IPI-O effectors, conferring broad resistance similar to RB. Cloned via effectoromics screens. | Vleeshouwers, Rietman [39] |
Non-tuber-bearing Solanum species | |||||
Rpi-amr1 | S. americanum | XI | Avramr1 | Resistance gene cloned from S. americanum. Mapped to chromosome 11; triggers immunity by recognizing the AvrAmr1 effector (identified via long-read sequencing). | Witek, Lin [118] |
Rpi-amr3 | IV | Avramr3 (conserved RXLR) | Broad-spectrum resistance gene from S. americanum, effective against multiple Phytophthora species (or isolates). Mapped to chromosome 4 and cloned using SMRT RenSeq. Recognizes a conserved effector (AvrAmr3) present in several Phytophthora spp., conferring non-host-type resistance. | Lin, Olave-Achury [28] | |
Rpi-amr4 | NA | Avramr4 | Identified by sequencing, assembling high-quality genomes and defined the pan-NLRome of S. americanum. Recognizes cognate P. infestan RXLR effectors PITG_22825 (AVRamr4). | Lin, Jia [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juma, B.S.; Oxholm, O.A.; Abuley, I.K.; Sørensen, C.K.; Hebelstrup, K.H. Deciphering the Molecular Interplay Between RXLR-Encoded Avr Genes and NLRs During Phytophthora infestans Infection in Potato: A Comprehensive Review. Int. J. Mol. Sci. 2025, 26, 8153. https://doi.org/10.3390/ijms26178153
Juma BS, Oxholm OA, Abuley IK, Sørensen CK, Hebelstrup KH. Deciphering the Molecular Interplay Between RXLR-Encoded Avr Genes and NLRs During Phytophthora infestans Infection in Potato: A Comprehensive Review. International Journal of Molecular Sciences. 2025; 26(17):8153. https://doi.org/10.3390/ijms26178153
Chicago/Turabian StyleJuma, Bicko S., Olga A. Oxholm, Isaac K. Abuley, Chris K. Sørensen, and Kim H. Hebelstrup. 2025. "Deciphering the Molecular Interplay Between RXLR-Encoded Avr Genes and NLRs During Phytophthora infestans Infection in Potato: A Comprehensive Review" International Journal of Molecular Sciences 26, no. 17: 8153. https://doi.org/10.3390/ijms26178153
APA StyleJuma, B. S., Oxholm, O. A., Abuley, I. K., Sørensen, C. K., & Hebelstrup, K. H. (2025). Deciphering the Molecular Interplay Between RXLR-Encoded Avr Genes and NLRs During Phytophthora infestans Infection in Potato: A Comprehensive Review. International Journal of Molecular Sciences, 26(17), 8153. https://doi.org/10.3390/ijms26178153