Special Issue: “Advanced Research on Molecular Modeling of Protein Structure and Functions”
Funding
Conflicts of Interest
References
- Brooks, C.L.; MacKerell, A.D.; Post, C.B.; Nilsson, L. Biomolecular dynamics in the 21st century. Biochim. Biophys. Acta-Gen. Subj. 2024, 1868, 130534. [Google Scholar] [CrossRef] [PubMed]
- Karpen, M.E.; Tobias, D.J.; Brooks, C.L. Statistical clustering techniques for the analysis of long molecular dynamics trajectories: Analysis of 2.2-ns trajectories of YPGDV. Biochem. 1993, 32, 412–420. [Google Scholar] [CrossRef]
- Khrenova, M.; Domratcheva, T.; Grigorenko, B.; Nemukhin, A. Coupling between the BLUF and EAL domains in the blue light-regulated phosphodiesterase BlrP1. J. Mol. Model. 2011, 17, 1579–1586. [Google Scholar] [CrossRef]
- Kuskin, J.S.; Young, C.; Grossman, J.P.; Batson, B.; Deneroff, M.M.; Dror, R.O.; Shaw, D.E. Incorporating flexibility in Anton, a specialized machine for molecular dynamics simulation. In Proceedings of the 2008 IEEE 14th International Symposium on High Performance Computer Architecture, Salt Lake City, UT, USA, 16–20 February 2008; pp. 343–354. [Google Scholar]
- Shim, K.S.; Greskamp, B.; Towles, B.; Edwards, B.; Grossman, J.P.; Shaw, D.E. The Specialized High-Performance Network on Anton 3. In Proceedings of the 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), Seoul, Republic of Korea, 2–6 April 2022; pp. 1211–1223. [Google Scholar]
- Bhakat, S. Collective variable discovery in the age of machine learning: Reality, hype and everything in between. RSC Adv. 2022, 12, 25010–25024. [Google Scholar] [CrossRef]
- Fiorin, G.; Klein, M.L.; Hénin, J. Using collective variables to drive molecular dynamics simulations. Mol. Phys. 2013, 111, 3345–3362. [Google Scholar] [CrossRef]
- Aho, N.; Groenhof, G.; Buslaev, P. Do All Paths Lead to Rome? How Reliable is Umbrella Sampling Along a Single Path? J. Chem. Theory Comput. 2024, 20, 6674–6686. [Google Scholar] [CrossRef]
- You, W.; Tang, Z.; Chang, C.A. Potential Mean Force from Umbrella Sampling Simulations: What Can We Learn and What Is Missed? J. Chem. Theory Comput. 2019, 15, 2433–2443. [Google Scholar] [CrossRef]
- Kästner, J. Umbrella sampling. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 932–942. [Google Scholar] [CrossRef]
- Bussi, G.; Laio, A. Using metadynamics to explore complex free-energy landscapes. Nat. Rev. Phys. 2020, 2, 200–212. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, R.; Qi, Y.; Wen, X.; Sun, J.; Xiao, P. Exploring the Binding Mechanism of ADGRG2 Through Metadynamics and Biochemical Analysis. Int. J. Mol. Sci. 2024, 26, 167. [Google Scholar] [CrossRef] [PubMed]
- González-Periañez, S.; Hernández-Rosas, F.; López-Rosas, C.A.; Ramos-Morales, F.R.; Zurutuza-Lorméndez, J.I.; García-Rodríguez, R.V.; Olivares-Romero, J.L.; Ramos-Hernández, R.R.; Bravo-Espinoza, I.; Vidal-Limon, A.; et al. Multistage Molecular Simulations, Design, Synthesis, and Anticonvulsant Evaluation of 2-(Isoindolin-2-yl) Esters of Aromatic Amino Acids Targeting GABAA Receptors via π-π Stacking. Int. J. Mol. Sci. 2025, 26, 6780. [Google Scholar] [CrossRef]
- Coffman, R.E.; Bidone, T.C. Application of Funnel Metadynamics to the Platelet Integrin αIIbβ3 in Complex with an RGD Peptide. Int. J. Mol. Sci. 2024, 25, 6580. [Google Scholar] [CrossRef] [PubMed]
- Fedotova, M.V.; Chuev, G.N. The Three-Dimensional Reference Interaction Site Model Approach as a Promising Tool for Studying Hydrated Viruses and Their Complexes with Ligands. Int. J. Mol. Sci. 2024, 25, 3697. [Google Scholar] [CrossRef] [PubMed]
- Kulakova, A.M.; Khrenova, M.G.; Zvereva, M.I.; Polyakov, I.V. Domain Mobility in the ORF2p Complex Revealed by Molecular Dynamics Simulations and Big Data Analysis. Int. J. Mol. Sci. 2024, 26, 73. [Google Scholar] [CrossRef] [PubMed]
- Brownless, A.-L.R.; Rheaume, E.; Kuo, K.M.; Kamerlin, S.C.L.; Gumbart, J.C. Using Machine Learning to Analyze Molecular Dynamics Simulations of Biomolecules. J. Phys. Chem. B 2025, 129, 5375–5385. [Google Scholar] [CrossRef]
- Fleetwood, O.; Kasimova, M.A.; Westerlund, A.M.; Delemotte, L. Molecular Insights from Conformational Ensembles via Machine Learning. Biophys. J. 2020, 118, 765–780. [Google Scholar] [CrossRef]
- Wang, Y.; Lamim Ribeiro, J.M.; Tiwary, P. Machine learning approaches for analyzing and enhancing molecular dynamics simulations. Curr. Opin. Struct. Biol. 2020, 61, 139–145. [Google Scholar] [CrossRef]
- Noé, F.; Tkatchenko, A.; Müller, K.-R.; Clementi, C. Machine Learning for Molecular Simulation. Annu. Rev. Phys. Chem. 2020, 71, 361–390. [Google Scholar] [CrossRef]
- Marchetti, F.; Moroni, E.; Pandini, A.; Colombo, G. Machine Learning Prediction of Allosteric Drug Activity from Molecular Dynamics. J. Phys. Chem. Lett. 2021, 12, 3724–3732. [Google Scholar] [CrossRef]
- Jackson, N.E.; Savoie, B.M.; Statt, A.; Webb, M.A. Introduction to Machine Learning for Molecular Simulation. J. Chem. Theory Comput. 2023, 19, 4335–4337. [Google Scholar] [CrossRef]
- Prašnikar, E.; Ljubič, M.; Perdih, A.; Borišek, J. Machine learning heralding a new development phase in molecular dynamics simulations. Artif. Intell. Rev. 2024, 57, 102. [Google Scholar] [CrossRef]
- Scherer, M.K.; Trendelkamp-Schroer, B.; Paul, F.; Pérez-Hernández, G.; Hoffmann, M.; Plattner, N.; Wehmeyer, C.; Prinz, J.-H.; Noé, F. PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. J. Chem. Theory Comput. 2015, 11, 5525–5542. [Google Scholar] [CrossRef]
- Harrigan, M.P.; Sultan, M.M.; Hernández, C.X.; Husic, B.E.; Eastman, P.; Schwantes, C.R.; Beauchamp, K.A.; McGibbon, R.T.; Pande, V.S. MSMBuilder: Statistical Models for Biomolecular Dynamics. Biophys. J. 2017, 112, 10–15. [Google Scholar] [CrossRef]
- Bonati, L.; Piccini, G.; Parrinello, M. Deep learning the slow modes for rare events sampling. Proc. Natl. Acad. Sci. USA 2021, 118, e2113533118. [Google Scholar] [CrossRef]
- Chen, W.; Sidky, H.; Ferguson, A.L. Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets. J. Chem. Phys. 2019, 150, 214114. [Google Scholar] [CrossRef]
- Mardt, A.; Pasquali, L.; Wu, H.; Noé, F. VAMPnets for deep learning of molecular kinetics. Nat. Commun. 2018, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Mardt, A.; Hempel, T.; Clementi, C.; Noé, F. Deep learning to decompose macromolecules into independent Markovian domains. Nat. Commun. 2022, 13, 7101. [Google Scholar] [CrossRef] [PubMed]
- McGibbon, R.T.; Beauchamp, K.A.; Harrigan, M.P.; Klein, C.; Swails, J.M.; Hernández, C.X.; Schwantes, C.R.; Wang, L.-P.; Lane, T.J.; Pande, V.S. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophys. J. 2015, 109, 1528–1532. [Google Scholar] [CrossRef] [PubMed]
- Conev, A.; Rigo, M.M.; Devaurs, D.; Fonseca, A.F.; Kalavadwala, H.; de Freitas, M.V.; Clementi, C.; Zanatta, G.; Antunes, D.A.; Kavraki, L.E. EnGens: A computational framework for generation and analysis of representative protein conformational ensembles. Brief. Bioinform. 2023, 24, bbad242. [Google Scholar] [CrossRef]
- Cowan, B.S.; Thayer, K.M. Network Theory Analysis of Allosteric Drug-Rescue Mechanisms in the Tumor Suppressor Protein p53 Y220C Mutant. Int. J. Mol. Sci. 2025, 26, 6884. [Google Scholar] [CrossRef]
- Richter, M.; Khrenova, M.; Kazakova, E.; Riabova, O.; Egorova, A.; Makarov, V.; Schmidtke, M. Dynamic features of virus protein 1 and substitutions in the 3-phenyl ring determine the potency and broad-spectrum activity of capsid-binding pyrazolo[3,4-d]pyrimidines against rhinoviruses. Antiviral Res. 2024, 231, 105993. [Google Scholar] [CrossRef]
- Bernetti, M.; Bosio, S.; Bresciani, V.; Falchi, F.; Masetti, M. Probing allosteric communication with combined molecular dynamics simulations and network analysis. Curr. Opin. Struct. Biol. 2024, 86, 102820. [Google Scholar] [CrossRef]
- Senn, H.M.; Thiel, W. QM/MM Methods for Biomolecular Systems. Angew. Chem Int. Ed. 2009, 48, 1198–1229. [Google Scholar] [CrossRef]
- Clemente, C.M.; Capece, L.; Martí, M.A. Best Practices on QM/MM Simulations of Biological Systems. J. Chem. Inf. Model. 2023, 63, 2609–2627. [Google Scholar] [CrossRef]
- Khrenova, M.G.; Mulashkina, T.I.; Kulakova, A.M.; Polyakov, I.V.; Nemukhin, A.V. Computer Modeling of the Mechanisms of Enzymatic Reactions: Lessons from 20 Years of Practice. Mosc. Univ. Chem. Bull. 2024, 79, 86–92. [Google Scholar] [CrossRef]
- Rossetti, G.; Mandelli, D. How exascale computing can shape drug design: A perspective from multiscale QM/MM molecular dynamics simulations and machine learning-aided enhanced sampling algorithms. Curr. Opin. Struct. Biol. 2024, 86, 102814. [Google Scholar] [CrossRef] [PubMed]
- Pederson, J.P.; McDaniel, J.G. PyDFT-QMMM: A modular, extensible software framework for DFT-based QM/MM molecular dynamics. J. Chem. Phys. 2024, 161, 034103. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.C.R.; Bernardi, R.C.; Rudack, T.; Scheurer, M.; Riplinger, C.; Phillips, J.C.; Maia, J.D.C.; Rocha, G.B.; Ribeiro, J.V.; Stone, J.E.; et al. NAMD goes quantum: An integrative suite for hybrid simulations. Nat. Methods 2018, 15, 351–354. [Google Scholar] [CrossRef]
- Böselt, L.; Thürlemann, M.; Riniker, S. Machine Learning in QM/MM Molecular Dynamics Simulations of Condensed-Phase Systems. J. Chem. Theory Comput. 2021, 17, 2641–2658. [Google Scholar] [CrossRef]
- Li, C.; Chan, G.K.-L. Accurate QM/MM Molecular Dynamics for Periodic Systems in GPU4PySCF with Applications to Enzyme Catalysis. J. Chem. Theory Comput. 2025, 21, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Fang, D.; Ito, S.; Okamoto, Y.; Ovchinnikov, V.; Cui, Q. QM/MM free energy simulations: Recent progress and challenges. Mol. Simul. 2016, 42, 1056–1078. [Google Scholar] [CrossRef]
- Yagi, K.; Gunst, K.; Shiozaki, T.; Sugita, Y. High-performance QM/MM Enhanced Sampling Molecular Dynamics Simulations with GENESIS SPDYN and QSimulate-QM. J. Chem. Theory Comput. 2025, 21, 4016–4029. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Li, Y.; Zhang, Y. Born–Oppenheimer Ab Initio QM/MM Molecular Dynamics Simulations of Enzyme Reactions. Methods Enzymol. 2016, 577, 105–118. [Google Scholar] [CrossRef]
- Neves, R.P.P.; Fernandes, P.A.; Ramos, M.J. Role of Enzyme and Active Site Conformational Dynamics in the Catalysis by α-Amylase Explored with QM/MM Molecular Dynamics. J. Chem. Inf. Model. 2022, 62, 3638–3650. [Google Scholar] [CrossRef]
- Polyakov, I.V.; Meteleshko, Y.I.; Mulashkina, T.I.; Varentsov, M.I.; Krinitskiy, M.A.; Khrenova, M.G. Substrate Activation Efficiency in Active Sites of Hydrolases Determined by QM/MM Molecular Dynamics and Neural Networks. Int. J. Mol. Sci. 2025, 26, 5097. [Google Scholar] [CrossRef] [PubMed]
- Bertoline, L.M.F.; Lima, A.N.; Krieger, J.E.; Teixeira, S.K. Before and after AlphaFold2: An overview of protein structure prediction. Front. Bioinforma. 2023, 3, 1120370. [Google Scholar] [CrossRef] [PubMed]
- AlphaFold3 — why did Nature publish it without its code? Nature 2024, 629, 728. [CrossRef] [PubMed]
- Serebrennikova, M.; Grafskaia, E.; Maltsev, D.; Ivanova, K.; Bashkirov, P.; Kornilov, F.; Volynsky, P.; Efremov, R.; Bocharov, E.; Lazarev, V. TriplEP-CPP: Algorithm for Predicting the Properties of Peptide Sequences. Int. J. Mol. Sci. 2024, 25, 6869. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khrenova, M.G. Special Issue: “Advanced Research on Molecular Modeling of Protein Structure and Functions”. Int. J. Mol. Sci. 2025, 26, 7916. https://doi.org/10.3390/ijms26167916
Khrenova MG. Special Issue: “Advanced Research on Molecular Modeling of Protein Structure and Functions”. International Journal of Molecular Sciences. 2025; 26(16):7916. https://doi.org/10.3390/ijms26167916
Chicago/Turabian StyleKhrenova, Maria G. 2025. "Special Issue: “Advanced Research on Molecular Modeling of Protein Structure and Functions”" International Journal of Molecular Sciences 26, no. 16: 7916. https://doi.org/10.3390/ijms26167916
APA StyleKhrenova, M. G. (2025). Special Issue: “Advanced Research on Molecular Modeling of Protein Structure and Functions”. International Journal of Molecular Sciences, 26(16), 7916. https://doi.org/10.3390/ijms26167916