Maturity-Onset Diabetes of the Young 10 (MODY10): A Comprehensive Review of Genetics, Clinical Features, and Therapeutic Advances
Abstract
1. Introduction
2. Literature Search Methodology
3. Genetic Basis of MODY—MODY10
4. Molecular Mechanism of MODY10
5. Current Management and Future Genetic Therapies for MODY10
5.1. Current Clinical Management
5.2. AAV-Based Gene Therapy Approaches
5.3. Non-AAV Therapeutic Strategies
5.4. Cell-Based Therapeutic Strategies for MODY10
5.4.1. Islet Transplantation: Current Clinical Paradigm
5.4.2. Stem Cell-Derived β-Cell Replacement
5.4.3. Encapsulation Strategies for Immune Protection
5.4.4. Emerging Combinatorial Approaches
- MHC-I knockout to prevent CD8+ T-cell recognition
- PD-L1/HLA-E overexpression to inhibit NK cell activity
- TNFAIP3/MANF co-expression to enhance stress resistance
5.5. Comparative Analysis and Future Perspective in MODY10 Therapeutics
6. Conclusions
7. Limitations
Funding
Conflicts of Interest
References
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gaglia, J.L.; Hilliard, M.E.; Isaacs, D.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2022, 46 (Suppl. S1), S19–S40, Erratum in Diabetes Care 2023, 46, 1106. https://doi.org/10.2337/dc23-er05. [Google Scholar] [CrossRef]
- International Diabetes Federation. The Diabetes Atlas; International Diabetes Federation: Brussels, Belgium, 2024; Available online: https://diabetesatlas.org (accessed on 6 August 2025).
- Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes. Lancet 2014, 383, 69–82. [Google Scholar] [CrossRef] [PubMed]
- DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet 2018, 391, 2449–2462. [Google Scholar] [CrossRef] [PubMed]
- Rohm, T.V.; Meier, D.T.; Olefsky, J.M.; Donath, M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity 2022, 55, 31–55. [Google Scholar] [CrossRef]
- McDonald, T.J.; McEneny, J.; Pearson, E.R.; Thanabalasingham, G.; Szopa, M.; Shields, B.M.; Ellard, S.; Owen, K.R.; Malecki, M.T.; Hattersley, A.T.; et al. Lipoprotein composition in HNF1A-MODY: Differentiating between HNF1A-MODY and Type 2 diabetes. Clin. Chim. Acta 2012, 413, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Tattersall, R.B.; Fajans, S.S.; Arbor, A. A Difference Between the Inheritance of Classical Juvenile-onset and Maturity-onset Type Diabetes of Young People. Diabetes 1975, 24, 44–53. [Google Scholar] [CrossRef]
- Shields, B.M.; Hicks, S.; Shepherd, M.H.; Colclough, K.; Hattersley, A.T.; Ellard, S. Maturity-onset diabetes of the young (MODY): How many cases are we missing? Diabetologia 2010, 53, 2504–2508. [Google Scholar] [CrossRef]
- Misra, S.; Owen, K.R. Genetics of Monogenic Diabetes: Present Clinical Challenges. Curr. Diabetes Rep. 2018, 18, 141. [Google Scholar] [CrossRef]
- Yang, Y.; Chan, L. Monogenic Diabetes: What it teaches us on the common forms of type 1 and type 2 diabetes. Endocr. Rev. Endocr. Soc. 2016, 37, 190–222. [Google Scholar] [CrossRef]
- Oliveira, S.C.; Neves, J.S.; Pérez, A.; Carvalho, D. Maturity-onset diabetes of the young: From a molecular basis perspective toward the clinical phenotype and proper management. Endocrinol. Diabetes Nutr. 2020, 67, 137–147. [Google Scholar] [CrossRef]
- Ataie-Ashtiani, S.; Forbes, B. A Review of the Biosynthesis and Structural Implications of Insulin Gene Mutations Linked to Human Disease. Cells 2023, 12, 1008. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Xiong, Y.; Witkowski, P.; Cui, J.; Wang, L.-J.; Sun, J.; Lara-Lemus, R.; Haataja, L.; Hutchison, K.; Shan, S.-O.; et al. Inefficient translocation of preproinsulin contributes to pancreatic β cell failure and late-onset diabetes. J. Biol. Chem. 2014, 289, 16290–16302. [Google Scholar] [CrossRef]
- Liu, M.; Lara-Lemus, R.; Shan, S.-O.; Wright, J.; Haataja, L.; Barbetti, F.; Guo, H.; Larkin, D.; Arvan, P. Impaired cleavage of preproinsulin signal peptide linked to autosomal-dominant diabetes. Diabetes 2012, 61, 828–837. [Google Scholar] [CrossRef]
- Zhu, R.; Li, X.; Xu, J.; Barrabi, C.; Kekulandara, D.; Woods, J.; Chen, X.; Liu, M. Defective endoplasmic reticulum export causes proinsulin misfolding in pancreatic β cells. Mol. Cell. Endocrinol. 2019, 493, 110470. [Google Scholar] [CrossRef]
- Jang, I.; Pottekat, A.; Poothong, J.; Yong, J.; Lagunas-Acosta, J.; Charbono, A.; Chen, Z.; Scheuner, D.L.; Liu, M.; Itkin-Ansari, P.; et al. PDIA1/P4HB is required for efficient proinsulin maturation and ß cell health in response to diet induced obesity. eLife 2019, 8, e44528. [Google Scholar] [CrossRef]
- Zito, E.; Chin, K.T.; Blais, J.; Harding, H.P.; Ron, D. ERO1-beta, a pancreas-specific disulfide oxidase, promotes insulin biogenesis and glucose homeostasis. J. Cell Biol. 2010, 188, 821–832, Erratum in J. Cell Biol. 2010, 189, 769. [Google Scholar] [CrossRef]
- Wang, H.; Saint-Martin, C.; Xu, J.; Ding, L.; Wang, R.; Feng, W.; Liu, M.; Shu, H.; Fan, Z.; Haataja, L.; et al. Biological behaviors of mutant proinsulin contribute to the phenotypic spectrum of diabetes associated with insulin gene mutations. Mol. Cell. Endocrinol. 2020, 518, 111025. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Huang, Y.; Xu, X.; Li, X.; Alam, M.; Arunagiri, A.; Haataja, L.; Ding, L.; Wang, S.; Itkin-Ansari, P.; et al. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J. Clin. Investig. 2021, 131, 142240. [Google Scholar] [CrossRef] [PubMed]
- Støy, J.; Edghill, E.L.; Flanagan, S.E.; Ye, H.; Paz, V.P.; Pluzhnikov, A.; Below, J.E.; Hayes, M.G.; Cox, N.J.; Lipkind, G.M.; et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc. Natl. Acad. Sci. USA 2007, 104, 15040–15044. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-C.; Li, X.; Shen, Y.; Lyu, J.; Sheng, H.; Paschen, W.; Yang, W. PERK (Protein Kinase RNA-Like ER Kinase) Branch of the Unfolded Protein Response Confers Neuroprotection in Ischemic Stroke by Suppressing Protein Synthesis. Stroke 2020, 51, 1570–1577. [Google Scholar] [CrossRef]
- Yong, J.; Johnson, J.D.; Arvan, P.; Han, J.; Kaufman, R.J. Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus. Nat. Rev. Endocrinol. 2021, 17, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Ellis, R.; Sakaki, K.; Kaufman, R.J.; Kim, S. Genetic Interactions Due to Constitutive and Inducible Gene Regulation Mediated by the Unfolded Protein Response in C. elegans. PLoS Genet. 2005, 1, e37. [Google Scholar] [CrossRef]
- Hassler, J.R.; Scheuner, D.L.; Wang, S.; Han, J.; Kodali, V.K.; Li, P.; Nguyen, J.; George, J.S.; Davis, C.; Wu, S.P.; et al. The IRE1α/XBP1s Pathway Is Essential for the Glucose Response and Protection of β Cells. PLoS Biol. 2015, 13, e1002277. [Google Scholar] [CrossRef]
- Prostko, C.; Brostrom, M.; Malara, E.; Brostrom, C. Phosphorylation of eukaryotic initiation factor (eIF) 2 alpha and inhibition of eIF-2B in GH3 pituitary cells by perturbants of early protein processing that induce GRP78. J. Biol. Chem. 1992, 267, 16751–16754. Available online: https://www.sciencedirect.com/science/article/pii/S002192581841842X (accessed on 18 June 2025). [CrossRef]
- Harding, H.P.; Zhang, Y.; Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999, 397, 271–274, Erratum in Nature 1999, 398, 90. [Google Scholar] [CrossRef]
- Scheuner, D.; Song, B.; McEwen, E.; Liu, C.; Laybutt, R.; Gillespie, P.; Saunders, T.; Bonner-Weir, S.; Kaufman, R.J. Translational Control Is Required for the Unfolded Protein Response and In Vivo Glucose Homeostasis. Mol. Cell 2001, 7, 1165–1176. [Google Scholar] [CrossRef]
- Yong, J.; Grankvist, N.; Han, J.; Kaufman, R.J. Eukaryotic translation initiation factor 2 α phosphorylation as a therapeutic target in diabetes. Expert Rev. Endocrinol. Metab. 2014, 9, 345–356. [Google Scholar] [CrossRef]
- Harding, H.P.; Novoa, I.; Zhang, Y.; Zeng, H.; Wek, R.; Schapira, M.; Ron, D. Regulated Translation Initiation Controls Stress-Induced Gene Expression in Mammalian Cells. Mol. Cell 2000, 6, 1099–1108. [Google Scholar] [CrossRef]
- Han, J.; Back, S.H.; Hur, J.; Lin, Y.-H.; Gildersleeve, R.; Shan, J.; Yuan, C.L.; Krokowski, D.; Wang, S.; Hatzoglou, M.; et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 2013, 15, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Haze, K.; Yoshida, H.; Yanagi, H.; Yura, T.; Mori, K.; Silver, P. Mammalian Transcription Factor ATF6 Is Synthesized as a Transmembrane Protein and Activated by Proteolysis in Response to Endoplasmic Reticulum Stress. Mol. Biol. Cell 1999, 10, 3787–3799. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Orci, L.; Carroll, R.; Norrbom, C.; Ravazzola, M.; Steiner, D.F. Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc. Natl. Acad. Sci. USA 2002, 99, 10299–10304. [Google Scholar] [CrossRef] [PubMed]
- Polak, M.; Dechaume, A.; Cavé, H.; Nimri, R.; Crosnier, H.; Sulmont, V.; de Kerdanet, M.; Scharfmann, R.; Lebenthal, Y.; Froguel, P.; et al. Heterozygous Missense Mutations in the Insulin Gene Are Linked to Permanent Diabetes Appearing in the Neonatal Period or in Early Infancy: A Report From the French ND (Neonatal Diabetes) Study Group. Diabetes 2008, 57, 1115–1119. [Google Scholar] [CrossRef]
- Pearson, J.; Powers, M.A. Systematically Initiating Insulin. Diabetes Educ. 2006, 32 (Suppl. 1), 19S–28S. [Google Scholar] [CrossRef]
- Murphy, R.; Ellard, S.; Hattersley, A.T. Clinical implications of a molecular genetic classification of monogenic β-cell diabetes. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 200–213. [Google Scholar] [CrossRef]
- Chen, R.; Meseck, M.L.; Woo, S.L. Auto-regulated hepatic insulin gene expression in type 1 diabetic rats. Mol. Ther. 2001, 3, 584–590. [Google Scholar] [CrossRef]
- Mas, A.; Montané, J.; Anguela, X.M.; MuñoZ, S.; Douar, A.M.; Riu, E.; Otaegui, P.; Bosch, F. Reversal of type 1 diabetes by engineering a glucose sensor in skeletal muscle. Diabetes 2006, 55, 1546–1553. [Google Scholar] [CrossRef]
- Jaén, M.L.; Vilà, L.; Elias, I.; Jimenez, V.; Rodó, J.; Maggioni, L.; Gopegui, R.R.-D.; Garcia, M.; Muñoz, S.; Callejas, D.; et al. Long-Term Efficacy and Safety of Insulin and Glucokinase Gene Therapy for Diabetes: 8-Year Follow-Up in Dogs. Mol. Ther.-Methods Clin. Dev. 2017, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Callejas, D.; Mann, C.J.; Ayuso, E.; Lage, R.; Grifoll, I.; Roca, C.; Andaluz, A.; Gopegui, R.R.-D.; Montané, J.; Muñoz, S.; et al. Treatment of Diabetes and Long-Term Survival After Insulin and Glucokinase Gene Therapy. Diabetes 2013, 62, 1718–1729. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Woo, S.; Lee, G.T.; Ko, J.; Lee, Y.; Zhao, Z.; Kim, H.J.; Ahn, C.W.; Cha, B.S.; Kim, K.; et al. Safety and efficacy of adeno-associated viral vector-mediated insulin gene transfer via portal vein to the livers of streptozotocin-induced diabetic Sprague-Dawley rats. J. Gene Med. 2005, 7, 621–629. [Google Scholar] [CrossRef]
- Gan, S.U.; Fu, Z.; Sia, K.C.; Kon, O.L.; Calne, R.; Lee, K.O. Development of a liver-specific Tet-off AAV8 vector for improved safety of insulin gene therapy for diabetes. J. Gene Med. 2019, 21, e3067. [Google Scholar] [CrossRef]
- Qiao, L.; Niu, L.; Wang, M.; Wang, Z.; Kong, D.; Yu, G.; Ye, H. A sensitive red/far-red photoswitch for controllable gene therapy in mouse models of metabolic diseases. Nat. Commun. 2024, 15, 10310. [Google Scholar] [CrossRef]
- Ramzy, A.; Edeer, N.; Baker, R.K.; O’dWyer, S.; Mojibian, M.; Verchere, C.B.; Kieffer, T.J. Insulin Null β-cells Have a Prohormone Processing Defect That Is Not Reversed by AAV Rescue of Proinsulin Expression. Endocrinology 2022, 163, bqac051. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H.; Higuchi, Y.; Kawai, K. Forced expression of PDX-1 gene makes hepatoma cells to acquire glucose-responsive insulin secretion while maintaining hepatic characteristic. Cell. Mol. Biol. 2015, 61, 20–29. [Google Scholar]
- He, C.X.; Shi, D.; Wu, W.J.; Ding, Y.F.; Feng, D.M.; Lu, B.; Chen, H.M.; Yao, J.-H.; Shen, Q.; Lu, D.-R.; et al. Insulin expression in livers of diabetic mice mediated by hydrodynamics-based administration. World J. Gastroenterol. 2004, 10, 567. [Google Scholar] [CrossRef]
- Deng, L.; Yang, P.; Li, C.; Xie, L.; Lu, W.; Zhang, Y.; Liu, M.; Wang, G. Prolonged control of insulin-dependent diabetes via intramuscular expression of plasmid-encoded single-strand insulin analogue. Genes Dis. 2023, 10, 1101–1113. [Google Scholar] [CrossRef]
- Ghaderi, S.; Ahmadian, S.; Soheili, Z.S.; Ahmadieh, H.; Samiei, S.; Kheitan, S.; Pirmardan, E.R. AAV delivery of GRP78/BiP promotes adaptation of human RPE cell to ER stress. J. Cell. Biochem. 2018, 119, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Hua, H.; Foo, K.; Martinez, H.; Watanabe, K.; Zimmer, M.; Kahler, D.J.; Freeby, M.; Chung, W.; LeDuc, C.; et al. β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome. Diabetes 2014, 63, 923–933. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Guidance for Industry: Considerations for Allogeneic Pancreatic Islet Cell Products. 2009. Available online: https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/UCM182441.pdf (accessed on 9 July 2025).
- Marfil-Garza, B.A.; Shapiro, A.M.J.; Kin, T. Clinical islet transplantation: Current progress and new frontiers. J. Hepato-Biliary-Pancreat. Sci. 2021, 28, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Reichman, T.W.; Markmann, J.F.; Odorico, J.; Witkowski, P.; Fung, J.J.; Wijkstrom, M.; Kandeel, F.; de Koning, E.J.; Peters, A.L.; Mathieu, C.; et al. Stem Cell–Derived, Fully Differentiated Islets for Type 1 Diabetes. N. Engl. J. Med. 2025. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Pagliuca, F.W.; Millman, J.R.; Gürtler, M.; Segel, M.; Van Dervort, A.; Ryu, J.H.; Peterson, Q.P.; Greiner, D.; Melton, D.A. Generation of Functional Human Pancreatic β Cells In Vitro. Cell 2014, 159, 428–439. [Google Scholar] [CrossRef]
- Chen, J.T.; Dadheech, N.; Tan, E.H.P.; Ng, N.H.J.; Koh, M.B.C.; Shapiro, J.; Teo, A.K.K. Stem cell therapies for diabetes. Nat. Med. 2025, 31, 2147–2160. [Google Scholar] [CrossRef]
- Ramzy, A.; Thompson, D.M.; Ward-Hartstonge, K.A.; Ivison, S.; Cook, L.; Garcia, R.V.; Loyal, J.; Kim, P.T.; Warnock, G.L.; Levings, M.K.; et al. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell 2021, 28, 2047–2061.e5. [Google Scholar] [CrossRef]
- Rezania, A.; Bruin, J.E.; Riedel, M.J.; Mojibian, M.; Asadi, A.; Xu, J.; Gauvin, R.; Narayan, K.; Karanu, F.; O’nEil, J.J.; et al. Maturation of Human Embryonic Stem Cell–Derived Pancreatic Progenitors Into Functional Islets Capable of Treating Pre-existing Diabetes in Mice. Diabetes 2012, 61, 2016–2029. [Google Scholar] [CrossRef]
- Kroon, E.; Martinson, L.A.; Kadoya, K.; Bang, A.G.; Kelly, O.G.; Eliazer, S.; Young, H.; Richardson, M.; Smart, N.G.; Cunningham, J.; et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 2008, 26, 443–452. [Google Scholar] [CrossRef]
- Gazia, C.; Gaffley, M.; Asthana, A.; Chaimov, D.; Orlando, G. 65-Scaffolds for pancreatic tissue engineering. In Handbook of Tissue Engineering Scaffolds; Mozafari, M., Sefat, F., Atala, A., Eds.; Woodhead Publishing: Cambridge, UK, 2019; Volume 2, pp. 765–786. Available online: https://www.sciencedirect.com/science/article/pii/B9780081025611000324 (accessed on 13 May 2025).
- Li, H.; He, W.; Feng, Q.; Chen, J.; Xu, X.; Lv, C.; Zhu, C.; Dong, H. Engineering superstable islets-laden chitosan microgels with carboxymethyl cellulose coating for long-term blood glucose regulation in vivo. Carbohydr. Polym. 2024, 323, 121425. [Google Scholar] [CrossRef] [PubMed]
- Alagpulinsa, D.A.; Cao, J.J.; Driscoll, R.K.; Sîrbulescu, R.F.; Penson, M.F.; Sremac, M.; Engquist, E.N.; Brauns, T.A.; Markmann, J.F.; Melton, D.A.; et al. Alginate-microencapsulation of human stem cell–derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. Am. J. Transplant. 2019, 19, 1930–1940. [Google Scholar] [CrossRef] [PubMed]
- Stock, A.A.; Manzoli, V.; De Toni, T.; Abreu, M.M.; Poh, Y.-C.; Ye, L.; Roose, A.; Pagliuca, F.W.; Thanos, C.; Ricordi, C.; et al. Conformal Coating of Stem Cell-Derived Islets for β Cell Replacement in Type 1 Diabetes. Stem Cell Rep. 2020, 14, 91–104. [Google Scholar] [CrossRef]
- Liu, S.S.; Shim, S.; Kudo, Y.; Stabler, C.L.; O’Cearbhaill, E.D.; Karp, J.M.; Yang, K. Encapsulated islet transplantation. Nat. Rev. Bioeng. 2024, 3, 83–102. [Google Scholar] [CrossRef]
- Goodarzi, P.; Larijani, B.; Alavi-Moghadam, S.; Tayanloo-Beik, A.; Mohamadi-Jahani, F.; Ranjbaran, N.; Payab, M.; Falahzadeh, K.; Mousavi, M.; Arjmand, B. Mesenchymal Stem Cells-Derived Exosomes for Wound Regeneration. In Cell Biology and Translational Medicine, Volume 4: Stem Cells and Cell Based Strategies in Regeneration; Turksen, K., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 119–131. [Google Scholar] [CrossRef]
- Maacha, S.; Sidahmed, H.; Jacob, S.; Gentilcore, G.; Calzone, R.; Grivel, J.-C.; Cugno, C. Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells Int. 2020, 2020, 4356359. [Google Scholar] [CrossRef] [PubMed]
- Schive, S.W.; Mirlashari, M.R.; Hasvold, G.; Wang, M.; Josefsen, D.; Gullestad, H.P.; Korsgren, O.; Foss, A.; Kvalheim, G.; Scholz, H. Human Adipose-Derived Mesenchymal Stem Cells Respond to Short-Term Hypoxia by Secreting Factors Beneficial for Human Islets in Vitro and Potentiate Antidiabetic Effect in Vivo. Cell Med. 2017, 9, 103–116. [Google Scholar] [CrossRef]
- Hubber, E.L.; Rackham, C.L.; Jones, P.M. Protecting islet functional viability using mesenchymal stromal cells. Stem Cells Transl. Med. 2021, 10, 674–680. [Google Scholar] [CrossRef]
- Hu, J.; Yu, X.; Wang, Z.; Wang, F.; Wang, L.; Gao, H.; Chen, Y.; Zhao, W.; Jia, Z.; Yan, S.; et al. Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr. J. 2013, 60, 347–357. [Google Scholar] [CrossRef]
- Izadi, M.; Nejad, A.S.H.; Moazenchi, M.; Masoumi, S.; Rabbani, A.; Kompani, F.; Asl, A.A.H.; Kakroodi, F.A.; Jaroughi, N.; Meybodi, M.A.M.; et al. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: A phase I/II randomized placebo-controlled clinical trial. Stem Cell Res. Ther. 2022, 13, 264. [Google Scholar] [CrossRef]
- Cai, E.P.; Ishikawa, Y.; Zhang, W.; Leite, N.C.; Li, J.; Hou, S.; Kiaf, B.; Hollister-Lock, J.; Yilmaz, N.K.; Schiffer, C.A.; et al. Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes. Nat. Metab. 2020, 2, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.; Sreekanth, V.; Cox, K.J.; Law, B.K.; Wagner, B.K.; Karp, J.M.; Choudhary, A. Engineering designer beta cells with a CRISPR-Cas9 conjugation platform. Nat. Commun. 2020, 11, 4043. [Google Scholar] [CrossRef]
- Gerace, D.; Zhou, Q.; Kenty, J.H.-R.; Veres, A.; Sintov, E.; Wang, X.; Boulanger, K.R.; Li, H.; Melton, D.A. Engineering human stem cell-derived islets to evade immune rejection and promote localized immune tolerance. Cell Rep. Med. 2023, 4, 100879. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, E.; O’Connor, C.; Gasser, E.; Wei, Z.; Oh, T.G.; Tseng, T.W.; Wang, D.; Cayabyab, F.; Dai, Y.; Yu, R.T.; et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature 2020, 586, 606–611, Erratum in Nature 2021, 590, E27. [Google Scholar] [CrossRef] [PubMed]
- Chetboun, M.; Drumez, E.; Ballou, C.; Maanaoui, M.; Payne, E.; Barton, F.; Kerr-Conte, J.; Vantyghem, M.-C.; Piemonti, L.; Rickels, M.R.; et al. Association between primary graft function and 5-year outcomes of islet allogeneic transplantation in type 1 diabetes: A retrospective, multicentre, observational cohort study in 1210 patients from the Collaborative Islet Transplant Registry. Lancet Diabetes Endocrinol. 2023, 11, 391–401. [Google Scholar] [CrossRef]
- Chen, H.; Fei, S.-J.; Deng, M.-Q.; Chen, X.-D.; Wang, W.-H.; Guo, L.-X.; Pan, Q. Maturity-onset diabetes of the young type 10 caused by an Ala2Thr mutation of INS: A case report. World J. Diabetes 2023, 14, 1877–1884. [Google Scholar] [CrossRef]
MODY Type | Gene | Chromosome | Key Features | Treatment |
---|---|---|---|---|
MODY1 | HNF4Alpha | 20q13.12 | Neonatal hypoglycemia, macrosomia; progressive insulin deficiency | Sulfonylureas (effective), may need insulin later |
MODY2 | GCK | 7p13 | Mild, stable fasting hyperglycemia; rarely requires treatment | Usually no therapy; insulin if misdiagnosed |
MODY3 | HNF1A | 12q24.31 | Progressive β-cell dysfunction; renal glycosuria | Sulfonylureas (1st line), insulin eventually |
MODY4 | PDX1 | 13q12.2 | Pancreatic agenesis (severe forms); mild diabetes in heterozygotes | Insulin (if deficient), some respond to sulfonylureas |
MODY5 | HNF1B | 17q12 | Renal cysts, genital malformations, gout; diabetes often secondary | Insulin (due to multi-organ involvement) |
MODY6 | NEUROD1 | 2q31.3 | Rare; neurological features in some cases | Insulin or sulfonylureas (variable) |
MODY7 | KLF11 | 2p25.1 | Extremely rare; mild hyperglycemia | Diet/lifestyle, rarely medications |
MODY8 | CEL | 9q34.13 | Exocrine pancreas dysfunction, fatty stools | Insulin (pancreatic insufficiency) |
MODY9 | PAX4 | 7q32.1 | Reported in Asian populations; ketoacidosis risk | Insulin typically required |
MODY10 | INS | 11p15.5 | Defective insulin processing; non-autoimmune | Sulfonylureas (if residual function), else insulin |
MODY11 | BLK | 8p23.1 | Mild diabetes; reduced β-cell mass | Variable (diet to insulin) |
MODY12 | ABCC8 | 11p15.1 | Neonatal diabetes overlap; may respond to sulfonylureas | High-dose sulfonylureas (often effective) |
MODY13 | KCNJ11 | 11p15.1 | Neonatal diabetes spectrum; ATP-sensitive K+ channel defect | Sulfonylureas (90% respond) |
MODY14 | APPL1 | 3p14.3 | Recent discovery; insulin secretion defect | Insufficient data |
Approach | Delivery Method | Study Subject | Duration | Efficacy Data | Citations |
---|---|---|---|---|---|
Hydrodynamic plasmid | High-pressure tail vein | Diabetic mice (STZ-induced) | In vivo | Normalized blood glucose for 2–4 weeks; transient expression. | [45] |
L/E-pSP301-SIA plasmid | Electropulse + Pluronic | STZ-induced diabetic mice (C57BL/6) | In vivo | Sustained normoglycemia for 6–8 weeks post-intramuscular delivery. | [46] |
Chemical chaperones (4-PBA) | Systemic administration | Human iPSC-derived β-cells (WFS1 mutations) | In vitro | 4-PBA reduced ER stress markers (BiP, CHOP) by 50% and restored glucose-stimulated insulin secretion (GSIS) by 30%. Demonstrated cross-relevance to monogenic diabetes ER stress pathways. | [47,48] |
Strategy | Study Subject | Representative Trial | Phase | Efficacy Data | Citations |
---|---|---|---|---|---|
Allogeneic islets | T1D patients (n = 1210) | Collaborative Islet Transplant Registry (CITR) | Phase 3 | 75% insulin independence at 5 years in PGF+ patients (median HbA1c 5.6% in responders) | [49,50,69,73] |
ESC-derived β-cells | T1D patients (n = 17) | Vertex VX-880 (NCT04786262) | Phase I/II | 71% insulin independence at 1 year (HbA1c ≤ 7% in 10/12 patients) | [51] |
Encapsulation device | T1D patients (ongoing trial) | Sernova Cell Pouch (NCT03513939) | Phase I/II | 5+ years sustained function in ongoing trial | [58] [NCT03513939] |
Gene-edited hypo-immune | Humanized mice (NSG model n = 10) | CTX-211 (NCT05565248) | Phase I/II | 90% rejection protection (preclinical) | [69,70,71,72] [NCT05565248] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazloum, A.; Feoktistova, S.G.; Gubaeva, A.; Alsalloum, A.; Mityaeva, O.N.; Kim, A.; Bodunova, N.A.; Woroncow, M.V.; Volchkov, P.Y. Maturity-Onset Diabetes of the Young 10 (MODY10): A Comprehensive Review of Genetics, Clinical Features, and Therapeutic Advances. Int. J. Mol. Sci. 2025, 26, 8110. https://doi.org/10.3390/ijms26168110
Mazloum A, Feoktistova SG, Gubaeva A, Alsalloum A, Mityaeva ON, Kim A, Bodunova NA, Woroncow MV, Volchkov PY. Maturity-Onset Diabetes of the Young 10 (MODY10): A Comprehensive Review of Genetics, Clinical Features, and Therapeutic Advances. International Journal of Molecular Sciences. 2025; 26(16):8110. https://doi.org/10.3390/ijms26168110
Chicago/Turabian StyleMazloum, Ali, Sofya G. Feoktistova, Anna Gubaeva, Almaqdad Alsalloum, Olga N. Mityaeva, Alexander Kim, Natalia A. Bodunova, Mary V. Woroncow, and Pavel Yu Volchkov. 2025. "Maturity-Onset Diabetes of the Young 10 (MODY10): A Comprehensive Review of Genetics, Clinical Features, and Therapeutic Advances" International Journal of Molecular Sciences 26, no. 16: 8110. https://doi.org/10.3390/ijms26168110
APA StyleMazloum, A., Feoktistova, S. G., Gubaeva, A., Alsalloum, A., Mityaeva, O. N., Kim, A., Bodunova, N. A., Woroncow, M. V., & Volchkov, P. Y. (2025). Maturity-Onset Diabetes of the Young 10 (MODY10): A Comprehensive Review of Genetics, Clinical Features, and Therapeutic Advances. International Journal of Molecular Sciences, 26(16), 8110. https://doi.org/10.3390/ijms26168110