Broad-Spectrum Antimicrobial Potential of the γ-Core Motif Peptides of Filipendula ulmaria for Practical Applications in Agriculture and Medicine
Abstract
1. Introduction
2. Results
2.1. Design of γ-Core Peptides
2.2. Physicochemical Properties of Meadowsweet Synthetic Peptides
2.3. Three-Dimensional Structure Modeling of Synthetic Peptides
2.4. Antimicrobial Activity of Synthetic Peptides Against Yeasts and Bacteria
2.5. Antimicrobial Activity Against Filamentous Fungi
2.6. Synergistic Interactions of the AMP-Derived Peptides
2.7. Staining with Propidium Iodide
3. Discussion
4. Materials and Methods
4.1. Chemical Synthesis of Short Peptides Derived from AMP-like Peptides
4.2. Three-Dimensional Structure Modeling
4.3. Antimicrobial Assays
4.3.1. Antimicrobial Activity Assays Against Bacteria and Yeasts
4.3.2. Antifungal Activity Assays
4.3.3. Synergistic Interaction Assays
4.4. Statistical Analysis
4.5. Staining of Pathogen Cells with Propidium Iodide
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMP | Antimicrobial peptide |
DEFL | Defensin-like peptide |
pI | Isoelectric point |
GRAVY | Grand average of hydropathy |
IC50 | Peptide concentration required for 50% inhibition of the pathogen growth |
SD | Standard deviation |
PI | Propidium iodide |
References
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Sharma, R.R.; Singh, D.; Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control 2009, 50, 205–221. [Google Scholar] [CrossRef]
- Avery, S.V.; Singleton, I.; Magan, N.; Goldman, G.H. The fungal threat to global food security. Fungal Biol. 2019, 123, 555–557. [Google Scholar] [CrossRef] [PubMed]
- Doehlemann, G.; Ökmen, B.; Zhu, W.; Sharon, A. Plant pathogenic fungi. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.V.; Vaid, P.; Saini, N.K.; Siwal, S.S.; Gupta, V.K.; Thakur, V.K.; Saini, A.K. Recent advancements in the technologies detecting food spoiling agents. J. Funct. Biomater. 2021, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K.; Chiller, T.M.; Mody, R.K. Invasive fungal infections acquired from contaminated food or nutritional supplements: A review of the literature. Foodborne Pathog. Dis. 2016, 13, 343–349. [Google Scholar] [CrossRef]
- Cárdenas, D.E.; Aguilar, C.; Bhatta, U.; Bugingo, C.; Cochran-Murray, S.; Gazis, R.; Miles, T.D.; Jurick, W.; Naegele, R.P.; Quesada-Ocampo, L.; et al. Rotten to the core: Challenges with postharvest disease management of fruit crops. In Plant Disease; The American Phytopathological Society: Saint Paul, MN, USA, 2025. [Google Scholar] [CrossRef]
- Yu, J. Chemical composition of essential oils and their potential applications in postharvest storage of cereal grains. Molecules 2025, 30, 683. [Google Scholar] [CrossRef]
- Köhler, J.R.; Hube, B.; Puccia, R.; Casadevall, A.; Perfect, J.R. Fungi that infect humans. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef]
- Gauthier, G.M.; Keller, N.P. Crossover fungal pathogens: The biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet. Biol. 2013, 61, 146–157. [Google Scholar] [CrossRef]
- Li, D.; Amburgey-Crovetti, K.; Applebach, E.; Steen, T.Y.; Calderone, R. The dual pathogen Fusarium: Diseases, incidence, azole resistance, and biofilms. J. Fungi 2025, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Horbach, R.; Navarro-Quesada, A.R.; Knogge, W.; Deising, H.B. When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. J. Plant Physiol. 2011, 168, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Abrahamian, P.; Carvalho, R.; Choudhary, M.; Paret, M.L.; Vallad, G.E.; Jones, J.B. Future of bacterial disease management in crop production. Annu. Rev. Phytopathol. 2022, 60, 259–282. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Gupta, A.K.; Devi, B. Current trends in management of bacterial pathogens infecting plants. Antonie Van Leeuwenhoek 2023, 116, 303–326. [Google Scholar] [CrossRef]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Dhankhar, N.; Kumar, J. Impact of increasing pesticides and fertilizers on human health: A review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef]
- Hasan, W. Biopesticides: An eco-friendly and sustainable alternative to synthetic pesticides. Global Agri. Vision 2024, 38, 247–255. [Google Scholar]
- Magri, A.; Curci, M.; Battaglia, V.; Fiorentino, A.; Petriccione, M. Essential oils in postharvest treatment against microbial spoilage of the Rosaceae family fruits. AppliedChem 2023, 3, 196–216. [Google Scholar] [CrossRef]
- Remolif, G.; Buonsenso, F.; Schiavon, G.; Garello, M.; Spadaro, D. Efficacy of essential oil vapours in reducing postharvest rots and effect on the fruit mycobiome of nectarines. J. Fungi 2024, 10, 341. [Google Scholar] [CrossRef] [PubMed]
- Kiri, I.Z.; Eghosa, O.; Usman, H.B.; Biliyaminu, A. The use of botanicals as pesticides: History, development and emerging challenges. Dutse J. Pure Appl. Sci. 2024, 10, 1a. [Google Scholar] [CrossRef]
- Copping, L.G.; Duke, S.O. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 2007, 63, 524–554. [Google Scholar] [CrossRef]
- Miraldi, E.; Baini, G. Medicinal plants and health in human history: From empirical use to modern phytotherapy. J. Siena Acad. Sci. 2018, 10, 7–12. [Google Scholar] [CrossRef]
- Tam, J.P.; Wang, S.; Wong, K.H.; Tan, W.L. Antimicrobial peptides from plants. Pharmaceuticals 2015, 8, 711–757. [Google Scholar] [CrossRef]
- Benfield, A.H.; Henriques, S.T. Mode-of action of antimicrobial peptides: Membrane disruption vs. intracellular mechanisms. Front. Med. Technol. 2020, 2, 610997. [Google Scholar] [CrossRef]
- Tang, R.; Tan, H.; Dai, Y.; Li, L.; Huang, Y.; Yao, H.; Cai, Y.; Yu, G. Application of antimicrobial peptides in plant protection: Making use of the overlooked merits. Front. Plant Sci. 2023, 14, 1139539. [Google Scholar] [CrossRef]
- Silverstein, K.A.; Graham, M.A.; Paape, T.D.; VandenBosch, K.A. Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol. 2005, 138, 600–610. [Google Scholar] [CrossRef]
- Silverstein, K.A.; Moskal, W.A., Jr.; Wu, H.C.; Underwood, B.A.; Graham, M.A.; Town, C.D.; VandenBosch, K.A. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J. 2007, 51, 262–280. [Google Scholar] [CrossRef]
- Scepanovic, R.; Selakovic, D.; Katanic Stankovic, J.S.; Arsenijevic, N.; Andjelkovic, M.; Milenkovic, J.; Milanovic, P.; Vasovic, M.; Jovicic, N.; Rosic, G. The antioxidant supplementation with Filipendula ulmaria extract attenuates the systemic adverse effects of nanosized calcium phosphates in rats. Oxid. Med. Cell. Longev. 2021, 2021, 8207283. [Google Scholar] [CrossRef]
- Sukhikh, S.; Ivanova, S.; Skrypnik, L.; Bakhtiyarova, A.; Larina, V.; Krol, O.; Prosekov, A.; Frolov, A.; Povydysh, M.; Babich, O. Study of the antioxidant properties of Filipendula ulmaria and Alnus glutinosa. Plants 2022, 11, 2415. [Google Scholar] [CrossRef] [PubMed]
- Savina, T.; Lisun, V.; Feduraev, P.; Skrypnik, L. Variation in phenolic compounds, antioxidant and antibacterial activities of extracts from different plant organs of meadowsweet (Filipendula ulmaria (L.) Maxim.). Molecules 2023, 28, 3512. [Google Scholar] [CrossRef] [PubMed]
- Andonova, T.; Muhovski, Y.; Apostolova, E.; Naimov, S.; Mladenova, S.; Slavov, I.; Dincheva, I.; Georgiev, V.; Pavlov, A.; Dimitrova-Dyulgerova, I. DNA-protective, antioxidant and anti-carcinogenic potential of meadowsweet (Filipendula ulmaria) dry tincture. Antioxidants 2024, 13, 1200. [Google Scholar] [CrossRef]
- Samardžić, S.; Arsenijević, J.; Božić, D.; Milenković, M.; Tešević, V.; Maksimović, Z. Antioxidant, anti-inflammatory and gastroprotective activity of Filipendula ulmaria (L.) Maxim. and Filipendula vulgaris Moench. J. Ethnopharmacol. 2018, 213, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Bespalov, V.G.; Alexandrov, V.A.; Vysochina, G.I.; Kostikova, V.A.; Semenov, A.L.; Baranenko, D.A. Inhibitory effect of Filipendula ulmaria on mammary carcinogenesis induced by local administration of methylnitrosourea to target organ in rats. Anticancer Agents Med. Chem. 2018, 18, 1177–1183. [Google Scholar] [CrossRef]
- Bespalov, V.G.; Alexandrov, V.A.; Semenov, A.L.; Vysochina, G.I.; Kostikova, V.A.; Baranenko, D.A. The inhibitory effect of Filipendula ulmaria (L.) Maxim. on colorectal carcinogenesis induced in rats by methylnitrosourea. J. Ethnopharmacol. 2018, 227, 1–7. [Google Scholar] [CrossRef]
- Bespalov, V.G.; Alexandrov, V.A.; Semenov, A.L.; Kovan’ko, E.G.; Ivanov, S.D.; Vysochina, G.I.; Kostikova, V.A.; Baranenko, D.A. The inhibitory effect of meadowsweet (Filipendula ulmaria) on radiation-induced carcinogenesis in rats. Int. J. Radiat. Biol. 2017, 93, 394–401. [Google Scholar] [CrossRef]
- Krstic, B.; Selakovic, D.; Jovicic, N.; Krstic, M.; Katanic Stankovic, J.S.; Rosic, S.; Milovanovic, D.; Rosic, G. Complex hippocampal response to thermal skin injury and protocols with hyperbaric oxygen therapy and Filipendula ulmaria extract in rats. Int. J. Mol. Sci. 2024, 25, 3033. [Google Scholar] [CrossRef]
- Arsenijevic, N.; Selakovic, D.; Katanic Stankovic, J.S.; Mihailovic, V.; Mitrovic, S.; Milenkovic, J.; Milanovic, P.; Vasovic, M.; Markovic, S.D.; Zivanovic, M.; et al. The beneficial role of Filipendula ulmaria extract in prevention of prodepressant effect and cognitive impairment induced by nanoparticles of calcium phosphates in rats. Oxid. Med. Cell. Longev. 2021, 2021, 6670135. [Google Scholar] [CrossRef]
- Pannakal, S.T.; Eilstein, J.; Hubert, J.; Kotland, A.; Prasad, A.; Gueguiniat-Prevot, A.; Juchaux, F.; Beaumard, F.; Seru, G.; John, S.; et al. Rapid chemical profiling of Filipendula ulmaria using CPC fractionation, 2-D mapping of 13C NMR data, and high-resolution LC-MS. Molecules 2023, 28, 6349. [Google Scholar] [CrossRef]
- Pushkareva, V.I.; Slezina, M.P.; Korostyleva, T.V.; Shcherbakova, L.A.; Istomina, E.A.; Ermolaeva, S.A.; Ogarkova, O.A.; Odintsova, T.I. Antimicrobial activity of wild plant seed extracts against human bacterial and plant fungal pathogens. Am. J. Plant Sci. 2017, 8, 1572–1592. [Google Scholar] [CrossRef]
- Istomina, E.A.; Korostyleva, T.V.; Kovtun, A.S.; Slezina, M.P.; Odintsova, T.I. Transcriptome-wide identification and expression analysis of genes encoding defense-related peptides of Filipendula ulmaria in response to Bipolaris sorokiniana infection. J. Fungi 2024, 10, 258. [Google Scholar] [CrossRef] [PubMed]
- Slezina, M.P.; Istomina, E.A.; Kulakovskaya, E.V.; Korostyleva, T.V.; Odintsova, T.I. The γ-core motif peptides of AMPs from grasses display inhibitory activity against human and plant pathogens. Int. J. Mol. Sci. 2022, 23, 8383. [Google Scholar] [CrossRef] [PubMed]
- Slezina, M.P.; Istomina, E.A.; Kulakovskaya, E.V.; Abashina, T.N.; Odintsova, T.I. Synthetic oligopeptides mimicking γ-core regions of cysteine-rich peptides of Solanum lycopersicum possess antimicrobial activity against human and plant pathogens. Curr. Issues Mol. Biol. 2021, 43, 1226–1242. [Google Scholar] [CrossRef]
- Jiang, Z.; Vasil, A.I.; Hale, J.D.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Pept. Sci. 2008, 90, 369–383. [Google Scholar] [CrossRef]
- Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 2016, 44, W449–W454A. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Easa, S.M.H.; Hamdy, A.E.H.A.; Mekawey, A.A.I.; Wadee, E.A. Antifungal activities of some plant extracts against pathogenic fungi. Egypt. Acad. J. Biolog. Sci. 2018, 10, 1–19. [Google Scholar] [CrossRef]
- Aqil, F.; Zahin, M.; Ahmad, I.; Owais, M.; Sajjad, M.; Khan, M.S.A.; Bansal, S.S.; Farooq, S. Antifungal activity of medicinal plant extracts and phytocompounds: A Review. In Combating Fungal Infections; Ahmad, I., Owais, M., Shahid, M., Aqil, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 449–484. [Google Scholar] [CrossRef]
- Karpagam, T.; Devaraj, R.A. Studies on the efficacy of Aloe vera on antimicrobial activity. Int. J. Res. Ayurveda Pharm. 2011, 2, 1286–1289. [Google Scholar]
- Mnayer, D.; Fabiano-Tixier, A.; Petitcolas, E.; Hamieh, T.; Nehme, N.; Ferrant, C.; Fernandez, X.; Chemat, F. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules 2014, 19, 20034–20053. [Google Scholar] [CrossRef]
- Jagessar, R.C. Plant extracts as biological control agents. Open Access J. Biog. Sci. Res. 2020, 5, 1–6. [Google Scholar] [CrossRef]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2017, 25, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.; Khalel, K.I. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind. Crop. Prod. 2013, 44, 437–445. [Google Scholar] [CrossRef]
- Yount, N.Y.; Yeaman, M.R. Multidimensional signatures in antimicrobial peptides. Proc. Natl. Acad. Sci. USA 2004, 101, 7363–7368. [Google Scholar] [CrossRef] [PubMed]
- Andrés, M.T.; Yount, N.Y.; Acosta-Zaldívar, M.; Yeaman, M.R.; Fierro, J.F. The archetypal gamma-core motif of antimicrobial Cys-rich peptides inhibits H+-ATPases in target pathogens. Int. J. Mol. Sci. 2024, 25, 9672. [Google Scholar] [CrossRef] [PubMed]
- Slezina, M.P.; Istomina, E.A.; Korostyleva, T.V.; Odintsova, T.I. The γ-core motif peptides of plant AMPs as novel antimicrobials for medicine and agriculture. Int. J. Mol. Sci. 2023, 24, 483. [Google Scholar] [CrossRef]
- World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022; p. 6. [Google Scholar]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef]
- Silva, S.; Rodrigues, C.F.; Araújo, D.; Rodrigues, M.E.; Henriques, M. Candida species biofilms’ antifungal resistance. J. Fungi 2017, 3, 8. [Google Scholar] [CrossRef]
- Tajane, S.B.; Pawar, S.; Patil, S. Revisiting the history of candidiasis. Cureus 2025, 17, e78878. [Google Scholar] [CrossRef]
- Mallick, D.C.; Kaushik, N.; Goyal, L.; Mallick, L.; Singh, P. A comprehensive review of candidemia and invasive candidiasis in adults: Focus on the emerging multidrug-resistant fungus Candida auris. Diseases 2025, 13, 93. [Google Scholar] [CrossRef]
- Zuza-Alves, D.L.; Silva-Rocha, W.P.; Chaves, G.M. An update on Candida tropicalis based on basic and clinical approaches. Front. Microbiol. 2017, 8, 1927. [Google Scholar] [CrossRef]
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef]
- Vesper, S.; McKinstry, C.; Haugland, R.; Neas, L.; Hudgens, E.; Heidenfelder, B.; Gallagher, J. Higher Environmental Relative Moldiness Index (ERMIsm) values measured in Detroit homes of severely asthmatic children. Sci. Total Environ. 2008, 394, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, B.; Hedayati, M.T.; Hedayati, N.; Ilkit, M.; Syedmousavi, S. Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr. Med. Mycol. 2016, 2, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Tuomi, T.; Reijula, K.; Johnsson, T.; Hemminki, K.; Hintikka, E.L.; Lindroos, O.; Kalso, S.; Koukila-Kähkölä, P.; Mussalo-Rauhamaa, H.; Haahtela, T. Mycotoxins in crude building materials from water-damaged buildings. Appl. Environ. Microbiol. 2000, 66, 1899–1904. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.C.; Hui, T.W.; Lee, K.C.; Chen, J.H.; Ngan, A.H.; Tam, E.W.; Chan, J.F.; Wu, A.L.; Cheung, M.; Tse, B.P.; et al. Genetic diversity of Aspergillus species isolated from onychomycosis and Aspergillus hongkongensis sp. nov., with implications to antifungal susceptibility testing. Diagn. Microbiol. Infect. Dis. 2016, 84, 125–134. [Google Scholar] [CrossRef]
- Bongomin, F.; Batac, C.R.; Richardson, M.D.; Denning, D.W. A review of onychomycosis due to Aspergillus species. Mycopathologia 2018, 183, 485–493. [Google Scholar] [CrossRef]
- Puel, O.; Galtier, P.; Oswald, I.P. Biosynthesis and toxicological effects of patulin. Toxins 2010, 2, 613–631. [Google Scholar] [CrossRef]
- Gartemann, K.H.; Kirchner, O.; Engemann, J.; Gräfen, I.; Eichenlaub, R.; Burger, A. Clavibacter michiganensis subsp. michiganensis: First steps in the understanding of virulence of a gram-positive phytopathogenic bacterium. J. Biotechnol. 2003, 106, 179–191. [Google Scholar] [CrossRef]
- Eichenlaub, R.; Gartemann, K.H. The Clavibacter michiganensis subspecies: Molecular investigation of gram-positive bacterial plant pathogens. Annu. Rev. Phytopathol. 2011, 49, 445–464. [Google Scholar] [CrossRef]
- Osdaghi, E.; Abachi, H.; Jacques, M.A. Clavibacter michiganensis reframed: The story of how the genomics era made a new face for an old enemy. Mol. Plant Pathol. 2025, 26, e70093. [Google Scholar] [CrossRef]
- Peritore-Galve, F.C.; Tancos, M.A.; Smart, C.D. Bacterial canker of tomato: Revisiting a global and economically damaging seedborne pathogen. Plant Dis. 2021, 105, 1581–1595. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.; Matas, I.M.; Bardaji, L.; Aragón, I.M.; Murillo, J. Pseudomonas savastanoi pv. savastanoi: Some like it knot. Mol. Plant Pathol. 2012, 13, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Buonaurio, R.; Moretti, C.; da Silva, D.P.; Cortese, C.; Ramos, C.; Venturi, V. The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. Front. Plant Sci. 2015, 6, 434. [Google Scholar] [CrossRef]
- Toth, I.K.; Bell, K.S.; Holeva, M.C.; Birch, P.R. Soft rot erwiniae: From genes to genomes. Mol. Plant Pathol. 2003, 4, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Gao, P.; Guo, J.; Qi, Y.; Li, L.; Yang, S.; Zhao, Y.; Liu, J.; Yu, L. The endophytic fungal community plays a crucial role in the resistance of host plants to necrotic bacterial pathogens. Physiol. Plant. 2024, 176, e14284. [Google Scholar] [CrossRef]
- Pérombelon, M.C.M. Potato diseases caused by soft rot erwinias: An overview of pathogenesis. Plant Pathol. 2002, 51, 1–12. [Google Scholar] [CrossRef]
- Armer, V.J.; Kroll, E.; Darino, M.; Smith, D.P.; Urban, M.; Hammond-Kosack, K.E. Navigating the Fusarium species complex: Host-range plasticity and genome variations. Fungal Biol. 2024, 128, 2439–2459. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Gordon, T.R. Fusarium oxysporum and the Fusarium wilt syndrome. Annu. Rev. Phytopathol. 2017, 55, 23–39. [Google Scholar] [CrossRef]
- Coleman, J.J. The Fusarium solani species complex: Ubiquitous pathogens of agricultural importance. Mol. Plant Pathol. 2016, 17, 146–158. [Google Scholar] [CrossRef]
- Scherm, B.; Balmas, V.; Spanu, F.; Pani, G.; Delogu, G.; Pasquali, M.; Migheli, Q. Fusarium culmorum: Causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 2013, 14, 323–341. [Google Scholar] [CrossRef] [PubMed]
- Deepa, N.; Sreenivasa, M.Y. Fusarium verticillioides, a globally important pathogen of agriculture and livestock: A review. J. Vet. Med. Res. 2017, 4, 1084. [Google Scholar]
- Douglas, A.P.; Chen, S.C.; Slavin, M.A. Emerging infections caused by non-Aspergillus filamentous fungi. Clin. Microbiol. Infect. 2016, 22, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Hof, H.; Schrecker, J. Fusarium spp.: Infections and intoxications. GMS Infect. Dis. 2024, 12, Doc04. [Google Scholar] [CrossRef]
- Cintra, M.E.C.; da Silva Dantas, M.; Al-Hatmi, A.M.S.; Bastos, R.W.; Rossato, L. Fusarium keratitis: A systematic review (1969 to 2023). Mycopathologia 2024, 189, 74. [Google Scholar] [CrossRef]
- Uemura, E.V.G.; Barbosa, M.D.S.; Simionatto, S.; Al-Harrasi, A.; Al-Hatmi, A.M.S.; Rossato, L. Onychomycosis caused by Fusarium species. J. Fungi 2022, 8, 360. [Google Scholar] [CrossRef]
- Ahearn, D.G.; Zhang, S.; Stulting, R.D.; Schwam, B.L.; Simmons, R.B.; Ward, M.A.; Pierce, G.E.; Crow, S.A., Jr. Fusarium keratitis and contact lens wear: Facts and speculations. Med. Mycol. 2008, 46, 397–410. [Google Scholar] [CrossRef]
- García-Rodríguez, G.; Duque-Molina, C.; Kondo-Padilla, I.; Zaragoza-Jiménez, C.A.; González-Cortés, V.B.; Flores-Antonio, R.; Villa-Reyes, T.; Vargas-Rubalcava, A.; Ruano-Calderon, L.Á.; Tinoco-Favila, J.C.; et al. Outbreak of Fusarium solani meningitis in immunocompetent persons associated with neuraxial blockade in Durango, Mexico, 2022–2023. Open Forum Infect. Dis. 2024, 11, ofad690. [Google Scholar] [CrossRef]
- Kumar, J.; Schäfer, P.; Hückelhoven, R.; Langen, G.; Baltruschat, H.; Stein, E.; Nagarajan, S.; Kogel, K.H. Bipolaris sorokiniana, a cereal pathogen of global concern: Cytological and molecular approaches towards better controldouble dagger. Mol. Plant Pathol. 2002, 3, 185–195. [Google Scholar] [CrossRef]
- Al-Sadi, A.M. Bipolaris sorokiniana-induced black point, common root rot, and spot blotch diseases of wheat: A review. Front. Cell. Infect. Microbiol. 2021, 11, 584899. [Google Scholar] [CrossRef]
- Singh, R.; Caseys, C.; Kliebenstein, D.J. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea. Mol. Plant Pathol. 2024, 25, e13404. [Google Scholar] [CrossRef]
- Odintsova, T.; Shcherbakova, L.; Slezina, M.; Pasechnik, T.; Kartabaeva, B.; Istomina, E.; Dzhavakhiya, V. Hevein-like antimicrobial peptides WAMPs: Structure-function relationship in antifungal activity and sensitization of plant pathogenic fungi to tebuconazole by WAMP-2-derived peptides. Int. J. Mol. Sci. 2020, 21, 7912. [Google Scholar] [CrossRef]
- Shcherbakova, L.; Odintsova, T.; Pasechnik, T.; Arslanova, L.; Smetanina, T.; Kartashov, M.; Slezina, M.; Dzhavakhiya, V. Fragments of a wheat hevein-like antimicrobial peptide augment the inhibitory effect of a triazole fungicide on spore germination of Fusarium oxysporum and Alternaria solani. Antibiotics 2020, 9, 870. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef]
- Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2015, 44, D1094–D1097. [Google Scholar] [CrossRef]
- Colby, S.R. Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 1967, 15, 20–22. [Google Scholar] [CrossRef]
Peptide Name | Amino Acid Sequence |
---|---|
γ59-74FuDEFL1-1 | GKCSHILRRCRCSKSC |
γ61-76FuDEFL1-7 | GKCSHILRRCQCLKSC |
FuD0 | GKCSHILRRCFCTTHC |
γ88-104FuSN3 | GSCYTDMTTHGNRLKCP |
γ48-67FuSN6 | GACIARCRLSSRPNLCKR |
γ54-69FuSN5 | GRCKLSSRPKLCKR |
γ89-106SlSN9 * | GLCKYRCSLHSRPNVCFR |
Peptide | Length, aa | Molecular Weight, Da | Net Charge at pH 7 | pI | Aliphatic Index | Boman Index | Ratio of Hydrophobic Residues, % | GRAVY Index | AMP Prediction |
---|---|---|---|---|---|---|---|---|---|
γ88-104FuSN3 | 17 | 1884.13 | +1 | 8.05 | 22.94 | 2.35 | 24 | −0.853 | Non-AMP |
γ48-67FuSN6 | 18 | 2004.42 | +5 | 10.74 | 76.11 | 3.08 | 44 | −0.322 | AMP |
γ54-69FuSN5 | 14 | 1632.02 | +6 | 11.02 | 55.71 | 3.91 | 29 | −1.157 | AMP |
γ59-74FuDEFL1-1 | 16 | 1837.23 | +5 | 9.70 | 48.75 | 3.42 | 38 | −0.562 | AMP |
γ61-76FuDEFL1-7 | 16 | 1835.25 | +4 | 9.31 | 73.12 | 2.31 | 44 | −0.212 | AMP |
FuD0 | 16 | 1865.24 | +3 | 8.98 | 48.75 | 2.14 | 44 | −0.050 | AMP |
Pathogen | IC50, μM | ||||||
---|---|---|---|---|---|---|---|
γ59-74FuDEFL1-1 | γ61-76FuDEFL1-7 | FuD0 | γ88-104FuSN3 | γ48-67FuSN6 | γ54-69FuSN5 | γ89-106SlSN9 | |
C. neoformans | 43.5 ± 11.6 | 2.7 ± 0.2 | 6.1 ± 0.0 | 152.2 ± 5.6 | 5.5 ± 0.2 | 1.4 ± 0.7 | 6.3 ± 3.8 |
C. albicans | 13.8 ± 1.4 | 100.6 ± 23.4 | 41.8 ± 3.6 | – | – | 10.4 ± 4.0 | 214.3 ± 47.1 |
C. tropicalis | 7.9 ± 0.7 | 3.6 ± 1.8 | 5.1 ± 1.3 | 185.0 ± 2.5 | 1.7 ± 0.6 | 2.5 ± 0.2 | 6.1 ± 0.1 |
C. michiganensis | 198.5 ± 1.4 | 198.1 ± 2.5 | 134.1 ± 3.1 | – | 34.7 ± 0.5 | 126.9 ± 0.3 | 41.9 ± 0.5 |
P. savastanoi | 88.3 ± 0.4 | 127.2 ± 0.6 | 55.2 ± 1.7 | – | 97.2 ± 0.2 | 97.9 ± 0.5 | 127.6 ± 0.9 |
P. carotovorum | – | – | – | – | – | – | – |
Pathogen | IC50, μM | ||||||
---|---|---|---|---|---|---|---|
γ59-74FuDEFL1-1 | γ61-76FuDEFL1-7 | FuD0 | γ88-104FuSN3 | γ48-67FuSN6 | γ54-69FuSN5 | γ89-106SlSN9 | |
F. culmorum | 19.4 ± 3.7 | 47.0 ± 8.5 | 36.2 ± 0.8 | – | 19.3 ± 1.2 | 25.3 ± 12.2 | 23.1 ± 4.5 |
F. oxysporum | 22.2 ± 0.7 | 38.3 ± 0.5 | 11.3 ± 0.7 | – | 15.8 ± 0.6 | 116.2 ± 18.5 | 34.1 ± 1.0 |
F. solani | 49.0 ± 2.3 | 64.5 ± 2.7 | 17.7 ± 1.5 | – | 51.4 ± 0.9 | 111.8 ± 32.5 | 50.5 ± 1.4 |
F. verticillioides | 36.1 ± 6.0 | 56.0 ± 4.2 | 43.1 ± 1.6 | 174.6 ± 8.1 | 38.0 ± 4.6 | 72.3 ± 12.8 | 32.3 ± 6.5 |
A. unguis | 28.3 ± 2.8 | 37.0 ± 1.0 | 18.0 ± 2.0 | 2.2 ± 0.1 | 2.1 ± 0.0 | 27.2 ± 2.8 | 3.3 ± 0.2 |
P. gladioli | 67.3 ± 3.3 | 113.4 ± 25.2 | 94.1 ± 8.3 | 69.7 ± 0.1 | 93.8 ± 4.2 | 115.7 ± 31.1 | 93.6 ± 5.2 |
B. sorokiniana | 45.0 ± 10.2 | 63.0 ± 7.8 | 51.7 ± 4.6 | 103.0 ± 8.1 | 46.2 ± 3.2 | – | 55.1 ± 7.0 |
B. cinerea | 93.2 ± 1.2 | n/d | 110.9 ± 1.7 | 61.7 ± 0.5 | 154.2 ± 4.4 | – | 117.8 ± 12.0 |
R. solani | n/d | n/d | 102.5 ± 4.2 | 123.9 ± 6.9 | n/d | – | 129.5 ± 2.9 |
Concentration of γ59-74FuDEFL1-1, μM | Concentration of γ61-76FuDEFL1-7, μM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 25 | 50 | 75 | 100 | |||||||
Er | Er | Ee | Er | Ee | Er | Ee | Er | Ee | Er | Ee | Er | Ee | |
0 | 1.5 | 5.0 | 25.0 | 67.4 | 79.5 | 61.6 | |||||||
5 | 5.0 | 12.3 | 6.4 | 32.0 | 9.7 | 86.1 * | 28.7 | 80.8 | 69.0 | 84.3 | 80.5 | 82.0 | 63.5 |
10 | 3.8 | 27.3 | 5.2 | 37.1 | 8.6 | 80.3 * | 27.9 | 83.6 | 68.6 | 80.0 | 80.3 | 81.3 | 63.1 |
25 | 64.7 | 82.8 * | 65.3 | 79.0 | 66.5 | 84.4 | 73.6 | 82.3 | 88.5 | 82.1 | 92.8 | 78.6 | 86.5 |
50 | 74.5 | 82.6 | 74.9 | 84.1 | 75.8 | 83.3 | 80.9 | 81.6 | 91.7 | 80.3 | 94.8 | 81.5 | 90.2 |
75 | 79.1 | 82.1 | 79.4 | 83.3 | 80.2 | 83.8 | 84.4 | 80.5 | 93.2 | 78.3 | 95.7 | 76.2 | 92.0 |
100 | 77.5 | 81.0 | 77.8 | 81.3 | 78.6 | 79.3 | 83.1 | 78.3 | 92.7 | 76.2 | 95.4 | 74.3 | 91.4 |
Concentration of FuD0, μM | Concentration of γ54-69FuSN5, μM | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5 | 10 | 25 | 50 | 75 | 100 | 150 | ||||||||
Er | Er | Ee | Er | Ee | Er | Ee | Er | Ee | Er | Ee | Er | Ee | Er | Ee | |
0 | 11.7 | 10.7 | 17.5 | 13.7 | 6.9 | 43.5 | 54.7 | ||||||||
5 | 9.2 | 8.1 | 19.8 | 9.1 | 18.9 | 17.8 | 25.1 | 46.1 | 21.6 | 49.6 * | 15.5 | 67.4 | 48.7 | 79.1 | 58.9 |
10 | 18.6 | 1.0 | 28.1 | 5.4 | 27.3 | 2.8 | 32.8 | 30.6 | 29.7 | 43.3 | 24.2 | 53.9 | 54.0 | 69.9 | 63.1 |
25 | 64.9 | 69.0 | 69.0 | 73.8 | 68.7 | 75.1 | 71.0 | 69.2 | 69.7 | 70.3 | 67.3 | 70.8 | 80.2 | 83.5 | 84.1 |
50 | 79.4 | 77.6 | 81.8 | 78.9 | 81.6 | 84.8 | 83.0 | 81.9 | 82.2 | 81.4 | 80.8 | 78.1 | 88.4 | 83.5 | 90.7 |
75 | 81.9 | 79.4 | 84.0 | 80.4 | 83.8 | 84.3 | 85.0 | 81.4 | 84.4 | 81.2 | 83.1 | 81.2 | 89.8 | 80.9 | 91.8 |
100 | 84.5 | 81.1 | 86.3 | 84.0 | 86.2 | 81.7 | 87.2 | 81.2 | 86.6 | 80.9 | 85.6 | 81.1 | 91.2 | 81.5 | 93.0 |
Concentration of γ59-74FuDEFL1-1, μM | Concentration of γ61-76FuDEFL1-7, μM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 25 | 50 | 75 | 100 | ||||||
Er | Er | Ee | Er | Ee | Er | Ee | Er | Ee | Er | Ee | |
0 | 3.4 | 7.0 | 16.4 | 21.6 | 24.2 | ||||||
10 | 2.4 | 2.7 | 5.7 | 3.9 | 9.2 | 7.5 | 18.5 | 9.9 | 23.5 | 14.5 | 26.0 |
25 | 5.6 | 8.0 | 8.8 | 10.3 | 12.2 | 11.2 | 21.1 | 11.5 | 26.0 | 16.1 | 28.4 |
50 | 14.9 | 11.4 | 17.8 | 13.6 | 20.8 | 13.7 | 28.9 | 14.9 | 33.3 | 23.4 | 35.5 |
75 | 20.5 | 13.9 | 23.2 | 17.7 | 26.1 | 20.9 | 33.6 | 21.8 | 37.7 | 32.1 | 39.8 |
100 | 23.8 | 14.8 | 26.3 | 19.7 | 29.1 | 23.8 | 36.3 | 25.5 | 40.2 | 36.6 | 42.2 |
Concentration of FuD0, μM | Concentration of γ54-69FuSN5, μM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 25 | 50 | 75 | 100 | ||||||
Er | Er | Ee | Er | Ee | Er | Ee | Er | Ee | Er | Ee | |
0 | 16.9 | 26.3 | 30.6 | 34.7 | 43.2 | ||||||
10 | 4.7 | 20.1 | 20.8 | 28.2 | 29.7 | 30.4 | 33.8 | 31.4 | 37.7 | 32.2 | 45.8 |
25 | 16.8 | 25.8 | 30.8 | 34.8 | 38.7 | 35.0 | 42.2 | 35.8 | 45.6 | 43.5 | 52.7 |
50 | 24.0 | 32.1 | 36.8 | 36.3 | 44.0 | 37.0 | 47.2 | 43.8 | 50.3 | 45.4 | 56.8 |
75 | 28.3 | 32.9 | 40.4 | 37.4 | 47.2 | 38.1 | 50.2 | 45.0 | 53.2 | 46.4 | 59.3 |
100 | 38.1 | 43.3 | 48.5 | 44.7 | 54.4 | 44.9 | 57.0 | 49.7 | 59.6 | 50.8 | 64.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slezina, M.P.; Kulakovskaya, E.V.; Istomina, E.A.; Abashina, T.N.; Odintsova, T.I. Broad-Spectrum Antimicrobial Potential of the γ-Core Motif Peptides of Filipendula ulmaria for Practical Applications in Agriculture and Medicine. Int. J. Mol. Sci. 2025, 26, 7959. https://doi.org/10.3390/ijms26167959
Slezina MP, Kulakovskaya EV, Istomina EA, Abashina TN, Odintsova TI. Broad-Spectrum Antimicrobial Potential of the γ-Core Motif Peptides of Filipendula ulmaria for Practical Applications in Agriculture and Medicine. International Journal of Molecular Sciences. 2025; 26(16):7959. https://doi.org/10.3390/ijms26167959
Chicago/Turabian StyleSlezina, Marina P., Ekaterina V. Kulakovskaya, Ekaterina A. Istomina, Tatiana N. Abashina, and Tatyana I. Odintsova. 2025. "Broad-Spectrum Antimicrobial Potential of the γ-Core Motif Peptides of Filipendula ulmaria for Practical Applications in Agriculture and Medicine" International Journal of Molecular Sciences 26, no. 16: 7959. https://doi.org/10.3390/ijms26167959
APA StyleSlezina, M. P., Kulakovskaya, E. V., Istomina, E. A., Abashina, T. N., & Odintsova, T. I. (2025). Broad-Spectrum Antimicrobial Potential of the γ-Core Motif Peptides of Filipendula ulmaria for Practical Applications in Agriculture and Medicine. International Journal of Molecular Sciences, 26(16), 7959. https://doi.org/10.3390/ijms26167959