Clonal Hematopoiesis and Outcomes After High-Dose Chemotherapy and Autologous Stem Cell Transplantation in Patients with AML, Myeloma, and Lymphoma
Abstract
1. Introduction
2. Results
2.1. Patient and Disease Characteristics
2.2. Clonal Hematopoiesis
2.3. HDCT/ASCT
2.4. Outcome/Survival Analysis
2.5. Survival Analysis in Myeloma, Lymphoma, and AML
3. Discussion
4. Materials and Methods
4.1. Study Design and Patients
4.2. Treatment
4.3. Survival
4.4. Molecular Analyses
4.5. Assessment and Definition of Clonal Hematopoiesis
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majhail, N.S.; Farnia, S.H.; Carpenter, P.A.; Champlin, R.E.; Crawford, S.; Marks, D.I.; Omel, J.L.; Orchard, P.J.; Palmer, J.; Saber, W.; et al. Indications for Autologous and Allogeneic Hematopoietic Cell Transplantation: Guidelines from the American Society for Blood and Marrow Transplantation. Am. Soc. Transplant. Cell Ther. 2015, 21, 1863–1869. [Google Scholar] [CrossRef]
- Genovese, G.; Kähler, A.K.; Handsaker, R.E.; Lindberg, J.; Rose, S.A.; Bakhoum, S.F.; Chambert, K.; Mick, E.; Neale, B.M.; Fromer, M.; et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. N. Engl. J. Med. 2014, 371, 2477–2487. [Google Scholar] [CrossRef]
- Gillis, N.K.; Ball, M.; Zhang, Q.; Ma, Z.; Zhao, Y.; Yoder, S.J.; Balasis, M.E.; Mesa, T.E.; Sallman, D.A.; Lancet, J.E.; et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: A proof-of-concept, case-control study. Lancet Oncol. 2017, 18, 112–121. [Google Scholar] [CrossRef]
- Shlush, L.I. Age-related clonal hematopoiesis. Blood 2018, 131, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Heini, A.D.; Porret, N.; Zenhaeusern, R.; Winkler, A.; Bacher, U.; Pabst, T. Clonal hematopoiesis after autologous stem cell transplantation does not confer adverse prognosis in patients with AML. Cancers 2021, 13, 3190. [Google Scholar] [CrossRef]
- Steensma, D.P.; Bejar, R.; Jaiswal, S.; Lindsley, R.C.; Sekeres, M.A.; Hasserjian, R.P.; Ebert, B.L. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015, 126, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.J.; Lindsley, R.C.; Tchekmedyian, V.; Mar, B.G.; Shi, J.; Jaiswal, S.; Bosworth, A.; Francisco, L.; He, J.; Bansal, A.; et al. Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma. J. Clin. Oncol. 2017, 35, 1598–1605. [Google Scholar] [CrossRef]
- Takahashi, K.; Wang, F.; Kantarjian, H.; Doss, D.; Khanna, K.; Thompson, E.; Zhao, L.; Patel, K.; Neelapu, S.; Gumbs, C.; et al. Pre-leukemic clonal hematopoiesis and the risk of therapy-related myeloid neoplasms: A case-control study. Lancet Oncol. 2017, 18, 100. [Google Scholar] [CrossRef]
- Jaiswal, S.; Ebert, B.L. Clonal hematopoiesis in human aging and disease. Science 2019, 366, 6465. [Google Scholar] [CrossRef]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef]
- Weeks, L.D.; Ebert, B.L. Causes and consequences of clonal hematopoiesis. Blood 2023, 142, 2235–2246. [Google Scholar] [CrossRef]
- Jaiswal, S.; Natarajan, P.; Silver, A.J.; Gibson, C.J.; Bick, A.G.; Shvartz, E.; McConkey, M.; Gupta, N.; Gabriel, S.; Ardissino, D.; et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 111–121. [Google Scholar] [CrossRef]
- Bouzid, H.; Belk, J.A.; Jan, M.; Qi, Y.; Sarnowski, C.; Wirth, S.; Ma, L.; Chrostek, M.R.; Ahmad, H.; Nachun, D.; et al. Clonal hematopoiesis is associated with protection from Alzheimer’s disease. Nat. Med. 2023, 29, 1662–1670. [Google Scholar] [CrossRef] [PubMed]
- Carreras, E.; Dufour, C.; Mohty, M.; Kröger, N. Hematopoietic stem cell transplantation and cellular therapies. In The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies, 7th ed.; Carreras, E., Dufour, C., Mohty, M., Kröger, N., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–702. [Google Scholar]
- Gurevich, E.; Hayoz, M.; Aebi, Y.; Largiadèr, C.R.; Mansouri Taleghani, B.; Bacher, U.; Pabst, T. Comparison of Melphalan Combined with Treosulfan or Busulfan as High-Dose Chemotherapy before Autologous Stem Cell Transplantation in AML. Cancer 2022, 14, 1024. [Google Scholar] [CrossRef] [PubMed]
- Gilli, S.; Novak, U.; Taleghani, B.M.; Baerlocher, G.M.; Leibundgut, K.; Banz, Y.; Zander, T.; Betticher, D.; Egger, T.; Rauch, D.; et al. BeEAM conditioning with bendamustine-replacing BCNU before autologous transplantation is safe and effective in lymphoma patients. Ann. Hematol 2017, 96, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Gillich, C.; Akhoundova, D.; Hayoz, M.; Aebi, Y.; Largiadèr, C.R.; Seipel, K.; Daskalakis, M.; Bacher, U.; Pabst, T. Efficacy and Safety of High-Dose Chemotherapy with Treosulfan and Melphalan in Multiple Myeloma. Cancers 2023, 15, 2699. [Google Scholar] [CrossRef]
- Grimm, J.; Bill, M.; Jentzsch, M.; Beinicke, S.; Häntschel, J.; Goldmann, K.; Schulz, J.; Cross, M.; Franke, G.N.; Behre, G.; et al. Clinical impact of clonal hematopoiesis in acute myeloid leukemia patients receiving allogeneic transplantation. Bone Marrow Transplant. 2018, 54, 1189–1197. [Google Scholar] [CrossRef]
- Mouhieddine, T.H.; Sperling, A.S.; Redd, R.; Park, J.; Leventhal, M.; Gibson, C.J.; Manier, S.; Nassar, A.H.; Capelletti, M.; Huynh, D.; et al. Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant. Nat. Commun. 2020, 11, 2996. [Google Scholar] [CrossRef]
- Xie, M.; Lu, C.; Wang, J.; McLellan, M.D.; Johnson, K.J.; Wendl, M.C.; McMichael, J.F.; Schmidt, H.K.; Yellapantula, V.; Miller, C.A.; et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 2014, 20, 1472–1478. [Google Scholar] [CrossRef]
- Jongen-Lavrencic, M.; Grob, T.; Hanekamp, D.; Kavelaars, F.G.; Al Hinai, A.; Zeilemaker, A.; Erpelinck-Verschueren, C.A.J.; Gradowska, P.L.; Meijer, R.; Cloos, J.; et al. Molecular Minimal Residual Disease in Acute Myeloid Leukemia. N. Engl. J. Med. 2018, 378, 1189–1199. [Google Scholar] [CrossRef]
- Lackraj, T.; Ben Barouch, S.; Medeiros, J.J.F.; Pedersen, S.; Danesh, A.; Bakhtiari, M.; Hong, M.; Tong, K.; Joynt, J.; Arruda, A.; et al. Clinical significance of clonal hematopoiesis in the setting of autologous stem cell transplantation for lymphoma. Am. J. Hematol 2022, 97, 1538–1547. [Google Scholar] [CrossRef]
- Marnell, C.S.; Bick, A.; Natarajan, P. Clonal hematopoiesis of indeterminate potential (CHIP): Linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J. Mol. Cell Cardiol. 2021, 161, 98–105. [Google Scholar] [CrossRef]
Parameter | CH (n = 36) | NoCH (n = 106) | p-Value | ||
---|---|---|---|---|---|
Age at diagnosis, median, years (range) | 63.5 (33–74) | 60.5 (23–75) | 0.49 | ||
Gender, male, n (%) | 21 (58) | 72 (68) | 0.32 | ||
Myeloma, n (%) | 13 (36) | 51 (48) | 0.25 | ||
IgG, n (%) | 10 (77) | 35 (69) | 0.74 | ||
IgA, n (%) | 2 (15) | 9 (18) | >0.99 | ||
IgD, n (%) | 0 (0) | 1 (2) | >0.99 | ||
Lambda light chain, n (%) | 4 (31) | 18 (35) | >0.99 | ||
Kappa light chain, n (%) | 9 (69) | 33 (65) | >0.99 | ||
Light chain only, n (%) | 1 (8) | 6 (12) | >0.99 | ||
Bone marrow infiltration (%), median (range) | 27 (10–80) | 50 (3–100) | 0.52 | ||
Hypercalcemia, n (%) | 2 (15) | 13 (25) | 0.72 | ||
Kidney failure, n (%) | 3 (23) | 11 (22) | >0.99 | ||
Creatinine (μmol/L), median (range) | 94 (58–195) | 82 (53–322) | 0.69 | ||
Anemia, n (%) | 5 (38) | 19 (37) | >0.99 | ||
Hemoglobin (g/L), median (range) | 118.5 (83–146) | 122 (70–158) | 0.99 | ||
Osteolytic lesions, n (%) | 11 (85) | 37 (73) | 0.49 | ||
β2-microglobulin > 3.5 mg/L, n (%) | 3 (23) | 19 (37) | 0.51 | ||
Albumin < 35 g/L, n (%) | 7 (54) | 10 (20) | 0.03 | ||
LDH, U/L, median (range) | 334 (202–456) | 202 (151–436) | 0.064 | ||
FISH/cyto- genetics | High risk, n (%) | 3 (23) | 14 (27) | >0.99 | |
No high risk, n (%) | 6 (46) | 22 (43) | >0.99 | ||
(R-)ISS, n (%) | Stage 1 | 3 (23) | 13 (25) | >0.99 | |
Stage 2 | 3 (23) | 23 (45) | 0.21 | ||
Stage 3 | 5 (38) | 10 (20) | 0.16 | ||
Revised Mayo Stage 3, n (%) | 1 (8) | 2 (4) | 0.50 | ||
Lymphoma, n (%) | 9 (25) | 38 (36) | 0.31 | ||
Hodgkin lymphoma, n (%) | 1 (11) | 5 (13) | >0.99 | ||
DLBCL, n (%) | 4 (44) | 17 (45) | >0.99 | ||
Transformed, n (%) | 2 (50) | 6 (35) | 0.62 | ||
Mantle cell lymphoma, n (%) | 1 (11) | 11 (29) | 0.41 | ||
Follicular lymphoma, n (%) | 0 (0) | 1 (3) | >0.99 | ||
Peripheral T-cell lymphoma, n (%) | 0 (0) | 3 (8) | >0.99 | ||
Angioimmunoblastic T-cell Lymphoma (AITL), n (%) | 3 (33) | 0 (0) | 0.005 | ||
Burkitt lymphoma, n (%) | 0 (0) | 1 (3) | >0.99 | ||
Stage (Ann Arbor), n (%) | I | 0 (0) | 0 (0) | >0.99 | |
II | 1 (11) | 4 (11) | >0.99 | ||
III | 1 (11) | 6 (16) | >0.99 | ||
IV | 6 (67) | 24 (63) | >0.99 | ||
Bone marrow infiltration, n (%) | 2 (22) | 13 (34) | 0.69 | ||
AML, n (%) | 14 (39) | 17 (16) | 0.009 | ||
FAB, n (%) | M0 | 1 (7) | 1 (6) | >0.99 | |
M1 | 2 (14) | 7 (41) | 0.13 | ||
M2 | 7 (50) | 5 (29) | 0.28 | ||
M3 | 0 (0) | 0 (0) | >0.99 | ||
M4 | 3 (21) | 2 (12) | 0.63 | ||
M4Eo | 1 (7) | 2 (12) | >0.99 | ||
De novo AML Secondary AML | 12 (86) 2 (14) | 16 (94) 1 (6) | 0.58 | ||
Leukocytes (G/L), median (range) | 11.2 (1.35–272) | 12 (0.64–214) | 0.99 | ||
Thrombocytes (G/L), median (range) | 98 (38–128) | 35 (5–169) | 0.075 | ||
Hemoglobin (g/L), median (range) | 94.5 (60–130) | 84 (63–129) | 0.28 | ||
Peripheral blasts (%), median (range) | 60 (5–95) | 55 (13.5–98) | 0.95 | ||
Bone marrow infiltration (%), median (range) | 85 (20–95) | 90 (20–100) | 0.36 | ||
LDH (U/L), median (range) | 740 (270–2514) | 860 (162–2225) | 0.63 | ||
Mutations, n (%) | Mut. NPM1 and wt FLT3 | 4 (29) | 6 (35) | >0.99 | |
Mut. NPM1 and mut. FLT3 | 3 (21) | 4 (24) | >0.99 | ||
Mut. FLT3 and wt NPM1 | 2 (14) | 0 (0) | >0.99 | ||
Mut. IDH2 | 2 (14) | 4 (24) | 0.19 | ||
t(8;21)/RUNX1-RUNX1T1 | 1 (7) | 1 (6) | 0.66 | ||
inv(16)/CBFB-MYH11 | 1 (7) | 1 (6) | >0.99 | ||
Mut. SRSF2 | 2 (14) | 3 (18) | >0.99 | ||
Mut. NRAS | 2 (14) | 1 (6) | >0.99 |
Parameter | CH (n = 36) | NoCH (n = 106) | p-Value | |
---|---|---|---|---|
Remission after ASCT, n (%) | ||||
CR (complete remission) | 32 (89) | 86 (81) | 0.44 | |
VGPR (very good partial remission) | 0 (0) | 4 (4) | 0.57 | |
PR (partial remission) | 1 (3) | 9 (8) | 0.45 | |
SD (stable disease) | 0 (0) | 1 (1) | >0.99 | |
PD (progressive disease) | 2 (6) | 2 (2) | 0.26 | |
Relapse/progression after ASCT, n (%) | 13 (36) | 17 (16) | 0.017 | |
Months until relapse/progression after ASCT, median (range) | 6 (0.3–165) | 6 (2–22) | 0.54 | |
Secondary malignancy, n (%) | 2 (6) | 4 (4) | 0.64 | |
Months until second. malignancy after ASCT, median (range) | 25 (24–26) | 60 (12–226) | >0.99 | |
Death, n (%) | 8 (22) | 12 (11) | 0.16 | |
Months until death after ASCT, median (range) | 6 (1.6–32) | 7 (0.3–22) | 0.85 | |
Death related to the underlying disease or therapy, n (%) | 7 (88) | 11 (92) | >0.99 | |
Follow-up, months, median (range) | 14.3 (1.6–220.7) | 16.5 (0.3–248.4) | 0.84 |
Parameters | CH (n = 9) | NoCH (n = 38) | p-Value | |
---|---|---|---|---|
Remission status after ASCT, n (%) | ||||
CR (complete remission) | 6 (67) | 32 (84) | 0.34 | |
PR (partial remission) | 0 (0) | 3 (8) | >0.99 | |
SD (stable disease) | 0 (0) | 0 (0) | >0.99 | |
PD (progressive disease) | 2 (22) | 1 (3) | 0.09 | |
Relapse/progression after ASCT, n (%) | 6 (67) | 6 (16) | 0.005 | |
Months until relapse/progression after ASCT, median (range) | 5.9 (0.3–165) | 5.8 (3.6–22) | 0.82 | |
Secondary malignancy, n (%) | 1 (11) | 1 (3) | 0.35 | |
Months until second malignancy after ASCT, median (range) | 24.4 (-) | 15.9 (-) | - | |
Death, n (%) | 4 (44) | 5 (13) | 0.054 | |
Months until death after ASCT, median (range) | 4 (1.6–32) | 7 (0.9–13) | 0.90 | |
Death related to the underlying disease or therapy, n (%) | 3 (75) | 4 (80) | >0.99 | |
Follow-up, months, median (range) | 22.6 (1.6–180.0) | 15.9 (0.9–109.5) | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmid, C.N.; Sponagel, K.; Bacher, U.; Seipel, K.; Porret, N.; Wiedemann, G.; Hoffmann, M.; Daskalakis, M.; Pabst, T. Clonal Hematopoiesis and Outcomes After High-Dose Chemotherapy and Autologous Stem Cell Transplantation in Patients with AML, Myeloma, and Lymphoma. Int. J. Mol. Sci. 2025, 26, 8021. https://doi.org/10.3390/ijms26168021
Schmid CN, Sponagel K, Bacher U, Seipel K, Porret N, Wiedemann G, Hoffmann M, Daskalakis M, Pabst T. Clonal Hematopoiesis and Outcomes After High-Dose Chemotherapy and Autologous Stem Cell Transplantation in Patients with AML, Myeloma, and Lymphoma. International Journal of Molecular Sciences. 2025; 26(16):8021. https://doi.org/10.3390/ijms26168021
Chicago/Turabian StyleSchmid, Corinne Natalie, Katharina Sponagel, Ulrike Bacher, Katja Seipel, Naomi Porret, Gertrud Wiedemann, Michèle Hoffmann, Michael Daskalakis, and Thomas Pabst. 2025. "Clonal Hematopoiesis and Outcomes After High-Dose Chemotherapy and Autologous Stem Cell Transplantation in Patients with AML, Myeloma, and Lymphoma" International Journal of Molecular Sciences 26, no. 16: 8021. https://doi.org/10.3390/ijms26168021
APA StyleSchmid, C. N., Sponagel, K., Bacher, U., Seipel, K., Porret, N., Wiedemann, G., Hoffmann, M., Daskalakis, M., & Pabst, T. (2025). Clonal Hematopoiesis and Outcomes After High-Dose Chemotherapy and Autologous Stem Cell Transplantation in Patients with AML, Myeloma, and Lymphoma. International Journal of Molecular Sciences, 26(16), 8021. https://doi.org/10.3390/ijms26168021