Exploring a Therapeutic Gold Mine: The Antifungal Potential of the Gold-Based Antirheumatic Drug Auranofin
Abstract
1. Introduction
2. Methodology
3. Auranofin: Chemistry and Pharmacology
3.1. Notes on Auranofin Chemistry
3.2. Pharmacology of Auranofin
4. Antifungal Activities of Auranofin
4.1. Antifungal Activities of Auranofin–WHO Critical- and High-Priority Group Pathogens
Pathogen(s) (Priority) | Activity | Mechanism(s) | Ref. | ||
---|---|---|---|---|---|
In Vitro | In Vivo | Combinations | |||
C. albicans (critical) | Antibiofilm (IC50 = 5.1 µM for preformed, 6.1 µM for newly forming biofilms), more active than AmB 1 (IC50 = 7.5 µM) and nystatin (IC50 = 8.9 µM) | - | - | - | [72] |
C. albicans (critical) | Antibiofilm against mixed biofilms (S. aureus/C. albicans) on PU catheters | Antibiofilm against mixed biofilms on auranofin-coated catheter (10 mg/mL) in a murine subcutaneous model | - | - | [74] |
C. albicans (critical) | Antifungal (MIC = 0.061–0.68 µg/mL, MIC0.3 = 0.07–0.08 µg/mL) | - | - | - | [75] |
C. albicans (critical) | Antifungal (MIC = 0.25–1 µg/mL), active against fluconazole-resistant strain | - | - | - | [77] |
C. albicans (critical) | Antifungal (MIC = 3.9–15.6 µg/mL, MIC = 125 µg/mL in a resistant strain) | - | Synergy with pentamidine (MIC = 0.9–2.0 µg/mL for auranofin), sensitization of a resistant strain (MIC = 31.3 µg/mL for auranofin), hemocompatible | Increased gold uptake, leaky cell membranes by pentamidine | [81] |
C. auris (critical) | Fungistatic, antibiofilm (128 µg/mL) | Increased survival in infected T. molitor (128 µg/mL as single agent, 32 µg/mL in combination with 8 µg/mL pentamidine) | Synergy with pentamidine | Leaky fungal membranes by pentamidine, mitochondrial damage | [82] |
Candida spp. (critical/high) | Antifungal (MIC ~ 2 µg/mL for C. albicans, 0.25–1 µg/mL for C. glabrata, 0.125–0.5 µg/mL for C. tropicalis) | - | - | - | [76] |
Candida spp. (critical/high) | Antifungal (MIC = 1–16 µg/mL for C. albicans, 8 µg/mL for C. glabrata, 4–16 µg/mL for C. tropicalis, 4 µg/mL for C. parapsilosis), antibiofilm (C. albicans) | - | - | Mia40 inhibition, interference with mitochondrial protein import 3 | [78] |
C. neoformans (critical) | Antifungal (MIC = 0.5–8 µg/mL) | - | Additive effects with diamide, H2O2, fluconazole or AmB 1 | Assumed targeting of the cryptococcal thioredoxin system | [76] |
C. neoformans (critical) | Antifungal (MIC = 1–2 µg/mL) | - | - | - | [77] |
C. neoformans (critical) | Antifungal (MIC = 0.5–4 µg/mL) | Active (8 µg/mL) against C. neoformans NR-41292 in C. elegans | - | Mia40 inhibition, interference with mitochondrial protein import 3 | [78] |
C. neoformans (critical) | Antifungal (MIC90 = 2–4 µg/mL) | - | - | - | [83] |
A. fumigatus (critical) | Antifungal (MIC = 2–4 µg/mL) | - | - | - | [77] |
A. fumigatus (critical) | Antifungal, fungicidal, antibiofilm | - | Synergy with AmB 1 and ITZ 2 in ITZ-resistant A. fumigatus | SomA and MedA suppression, AfTrxR inhibition and downregulation | [84] |
M. mycetomatis (high) | Antifungal (IC50 = 11.2–17.1 µM, IC90 = 15.0–45.8 µM) | - | - | - | [87] |
H. capsulatum (high) | Antifungal (MIC100 = 1.25–5 µM), fungicidal (MFC/minimal fungicidal concentration = 2.5–5 µM) | Active (5.7 mg/kg) in infected T. molitor | Synergy with AmB 1 | Reduced fungal cell size, modulation of virulence genes (Hsp70 down, TrxR up) | [93] |
4.2. Antifungal Activities of Auranofin–WHO Medium-Priority Group Pathogens and Others
Pathogen(s) (Priority) | Activity | Mechanism(s) | Ref. | |
---|---|---|---|---|
In Vitro | Combinations | |||
C. krusei (medium) | Antifungal (MIC = 0.5 µg/mL) | - | - | [77] |
C. dubliniensis (not listed) | Antifungal (MIC = 0.62–0.68 µg/mL and MIC0.3 = 0.04 µg/mL) | - | - | [75] |
S. cerevisiae (not listed) | Fungicidal | - | Pos5 NADH kinase inhibition, suppression of cell respiration | [80] |
C. gatti (medium) | Antifungal (MIC = 0.5–8 µg/mL) | - | Mia40 inhibition, interference with mitochondrial protein import 2 | [78] |
C. gatti (medium) | Antifungal (MIC90 = 2 µg/mL) | - | - | [83] |
B. dermatitidis (not listed) | Antifungal (80% inhibition at 1–2 µg/mL) | - | - | [77] |
S. apiospermum, L. prolificans (medium) | Antifungal (MIC = 1–4 µg/mL for S. apiospermum and 2–8 µg/mL for L. prolificans) | - | - | [77] |
S. aurantiacum, S. boydii, S. apiospermum, S. dehoogii, L. prolificans (medium) | Antifungal (MIC80 = 5 µM), antibiofilm (preformed biofilms of S. aurantiacum, S. dehoogii, L. prolificans) | Synergy with caspofungin (S. aurantiacum) | Changes in the fungal surface | [94] |
S. apiospermum, S. aurantiacum, S. boydii, S. dehoogii, S. minutisporum, L. prolificans (medium) | Antifungal (MIC = 1–8 µg/mL for Scedosporium spp. and 2–8 µg/mL for L. prolificans), better MIC80 values than voriconazole and posaconazole | Additive effects with honokiol and voriconazole (mainly in S. aurantiacum and L. prolificans) | Sensitization of fungal cells to ROS, moderate S. apiospermum TrxR inhibition | [95] |
C. carrionii, E. dermatitidis, E. jeanselmei, F. pedrosoi, F. monophora, F. nubica, P. verrucosa, R. similis (not listed) | Antifungal (MIC100 = 1.25–2.5 µM), fungicidal (MFC = 2.5 µM in P. verrucosa and E. dermatitidis) | Synergy with ITZ 1 in C. carrionii | - | [98] |
C. posadasii (medium) | Antifungal (MIC = 9.54 µM, 6.47 µg/mL) | - | - | [99] |
4.3. Critical Evaluation of the Antifungal Activities of Auranofin
5. Antifungal Mechanisms of Auranofin and Development of New Gold Complexes
5.1. Auranofin Antifungal Targets and Mechanisms of Action
5.1.1. Thioredoxin Reductase and ROS
5.1.2. Mitochondrial Targets in Yeasts
5.1.3. Chaperones
5.1.4. Host-Directed Anti-Inflammatory Effects–Hypothetic Targets for Antifungal Auranofin
5.1.5. Drug Uptake in Fungal Cells–Opportunity for Combination Therapies
5.2. Emerging Antifungal Gold Complexes
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AmB | Amphotericin B |
ART | Antiretroviral therapy |
CLSI | Clinical and Laboratory Standards Institute |
CO-ADD | Community for Open Antimicrobial Drug Discovery |
COX-2 | Cyclooxygenase-2 |
CTZ | Clotrimazole |
DHODH | Dihydroorotate dehydrogenase |
DLC | Delocalized lipophilic cation |
DNDi | Drugs for Neglected Diseases initiative |
Erv1 | Essential for respiratory growth and viability 1 |
EUCAST | European Committee of Antimicrobial Susceptibility Testing |
GPI | Glycosylphosphatidylinositol |
Gwt1 | Glycosylphosphatidylinositol-anchored wall protein transfer 1 |
HDAC | Histone deacetylase |
Hsp | Heat-shock protein |
IKK | IκB kinase |
IMS | Intermembrane space (in mitochondria) |
ITZ | Itraconazole |
KTZ | Ketoconazole |
MIC | Minimal inhibitory concentration (usually for inhibition of ≥ 50%) |
MIC80 | MIC for ≥ 80% inhibition |
MIC90 | MIC for 90% inhibition |
MIC100 | MIC for 100% inhibition |
MIC0.3 | MIC for ≥ 30% inhibition |
MFC | Minimal fungicidal concentration |
Mia40 | Mitochondrial IMS import and assembly pathway 40 kDa |
MMV | Medicines for Malaria Venture |
MycetOS | Mycetoma Open Science |
NAFLD | Non-alcoholic fatty liver disease |
NHC | N-heterocyclic carbene |
NF-κB | Nuclear factor-κB |
NK cells | Natural killer cells |
NOS | Nitric oxide synthase |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
NTD | Neglected tropical disease |
PEG | Polyethylene glycol |
PLGA | Poly(lactic-co-glycolic) acid |
Pos5 | Peroxide sensitive 5 |
PU | Polyurethane |
RA | Rheumatoid arthritis |
RANKL | Receptor activator of NF-κB ligand |
ROS | Reactive oxygen species |
Tim | Translocase of the inner membrane |
Tom | Translocase of the outer membrane |
Trr | Thioredoxin reductase (in fungi) |
TrxR | Thioredoxin reductase (general) |
UPS | Ubiquitin-proteasome system |
WHO | World Health Organization |
References
- Kainz, K.; Bauer, M.A.; Madeo, F.; Carmona-Gutierrez, D. Fungal infections in humans: The silent crisis. Microb. Cell 2020, 7, 143–145. [Google Scholar] [CrossRef]
- Queiroz-Telles, F.; Fahal, A.H.; Falci, D.R.; Caceres, D.H.; Chiller, T.; Pasqualotto, A.C. Neglected endemic mycoses. Lancet Infect. Dis. 2017, 17, e367–e377. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol. 2010, 36, 1–53. [Google Scholar] [CrossRef]
- Mudenda, S. Global burden of fungal infections and antifungal resistance from 1961 to 2024: Findings and future implications. Pharmacol. Pharm. 2024, 15, 81–112. [Google Scholar] [CrossRef]
- Carmo, A.; Rocha, M.; Pereirinha, P.; Tomé, R.; Costa, E. Antifungals: From pharmacokinetics to clinical practice. Antibiotics 2023, 12, 884. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Patterson, T.F. Multidrug-resistant Candida: Epidemiology, molecular mechanisms, and treatment. J. Infect. Dis. 2017, 216, S445–S451. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Nosanchuk, J.D. Fungal diseases as neglected pathogens: A wake-up call to public health officials. PLoS Negl. Trop. Dis. 2020, 14, e0007964. [Google Scholar] [CrossRef] [PubMed]
- Mycetoma. Available online: https://dndi.org/diseases/mycetoma/ (accessed on 3 April 2025).
- de Oliveira, H.C.; Bezerra, B.T.; Rodrigues, M.L. Antifungal development and the urgency of minimizing the impact of fungal diseases on public health. ACS Bio. Med. Chem. Au 2023, 3, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Rouges, C.; Asad, M.; Laurent, A.D.; Marchand, P.; Le Pape, P. Is the C-terminal domain an effective and selective target for the design of Hsp90 inhibitors against Candida yeast? Microorganisms 2023, 11, 2837. [Google Scholar] [CrossRef]
- Das, S.; Goswami, A.M.; Saha, T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb. Pathog. 2022, 164, 105418. [Google Scholar] [CrossRef]
- Van Daele, R.; Spriet, I.; Wauters, J.; Maertens, J.; Mercier, T.; Van Hecke, S.; Brüggemann, R. Antifungal drugs: What brings the future? Med. Mycol. 2019, 57, S328–S343. [Google Scholar] [CrossRef]
- Gintjee, T.J.; Donnelley, M.A.; Thompson III, G.R. Aspiring antifungals: Review of current antifungal pipeline developments. J. Fungi 2020, 6, 28. [Google Scholar] [CrossRef]
- Jampilek, J. Novel avenues for identification of new antifungal drugs and current challenges. Expert Opin. Drug Discov. 2022, 17, 949–968. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, J.; Pinto, E.; Sousa, E.; Resende, D.I.S.P. Redefining antifungal treatment: The innovation of metal-based compounds. J. Med. Chem. 2025, 68, 5006–5023. [Google Scholar] [CrossRef]
- Wang, H.-H.; Su, C.-H.; Wu, Y.-J.; Lin, C.-A.J.; Lee, C.-H.; Shen, J.-L.; Chan, W.-H.; Chang, W.H.; Yeh, H.-I. Application of gold in biomedicine: Past, present and future. Int. J. Gerontol. 2012, 6, 1–4. [Google Scholar] [CrossRef]
- Sinha, N.; Singh, K.B.; Ojha, N.K.; Tiwari, S.K. Use of gold in human health and diseases: Research updates. J. Ayurveda Holist. Med. 2018, 6, 52–68. [Google Scholar]
- Meena, R.K.; Singhal, H.K.; Vyas, P.P. Suvarnaprashan: An Ayurvedic immune booster. Nat. Ayurvedic Med. 2021, 5, 000325. [Google Scholar]
- Higby, G.J. Gold in medicine: A review of its use in the West before 1900. Gold Bull. 1982, 15, 130–140. [Google Scholar] [CrossRef]
- Glidewell, C. Ancient and medieval Chinese protochemistry: The earliest examples of applied inorganic chemistry. J. Chem. Educ. 1989, 66, 631. [Google Scholar] [CrossRef]
- Kaim, W.; Schwederski, B. Bioanorganische Chemie, 2nd ed.; B.G. Teubner: Stuttgart, Germany, 1995; p. 380. [Google Scholar]
- Heliövaara, E.; Liljeqvist, H.; Muuronen, M.; Eronen, A.; Moslova, K.; Repo, T. Cooperative ligands in dissolution of gold. Chem. Eur. J. 2021, 27, 8668–8672. [Google Scholar] [CrossRef] [PubMed]
- Zupanc, A.; Install, J.; Jereb, M.; Repo, T. Sustainable and selective modern methods of noble metal recycling. Angew. Chem. Int. Ed. 2023, 62, e202214453. [Google Scholar] [CrossRef]
- Kean, W.F.; Kean, I.R.L. Clinical pharmacology of gold. Inflammopharmacology 2008, 16, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Keers, R.Y. The gold rush 1925–35. Thorax 1980, 35, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Forestier, J. L’Aurothérapie dans les rhumatismes chroniques. Ann. Med. Interne 1929, 54, 232–237. [Google Scholar]
- Forestier, J. Rheumatoid arthritis and its treatment by gold salts. Lancet 1934, 224, 646–648. [Google Scholar] [CrossRef]
- Shaw, C.F., III. Gold-based therapeutic agents. Chem. Rev. 1999, 99, 2589–2600. [Google Scholar] [CrossRef]
- Biersack, B.; Ahmad, A.; Sarkar, F.H.; Schobert, R. Coinage metal complexes against breast cancer. Curr. Med. Chem. 2012, 19, 3949–3956. [Google Scholar] [CrossRef]
- Balfourier, A.; Kolosnjaj-Tabi, J.; Luciani, N.; Carn, F.; Gazeau, F. Gold-based therapy: From past to present. Proc. Natl. Acad. Sci. USA 2020, 117, 22639–22648. [Google Scholar] [CrossRef]
- Sutton, B.M.; McGusty, E.; Walz, D.T.; DiMartino, M.J. Oral gold. Antiarthritic properties of alkylphosphinegold coordination complexes. J. Med. Chem. 1972, 15, 1095. [Google Scholar] [CrossRef]
- Roder, C.; Thomson, M.J. Auranofin: Repurposing an old drug for a golden new age. Drugs R D 2015, 15, 13–20. [Google Scholar] [CrossRef]
- Yamashita, M. Auranofin: Past to present, and repurposing. Int. Immunopharmacol. 2021, 101, 108272. [Google Scholar] [CrossRef]
- Arojojoye, A.S.; Awuah, S.G. Functional utility of gold complexes with phosphorus donor ligands in biological systems. Coord. Chem. Rev. 2025, 522, 216208. [Google Scholar] [CrossRef]
- Gamberi, T.; Chiappetta, G.; Fiaschi, T.; Modesti, A.; Sorbi, F.; Magherini, F. Upgrade of an old drug: Auranofin in innovative cancer therapies to overcome drug resistance and to increase drug effectiveness. Med. Res. Rev. 2022, 42, 1111–1146. [Google Scholar] [CrossRef] [PubMed]
- Massai, L.; Cirri, D.; Marzo, T.; Messori, L. Auranofin and its analogs as prospective agents for the treatment of colorectal cancer. Cancer Drug Resist. 2022, 5, 1–14. [Google Scholar] [CrossRef]
- Coscione, F.; Zineddu, S.; Vitali, V.; Fondi, M.; Messori, L.; Perrin, E. The many lives of auranofin: How an old anti-rheumatic agent may become a promising antimicrobial drug. Antibiotics 2024, 13, 652. [Google Scholar] [CrossRef]
- Chen, X.; Lv, L.; Wei, S.; Liu, W. The antimicrobial activity of auranofin and other gold complexes. Future Med. Chem. 2025, 17, 263–265. [Google Scholar] [CrossRef]
- Sonzogni-Desautels, K.; Ndao, M. Will auranofin become a golden new treatment against COVID-19? Front. Immunol. 2021, 12, 683694. [Google Scholar] [CrossRef] [PubMed]
- Hemmert, C.; Gornitzka, H.; Deraeve, C.; Stigliani, J.-L. Current state of the art of gold complexes as antileishmanial agents. Coord. Chem. Rev. 2025, 528, 216408. [Google Scholar] [CrossRef]
- Feng, L.; Pomel, S.; de Late, P.L.; Taravaud, A.; Loiseau, P.M.; Maes, L.; Cho-Ngwa, F.; Bulman, C.A.; Fischer, C.; Sakanari, J.A.; et al. Repurposing auranofin and evaluation of a new gold(I) compound for the search of treatment of human and cattle parasitic diseases: From protozoa to helminth infections. Molecules 2020, 25, 5075. [Google Scholar] [CrossRef] [PubMed]
- Laila, U.E.; Zhao, Z.; Xu, D.-Y.; Liu, H.; Xu, Z.-X. Pharmacological advances and therapeutic applications of niclosamide in cancer and other diseases. Eur. J. Med. Chem. 2025, 290, 117527. [Google Scholar] [CrossRef]
- de Lima e Silva, A.A.; Rio-Tinto, A. Ebselen: A promising repurposing drug to treat infections caused by multidrug-resistant microorganisms. Interdiscip. Perspect. Infect. Dis. 2024, 2024, 9109041. [Google Scholar] [CrossRef]
- Custodio, M.M.; Sparks, J.; Long, T. Disulfiram: A repurposed drug in preclinical and clinical development for the treatment of infectious diseases. Anti-Infect. Agents 2022, 20, e040122199856. [Google Scholar] [CrossRef]
- Shanholtzer, C.N.; Rice, C.; Watson, K.; Carreon, H.; Long, T.E. Effect of copper on the antifungal activity of disulfiram (Antabuse®) in fluconazole-resistant Candida strains. Med. Mycol. 2022, 60, myac016. [Google Scholar] [CrossRef]
- Ziemniak, M.; Trzybiński, D.; Pawlędzio, S.; Filipowicz, G.; Pająk-Tarnacka, B.; Priebe, W.; Woźniak, K. Crystal structure and polymorphic forms of auranofin revisited. RSC Adv. 2025, 15, 10378. [Google Scholar] [CrossRef]
- Wu, B.; Yang, X.; Yan, M. Synthesis and structure-activity relationship study of antimicrobial auranofin against ESKAPE pathogens. J. Med. Chem. 2019, 62, 7751–7768. [Google Scholar] [CrossRef] [PubMed]
- Whistler, R.L.; Wolfrom, M.L.; BeMiller, J.N. Reactions of Carbohydrates. In Methods in Carbohydrate Chemistry, 2nd ed.; Academic Press: New York, NY, USA; London, UK, 1963; p. 435. [Google Scholar]
- Walz, D.T.; DiMartino, M.J.; Sutton, B.M.; Misher, A. SK&F 36914—An agent for oral chrysotherapy. J. Pharmacol. Exp. Ther. 1972, 181, 292–297. [Google Scholar]
- Zoppi, C.; Messori, L.; Pratesi, A. ESI MS studies highlight the selective interaction of auranofin with protein free thiols. Dalton Trans. 2020, 49, 5906–5913. [Google Scholar] [CrossRef]
- dos Santos, H.F. Reactivity of auranofin with S-, Se- and N-containing amino acids. Comput. Theoret. Chem. 2014, 1048, 95–101. [Google Scholar] [CrossRef]
- Hill, D.T.; Isab, A.A.; Griswold, D.E.; DiMartino, M.J.; Matz, E.D.; Figueroa, A.L.; Wawro, J.E.; DeBrosse, C.; Reiff, W.M.; Elder, R.C.; et al. Seleno-auranofin (Et3PAuSe-tagl): Synthesis, spectroscopic (EXAFS, 197Au Mössbauer, 31P, 1H, 13C, and 77Se NMR, ESI-MS) characterization, biological activity, and rapid serum albumin-induced triethylphosphine oxide generation. Inorg. Chem. 2010, 49, 7663–7675. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.I.; Tirtorahardjo, J.A.; Schweizer, S.S.; Zhang, J.; Fang, Z.; Xing, L.; Xu, M.; Herman, D.A.; Kleinman, M.T.; McCullough, B.S.; et al. Gold(I) ion and the phosphine ligand are necessary for the anti-Toxoplasma gondii activity of auranofin. Microbiol. Spectr. 2024, 12, e0296823. [Google Scholar] [CrossRef] [PubMed]
- Walz, D.T.; DiMartino, M.J.; Griswold, D.E.; Intoccia, A.P.; Flanagan, T.L. Biologic actions and pharmacokinetic studies of auranofin. Am. J. Med. 1983, 75, 90–108. [Google Scholar] [CrossRef]
- Kim, H.Y.; Otgontenger, U.; Kim, J.-W.; Lee, Y.J.; Kim, S.-B.; Lim, S.C.; Kim, Y.-M.; Kang, K.W. Anti-fibrotic effect of aurocyanide, the active metabolite of auranofin. Arch. Pharm. Res. 2023, 46, 149–159. [Google Scholar] [CrossRef]
- Shaw, G.F., III; Schraa, S.; Gleichmann, E.; Grover, Y.P.; Dunemann, L.; Jagarlamudi, A. Redox chemistry and [Au(CN)2−] in the formation of gold metabolites. Met. Based Drugs 1994, 1, 351–362. [Google Scholar] [CrossRef]
- Salmerton, G.; Lipsky, P.E. Effect of gold compounds on human mononuclear phagocyte function. In Modern Aspects of Gold Therapy; Schattenkirchner, M., Muller, W., Eds.; Karger: Basel, Switzerland, 1983; pp. 63–74. [Google Scholar]
- Yue, S.; Luo, M.; Liu, H.; Wei, S. Recent advances of gold compounds in anticancer immunity. Front. Chem. 2020, 8, 543. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.-I.; Byun, M.-S.; Jue, D.-M. Gold compound auranofin inhibits IκB kinase (IKK) by modifying Cys-179 of IKKβ subunit. Exp. Mol. Med. 2003, 35, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Espina, J.; Blanco-González, E.; Montes-Bayón, M.; Sanz-Medel, A. HPLC-ICP-MS for simultaneous quantification of the total and active form of the thioredoxin reductase enzyme in human serum using auranofin as an activity-based probe. J. Anal. At. Spectrom. 2016, 31, 1895–1903. [Google Scholar] [CrossRef]
- Roberts, J.R.; Xiao, J.; Schliesman, B.; Parsons, D.J.; Shaw, C.F. Kinetics and mechanism of the reaction between serum albumin and auranofin (and its isopropyl analogue) in vitro. Inorg. Chem. 1996, 35, 424–433. [Google Scholar] [CrossRef]
- Dabrowiak, J.C. Metals in Medicine; John Wiley & Sons: Chichester, UK, 2009; pp. 191–217. [Google Scholar]
- Halatsch, M.-E.; Kast, R.E.; Karpel-Massler, G.; Mayer, B.; Zolk, O.; Schmitz, B.; Scheuerle, A.; Maier, L.; Bullinger, L.; Mayer-Steinacker, R.; et al. A phase Ib/IIa trial of 9 repurposed drugs combined with temozolomide for the treatment of recurrent glioblastoma: CUSP9v3. Neuro-Oncol. Adv. 2021, 3, 1–11. [Google Scholar] [CrossRef]
- Diaz, R.S.; Shytaj, I.L.; Giron, L.B.; Obermaier, B.; della Libera, E., Jr.; Galinskas, J.; Dias, D.; Hunter, J.; Janini, M.; Gosuen, G.; et al. Potential impact of the antirheumatic agent auranofin on proviral HIV-1 DNA in individuals under intensified antiretroviral therapy: Results from a randomised clinical trial. Int. J. Antimicrob. Agents 2019, 54, 592–600. [Google Scholar] [CrossRef]
- Capparelli, E.V.; Bricker-Ford, R.; Rogers, M.J.; McKerrow, J.H.; Reed, S.L. Phase I clinical trial results of auranofin, a novel antiparasitic agent. Antimicrob. Agents Chemother. 2017, 61, e01947-16. [Google Scholar] [CrossRef]
- Wallis, R.S.; Ginindza, S.; Beattie, T.; Arjun, N.; Likoti, M.; Edward, V.A.; Rassool, M.; Ahmed, K.; Fielding, K.; Ahidjo, B.A.; et al. Adjunctive host-directed therapies for pulmonary tuberculosis: A prospective, open-label, phase 2, randomised controlled trial. Lancet Respir. Med. 2021, 9, 897–908. [Google Scholar] [CrossRef]
- Mourad, A.; Perfect, J.R. Tolerability profile of the current antifungal armoury. J. Antimicrob. Chemother. 2018, 73, i26–i32. [Google Scholar] [CrossRef]
- Casalini, G.; Giacomelli, A.; Antinori, S. The WHO fungal priority pathogens list: A crucial reappraisal to review the prioritisation. Lancet Microbe 2024, 5, 717–724. [Google Scholar] [CrossRef]
- Ratia, C.; Soengas, R.G.; Soto, S.M. Gold-derived molecules as new antimicrobial agents. Front. Microbiol. 2022, 13, 846959. [Google Scholar] [CrossRef]
- Novelli, F.; Recine, M.; Sparatore, F.; Juliano, C. Gold(I) complexes as antimicrobial agents. Il Farmaco 1999, 54, 232–236. [Google Scholar] [CrossRef]
- Parish, R.V. Biologically-active gold(III) complexes. Met. Based Drugs 1999, 6, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Siles, S.A.; Srinivasan, A.; Pierce, C.G.; Lopez-Ribot, J.L.; Ramasubramanian, A.K. High-throughput screening of a collection of known pharmacologically active small compounds for identification of Candida albicans biofilm inhibitors. Antimicrob. Agents Chemother. 2013, 57, 3681–3687. [Google Scholar] [CrossRef] [PubMed]
- She, P.; Liu, Y.; Wang, Y.; Tan, Y.; Tan, F.; Luo, Z.; Wu, Y. Antibiofilm efficacy of the gold compound auranofin on dual species biofilms of Staphylococcus aureus and Candida sp. J. Appl. Microbiol. 2020, 128, 88–101. [Google Scholar] [CrossRef]
- Felix, L.O.; Whitely, C.; Tharmalingam, N.; Mishra, B.; Vera-Gonzalez, N.; Mylonakis, E.; Shukla, A.; Fuchs, B.B. Auranofin coated catheters inhibit bacterial and fungal biofilms in a murine subcutaneous model. Front. Cell. Infect. Microbiol. 2023, 13, 1135942. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, M.; Kulesskiy, E.; Lopes, J.P.; Granlund, M.; Wennerberg, K.; Urban, C.F. Antifungal application of nonantifungal drugs. Antimicrob. Agents Chemother. 2014, 58, 1055–1062. [Google Scholar] [CrossRef]
- Fuchs, B.B.; RajaMuthiah, R.; Souza, A.C.R.; Eatemadpour, S.; Rossoni, R.D.; Santos, D.A.; Junqueira, J.C.; Rice, L.B.; Mylonakis, E. Inhibition of bacterial and fungal pathogens by the orphaned drug auranofin. Future Med. Chem. 2016, 8, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Wiederhold, N.P.; Patterson, T.F.; Srinivasan, A.; Chaturvedi, A.K.; Fothergill, A.W.; Wormley, F.L.; Ramasubramanian, A.K.; Lopez-Ribot, J.L. Repurposing auranofin as an antifungal: In vitro activity against a variety of medically important fungi. Virulence 2017, 8, 138–142. [Google Scholar] [CrossRef]
- Thangamani, S.; Maland, M.; Mohammad, H.; Pascuzzi, P.E.; Avramova, L.; Koehler, C.M.; Hazbun, T.R.; Seleem, M.N. Repurposing approach identifies auranofin with broad spectrum antifungal activity that targets Mia40-Erv1 pathway. Front. Cell. Infect. Microbiol. 2017, 7, 4. [Google Scholar] [CrossRef]
- Mesecke, N.; Terziyska, N.; Kozany, C.; Baumann, F.; Neupert, W.; Hell, K.; Herrmann, J.M. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 2005, 121, 1059–1069. [Google Scholar] [CrossRef]
- Gamberi, T.; Fiaschi, T.; Modesti, A.; Massai, L.; Messori, L.; Balzi, M.; Magherini, F. Evidence that the antiproliferative effects of auranofin in Saccharomyces cerevisiae arise from inhibition of mitochondrial respiration. Int. J. Biochem. Cell Biol. 2015, 65, 61–71. [Google Scholar] [CrossRef]
- Lin, J.; Xiao, X.; Liang, Y.; Zhao, H.; Yu, Y.; Yuan, P.; Lu, S.; Ding, X. Repurposing non-antifungal drugs auranofin and pentamidine in combination as fungistatic antifungal agents against C. albicans. Front. Cell. Infect. Microbiol. 2022, 12, 1065962. [Google Scholar] [CrossRef]
- Retore, Y.I.; Lucini, F.; Simionatto, S.; Rossato, L. Synergistic antifungal activity of pentamidine and auranofin against multidrug-resistant Candida auris. Mycopathologia 2025, 190, 41. [Google Scholar] [CrossRef]
- Rossi, S.A.; de Oliveira, H.C.; Agreda-Mellon, D.; Lucio, J.; Mendes-Giannini, M.J.S.; García-Cambero, J.P.; Zaragoza, O. Identification of off-patent drugs that show synergism with amphotericin B or that present antifungal action against Cryptococcus neoformans and Candida spp. Antimicrob. Agents Chemother. 2020, 64, e01921-19. [Google Scholar] [CrossRef]
- Chen, P.; Yang, J.; Jin, Y.; Lu, C.; Feng, Z.; Gao, F.; Chen, Y.; Wang, F.; Shang, Z.; Lin, W. In vitro antifungal and antibiofilm activities of auranofin against itraconazole-resistant Aspergillus fumigatus. J. Mycol. Med. 2023, 33, 101381. [Google Scholar] [CrossRef] [PubMed]
- van de Sande, W.W.J.; Fahal, A.H. An updated list of eumycetoma causative agents and their differences in grain formation and treatment response. Clin. Microbiol. Rev. 2024, 37, e00034-23. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Cognetii, M.; Burch-Smith, R.; O’Sullivan Mejia, E.; Mirkin, G. Mycetoma: Development of diagnosis and treatment. J. Fungi 2022, 8, 743. [Google Scholar] [CrossRef]
- Mycetoma Open Source/MycetOS. Available online: https://github.com/OpenSourceMycetoma (accessed on 12 April 2025).
- Siddig, E.E.; Verbon, A.; Bakhiet, S.; Fahal, A.H.; van de Sande, W.W.J. The developed molecular biological identification tools for mycetoma causative agents: An update. Acta Trop. 2022, 225, 106205. [Google Scholar] [CrossRef]
- Sampaio, F.M.S.; Wanke, B.; Freitas, D.F.S.; Coelho, J.M.C.d.O.; Galhardo, M.C.G.; Lyra, M.R.; Lourenço, M.C.d.S.; Paes, R.d.A.; do Valle, A.C.F. Review of 21 cases of mycetoma from 1991 to 2014 in Rio de Janeiro, Brazil. PLoS Negl. Trop. Dis. 2017, 11, e0005301. [Google Scholar] [CrossRef]
- Oliveira, F.d.M.; Unis, G.; Hochhegger, B.; Severo, L.C. Scedosporium apiospermum eumycetoma successfully treated with oral voriconazole: Report of a case and review of the Brazilian reports on scedosporiosis. Rev. Inst. Med. Trop. Sao Paulo 2013, 55, 121–123. [Google Scholar] [CrossRef]
- Guerra, B.T.; Almeida-Silva, F.; Almeida-Paes, R.; Basso, R.P.; Bernardes, J.P.R.A.; Almeida, M.A.; Damasceno, L.S.; Xavier, M.O.; Wanke, B.; Zancopé-Oliveira, R.M.; et al. Histoplasmosis outbreaks in Brazil: Lessons to learn about preventing exposure. Mycopathologia 2020, 185, 881–892. [Google Scholar] [CrossRef]
- Capone, D.; Wanke, B.; Monteiro, P.C.; Lazéra, M.S.; Andrade, G.d.N.; do Valle, A.C.; Moreno, A.M.; Londero, A.T. Chronic pulmonary histoplasmosis in the state of Rio de Janeiro, Brazil. Mycopathologia 1999, 145, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.d.A.; Baeza, L.C.; Silva, L.B.R.; Bernardes-Engemann, A.R.; Almeida-Silva, F.; Coelho, R.A.; de Andrade, I.B.; Correa-Junior, D.; Frases, S.; Zancopé-Oliveira, R.M.; et al. Auranofin is active against Histoplasma capsulatum and reduces the expression of virulence-related genes. PLoS Negl. Trop. Dis. 2024, 18, e0012596. [Google Scholar]
- Rollin-Pinheiro, R.; Borba-Santos, L.P.; da Silva Xisto, M.I.D.; de Castro-Almeida, Y.; Rochetti, V.P.; Rozental, S.; Barreto-Bergter, E. Identification of promising antifungal drugs against Scedosporium and Lomentospora species after screening of Pathogen Box library. J. Fungi 2021, 7, 803. [Google Scholar] [CrossRef] [PubMed]
- Yaakoub, H.; Staerck, C.; Mina, S.; Godon, C.; Fleury, M.; Bouchara, J.-P.; Calenda, A. Repurposing of auranofin and honokiol as antifungals against Scedosporium species and the related fungus Lomentospora prolificans. Virulence 2021, 12, 1076–1090. [Google Scholar] [CrossRef]
- Sun, L.; Liao, K.; Wang, D. Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS ONE 2017, 12, e0184003. [Google Scholar] [CrossRef] [PubMed]
- Queiroz-Telles, F.; de Hoog, S.; Santos, D.W.C.L.; Salgado, C.G.; Vicente, V.A.; Bonifaz, A.; Roilides, E.; Xi, L.; Azevedo, C.d.M.P.e.S.; da Silva, M.B.; et al. Chromoblastomycosis. Clin. Microbiol. Rev. 2017, 30, 233–276. [Google Scholar] [CrossRef]
- Coelho, R.A.; Joffe, L.S.; Alves, G.M.; Figueiredo-Carvalho, M.H.G.; Brito-Santos, F.; Amaral, A.C.F.; Rodrigues, M.L.; Almeida-Paes, R. A screening of the MMV Pathogen Box® reveals new potential antifungal drugs against the etiologic agents of chromoblastomycosis. PLoS ONE 2020, 15, e0229630. [Google Scholar] [CrossRef]
- Saeger, S.; West-Jeppson, K.; Liao, Y.-R.; Campuzano, A.; Yu, J.-J.; Lopez-Ribot, J.; Hung, C.-Y. Discovery of novel antifungal drugs via screening repurposing libraries against Coccidioides posadasii spherule initials. mBio 2025, 16, e00205-25. [Google Scholar] [CrossRef]
- Harbut, M.B.; Vilchèze, C.; Luo, X.; Hensler, M.E.; Guo, H.; Yang, B.; Chatterjee, A.K.; Nizet, V.; Jacobs, W.R., Jr.; Schultz, P.G.; et al. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc. Natl. Acad. Sci. USA 2015, 112, 4453–4458. [Google Scholar] [CrossRef]
- Krishnamurthy, N.; Grimshaw, A.A.; Axson, S.A.; Choe, S.H.; Miller, J.E. Drug repurposing: A systematic review on root causes, barriers and facilitators. BMC Health Serv. Res. 2022, 22, 970. [Google Scholar] [CrossRef]
- Pérez-Lloret, M.; Reidy, E.; Lozano-Pérez, A.A.; Marchal, J.A.; Lens, P.N.L.; Ryan, A.E.; Erxleben, A. Auranofin loaded silk fibroin nanoparticles for colorectal cancer treatment. Drug Deliv. Transl. Res. 2025, 15, 1994–2008. [Google Scholar] [CrossRef]
- Menconi, A.; Marzo, T.; Massai, L.; Pratesi, A.; Severi, M.; Petroni, G.; Antonuzzo, L.; Messori, L.; Pillozzi, S.; Cirri, D. Anticancer effects against colorectal cancer models of chloro(triethylphosphine)gold(I) encapsulated in PLGA-PEG nanoparticles. Biometals 2021, 34, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Kushawaha, S.K.; Ashawat, M.S.; Baldi, A. Auranofin-loaded PLGA nanoparticles alleviate cognitive deficit induced by streptozotocin in rats model: Modulation of oxidative stress, neuroinflammatory markers, and neurotransmitters. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 10031–10047. [Google Scholar] [CrossRef] [PubMed]
- Kushawaha, S.K.; Ashawat, M.S.; Arora, R.; Baldi, A. Auranofin-loaded PLGA nanoparticles for neuroprotection against aluminium-induced Alzheimer’s disease. Curr. Pharm. Des. 2025, 31, 1402–1415. [Google Scholar] [CrossRef]
- Zhang, Y.; Miyamoto, Y.; Ihara, S.; Yang, J.Z.; Zuill, D.E.; Angsantikul, P.; Zhang, Q.; Gao, W.; Zhang, L.; Eckmann, L. Composite thermoresponsive hydrogel with auranofin-loaded nanoparticles for topical treatment of vaginal trichomonad infection. Adv. Ther. 2019, 2, 1900157. [Google Scholar] [CrossRef] [PubMed]
- Picheta, N.; Piekarz, J.; Burdan, O.; Satora, M.; Tarkowski, R.; Kułak, K. Phytotherapy of vulvovaginal candidiasis: A narrative review. Int. J. Mol. Sci. 2024, 25, 3796. [Google Scholar] [CrossRef] [PubMed]
- Natsheh, I.Y.; Alsaleh, M.M.; Alkhawaldeh, A.K.; Albadawi, D.K.; Darwish, M.M.; Shammout, M.J.A. The dark side of drug repurposing. From clinical trial challenges to antimicrobial resistance: Analysis based on three major fields. Drug Target Insights 2024, 18, 8–19. [Google Scholar] [CrossRef]
- Locke, J.B.; Pillar, C.M.; Castanheira, M.; Carvalhaes, C.G.; Andes, D.; Aram, J.A.; Andrzejewski, C.; Bartizal, K.; Das, A.F.; Sandison, T.; et al. Outcomes by Candida spp. in the ReSTORE phase 3 trial of rezafungin versus caspofungin for candidemia and/or invasive candidiasis. Antimicrob. Agents Chemother. 2024, 68, e0158423. [Google Scholar] [CrossRef] [PubMed]
- Hoenigl, M.; Sprute, R.; Egger, M.; Arastehfar, A.; Cornely, O.A.; Krause, R.; Lass-Flörl, C.; Prattes, J.; Spec, A.; Thompson, G.R., III; et al. The antifungal pipeline: Fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Drugs 2021, 81, 1703–1729. [Google Scholar] [CrossRef] [PubMed]
- Niño-Vega, G.A.; Padró-Villegas, L.; López-Romero, E. New ground in antifungal discovery and therapy for invasive fungal infections: Innovations, challenges, and future directions. J. Fungi 2024, 10, 871. [Google Scholar] [CrossRef]
- Holmgren, A.; Lu, J. Thioredoxin and thioredoxin reductase: Current research with special reference to human disease. Biochem. Biophys. Res. Commun. 2010, 396, 120–124. [Google Scholar] [CrossRef]
- Machado, A.K.; Morgan, B.A.; Merrill, G.F. Thioredoxin reductase-dependent inhibition of MCB cell cycle box activity in Saccharomyces cerevisiae. J. Biol. Chem. 1997, 272, 17045–17054. [Google Scholar] [CrossRef]
- Pearson, G.D.; Merrill, G.F. Deletion of the Saccharomyces cerevisiae TRR1 gene encoding thioredoxin reductase inhibits p53-dependent reporter gene expression. J. Biol. Chem. 1998, 273, 5431–5434. [Google Scholar] [CrossRef]
- May, H.C.; Yu, J.-J.; Guentzel, M.N.; Chambers, J.P.; Cap, A.P.; Arulanandam, B.P. Repurposing auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. Front. Microbiol. 2018, 9, 336. [Google Scholar] [CrossRef] [PubMed]
- Abadio, A.K.R.; Kioshima, E.S.; Teixeira, M.M.; Martins, N.F.; Maigret, B.; Felipe, M.S.S. Comparative genomics allowed the identification of drug targets against human fungal pathogens. BMC Genom. 2011, 12, 75. [Google Scholar] [CrossRef]
- Misall, T.A.; Lodge, J.K. Thioredoxin reductase is essential for viability in the fungal pathogen Cryptococcus neoformans. Eukaryiot. Cell 2005, 4, 487–489. [Google Scholar] [CrossRef] [PubMed]
- Ianiri, G.; Idnurm, A. Essential gene discovery in the basidiomycete Cryptococcus neoformans for antifungal drug target prioritization. mBio 2015, 6, e02334-14. [Google Scholar] [CrossRef]
- Abadio, A.K.R.; Kioshima, E.S.; Leroux, V.; Martins, N.F.; Maigret, B.; Felipe, M.S.S. Identification of new antifungal compounds targeting thioredoxin reductase of Paracoccidioides genus. PLoS ONE 2015, 10, e0142926. [Google Scholar] [CrossRef] [PubMed]
- Binder, J.; Shadkchan, Y.; Osherov, N.; Krappmann, S. The essential thioredoxin reductase of the human pathogenic mold Aspergillus fumigatus is a promising antifungal target. Front. Microbiol. 2020, 11, 1383. [Google Scholar] [CrossRef]
- Seneviratne, C.J.; Wang, Y.; Jin, L.; Abiko, Y.; Samaranayake, L.P. Candida albicans biofilm formation is associated with increased anti-oxidative capacities. Proteomics 2008, 8, 2936–2947. [Google Scholar] [CrossRef]
- Krishnan, S.; Gupta, K.; Sivaraman, S.; Venkatachalam, P.; Yennamalli, R.M.; Shanmugam, S.R. Waste to drugs: Identification of pyrolysis by-products as antifungal agents against Cryptococcus neoformans. J. Biomol. Struct. Dyn. 2023, 41, 15386–15399. [Google Scholar] [CrossRef]
- Marshall, A.C.; Kidd, S.E.; Lamont-Friedrich, S.J.; Arentz, G.; Hoffmann, P.; Coad, B.R.; Bruning, J.B. Structure, mechanism, and inhibition of Aspergillus fumigatus thioredoxin reductase. Antimicrob. Agents Chemother. 2019, 63, e02281-18. [Google Scholar] [CrossRef]
- Maley, A.M.; Arbiser, J.L. Gentian violet: A 19th century drug re-emerges in the 21st century. Exp. Dermatol. 2013, 22, 775–780. [Google Scholar] [CrossRef]
- de Oliveira, F.F.M.; Paredes, V.; de Sousa, H.R.; Moura, A.N.D.Á.; Riasco-Palacios, J.; Casadevall, A.; Felipe, M.S.S.; Nicola, A.M. Thioredoxin reductase 1 is a highly immunogenic cell surface antigen in Paracoccidioides spp., Candida albicans, and Cryptococcus neoformans. Front. Microbiol. 2020, 10, 2930. [Google Scholar] [CrossRef] [PubMed]
- Gromer, S.; Arscott, L.D.; Williams, C.H., Jr.; Schirmer, R.H.; Becker, K. Human placenta thioredoxin reductase. J. Biol. Chem. 1998, 273, 20096–20101. [Google Scholar] [CrossRef]
- Omata, Y.; Folan, M.; Shaw, M.; Messer, R.L.; Lockwood, P.E.; Hobbs, D.; Bouillaguet, S.; Sano, H.; Lewis, J.B.; Wataha, J.C. Sublethal concentrations of diverse gold compounds inhibit mammalian cytosolic thioredoxin reductase (TrxR1). Toxicol. In Vitro 2006, 20, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Kiebala, M.; Skalska, J.; Casulo, C.; Brookes, P.S.; Peterson, D.R.; Hilchey, S.P.; Dai, Y.; Grant, S.; Maggirwar, S.B.; Bernstein, S.H. Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: A novel synergistic therapeutic approach. Exp. Hematol. 2015, 43, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Raninga, P.V.; di Trapani, G.; Vuckovic, S.; Tonissen, K.F. Cross-talk between two antioxidants, thioredoxin reductase and heme oxygenase-1, and therapeutic implications for multiple myeloma. Redox Biol. 2016, 8, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, Z.; Li, M.; Li, X.; Wong, Y.-S.; Ngai, S.-M.; Zheng, W.; Zhang, Y.; Chen, T. Enhancement of auranofin-induced apoptosis in MCF-7 human breast cells by selenocysteine, a synergistic inhibitor of thioredoxin reductase. PLoS ONE 2013, 8, e53945. [Google Scholar]
- Wang, Y.; Yuan, H.; Fang, R.; Zhang, R.; Wang, W. Unveiling the cytotoxicity of a new gold(I) complex towards hepatocellular carcinoma by inhibiting TrxR activity. Acta Biochim. Biophys. Sin. 2024, 56, 1537–1548. [Google Scholar] [CrossRef]
- Kober, L.; Schleser, S.W.; Bär, S.I.; Schobert, R. Revisiting the anticancer properties of phosphane(9-ribosylpurine-6-thiolato)gold(I) complexes and their 9H-purine precursors. J. Biol. Inorg. Chem. 2022, 27, 731–745. [Google Scholar] [CrossRef]
- Giorgi, E.; Mannelli, M.; Gamberi, T.; Durante, M.; Gabbiani, C.; Cirri, D.; Pratesi, A. Cytotoxic auranofin analogues bearing phosphine, arsine and stibine ligands: A study on the possible role of the ligand on the biological activity. J. Inorg. Biochem. 2024, 251, 112452. [Google Scholar] [CrossRef]
- Thangamani, S.; Mohammad, H.; Abushahba, M.F.N.; Sobreira, T.J.P.; Hedrick, V.E.; Paul, L.N.; Seleem, M.N. Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Sci. Rep. 2016, 6, 22571. [Google Scholar] [CrossRef]
- Alves, R.; Gourlay, C.W. Editorial: Mitochondrial function and dysfunction in pathogenic fungi. Front. Physiol. 2024, 15, 1506684. [Google Scholar] [CrossRef]
- Herrmann, J.M.; Riemer, J. Mitochondrial disulfide relay: Redox-regulated protein import into the intermembrane space. J. Biol. Chem. 2012, 287, 4426–4433. [Google Scholar] [CrossRef]
- Koch, J.R.; Schmid, F.X. Mia40 targets cysteines in a hydrophobic environment to direct oxidative protein folding in the mitochondria. Nat. Commun. 2014, 5, 3041. [Google Scholar] [CrossRef]
- Koch, J.R.; Schmid, F.X. Mia40 is optimized for function in mitochondrial oxidative protein folding and import. ACS Chem. Biol. 2014, 9, 2049–2057. [Google Scholar] [CrossRef]
- Olewewe, C.; Awuah, S.G. Mitochondria as a target of third row transition metal-based anticancer complexes. Curr. Opin. Chem. Biol. 2023, 72, 102235. [Google Scholar]
- Outten, C.E.; Culotta, V.C. A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J. 2003, 22, 2015–2024. [Google Scholar] [CrossRef]
- Strand, M.K.; Stuart, G.R.; Longley, M.J.; Graziewicz, M.A.; Dominick, O.C.; Copeland, W.C. POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. Eukaryot. Cell 2003, 2, 809–820. [Google Scholar] [CrossRef]
- Shi, F.; Li, Z.; Sun, M.; Li, Y. Role of mitochondrial NADH kinase and NADPH supply in the respiratory chain activity of Saccharomyces cerevisiae. Acta Biochim. Biophys. Sin. 2011, 43, 989–995. [Google Scholar] [CrossRef]
- Pain, J.; Balamurali, M.M.; Dancis, A.; Pain, D. Mitochondrial NADH kinase, Pos5p, is required for efficient iron-sulfur cluster biogenesis in Saccharomyces cerevisiae. J. Biol. Chem. 2010, 285, 39409–39424. [Google Scholar] [CrossRef]
- Pham, N.N.; Chang, C.-W.; Chang, Y.-H.; Tu, Y.; Chou, J.-Y.; Wang, H.-Y.; Hu, Y.-C. Rational genome and metabolic engineering of Candida viswanathii by split CRISPR to produce hundred grams of dodecanedioic acid. Metab. Eng. 2023, 77, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.-H.; Kim, J.-S.; Yu, S.-R.; Bahn, Y.-S. Unraveling capsule biosynthesis and signaling networks in Cryptococcus neoformans. Microbiol. Spectr. 2022, 10, e0286622. [Google Scholar] [CrossRef] [PubMed]
- Biersack, B. The antifungal potential of niclosamide and structurally related salicylanilides. Int. J. Mol. Sci. 2024, 25, 5977. [Google Scholar] [CrossRef] [PubMed]
- Rattanawong, K.; Kerdsomboon, K.; Auesukaree, C. Cu/Zn-superoxide dismutase and glutathione are involved in response to oxidative stress induced by protein denaturing effect of alachlor in Saccharomyces cerevisiae. Free Radic. Biol. Med. 2015, 89, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Thakur, R.; Shankar, J. Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol. Res. Int. 2015, 2015, 132635. [Google Scholar] [CrossRef] [PubMed]
- Ancuceanu, R.; Hovanet, M.V.; Cojocaru-Toma, M.; Anghel, A.-I.; Dinu, M. Potential antifungal targets for Aspergillus sp. from the calcineurin and heat shock protein pathways. Int. J. Mol. Sci. 2022, 23, 12543. [Google Scholar] [CrossRef]
- Whitesell, L.; Robbins, N.; Huang, D.S.; McLellan, C.A.; Shekhar-Guturja, T.; LeBlanc, E.V.; Nation, C.S.; Hui, R.; Hutchinson, A.; Collins, C.; et al. Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus. Nat. Commun. 2019, 10, 402. [Google Scholar] [CrossRef]
- Lamoth, F.; Juvvadi, P.R.; Soderblom, E.J.; Moseley, M.A.; Steinbach, W.J. Hsp70 and the cochaperone StiA (Hop) orchestrate Hsp90-mediated caspofungin tolerance in Aspergillus fumigatus. Antimicrob. Agents Chemother. 2015, 59, 4727–4733. [Google Scholar] [CrossRef]
- Rastogi, S.; Joshi, A.; Sato, N.; Lee, S.; Lee, M.-J.; Trepel, J.B.; Neckers, L. An update on the status of HSP90 inhibitors in cancer clinical trials. Cell Stress Chaperones 2024, 29, 519–539. [Google Scholar] [CrossRef]
- Fang, T.; Xiong, J.; Huang, X.; Fang, X.; Shen, X.; Jiang, Y.; Lu, H. Extracellular Hsp90 of Candida albicans contributes to the virulence of the pathogen by activating the NF-κB signaling pathway and inducing macrophage pyroptosis. Microbiol. Res. 2025, 290, 127964. [Google Scholar] [CrossRef]
- Attiq, A.; Yao, L.J.; Afzal, S.; Khan, M.A. The triumvirate of NF-kB, inflammation and cytokine storm in COVID-19. Int. Immunopharmacol. 2021, 101, 108255. [Google Scholar] [CrossRef]
- Liu, J.; Geng, F.; Sun, H.; Wang, X.; Zhang, H.; Yang, Q.; Zhang, J. Candida albicans induces TLR2/MyD88/NF-κB signaling and inflammation in oral lichen planus-derived keratinocytes. J. Infect. Dev. Ctries. 2018, 12, 780–786. [Google Scholar] [CrossRef]
- Bercusson, A.; Williams, T.J.; Simmonds, N.J.; Alton, E.W.; Griesenbach, U.; Shah, A.; Warris, A.; Armstrong-James, D. Increased NFAT and NFκB signalling contribute to the hyperinflammatory phenotype in response to Aspergillus fumigatus in a mouse model of Cystic fibrosis. PLoS Pathog. 2025, 21, e1012784. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A.S.; Wheeler, R.T.; May, R.C. Fungal pathogens: Survival and replication within macrophages. Cold Spring Harb. Perspect. Med. 2015, 5, a019661. [Google Scholar] [CrossRef]
- Ben-Abdallah, M.; Sturny-Leclère, A.; Avé, P.; Louise, A.; Moyrand, F.; Weih, F.; Janbon, G.; Mémet, S. Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-κB. PLoS Pathog. 2012, 8, e1002555. [Google Scholar] [CrossRef]
- Hu, S.; Dai, J.; Chen, X. Vitamin D reduces autophagy by regulating NF-κB resistance to Aspergillus fumigatus infection. Gene 2020, 753, 144819. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, M.; Kim, N.H.; Oh, M.K.; Cho, J.K.; Jin, J.Y.; Kim, I.S. Auranofin promotes retinoic acid- or dihydroxyvitamin D3-mediated cell differentiation of promyelocytic leukaemia cells by increasing histone acetylation. Br. J. Pharmacol. 2008, 154, 1196–1205. [Google Scholar] [CrossRef]
- Wang, L.; Yan, H.; Chen, X.; Han, L.; Liu, G.; Yang, H.; Lu, D.; Liu, W.; Che, C. Thymol ameliorates Aspergillus fumigatus keratitis by downregulating TLR4/MyD88/NF-kB/IL-1β signal expression and reducing necroptosis and pyroptosis. J. Microbiol. Biotechnol. 2023, 33, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Koh, D.H.; Jun, D.W.; Roh, Y.J.; Kang, H.T.; Oh, J.H.; Kim, H.S. Auranofin attenuates hepatic steatosis and fibrosis in nonalcoholic fatty liver disease via NRF2 and NF-κB signaling pathways. Clin. Mol. Hepatol. 2022, 28, 827–840. [Google Scholar] [CrossRef]
- Folk, A.; Cotoraci, C.; Balta, C.; Suciu, M.; Herman, H.; Boldura, O.M.; Dinescu, S.; Paiusan, L.; Ardelean, A.; Hermenean, A. Evaluation of hepatotoxicity with treatment doses of flucytosine and amphotericin B for invasive fungal infections. BioMed Res. Int. 2016, 2016, 5398730. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Kim, K.S.; Kim, M.J.; Kim, H.-S.; Lee, K.-Y.; Kang, K.W. Auranofin inhibits RANKL-induced osteoclastogenesis by suppressing inhibitors of κB kinase and inflammasome-mediated interleukin-1β secretion. Oxid. Med. Cell. Longev. 2019, 2019, 3503912. [Google Scholar] [CrossRef] [PubMed]
- Biver, E.; Calmy, A.; Rizzoli, R. Bone health in HIV and hepatitis B or C infections. Ther. Adv. Musculoskelet. Dis. 2017, 9, 22–34. [Google Scholar] [CrossRef]
- Gamaletsou, M.N.; Rammaert, B.; Brause, B.; Bueno, M.A.; Dadwal, S.S.; Henry, M.W.; Katragkou, A.; Kontoyiannis, D.P.; McCarthy, M.W.; Miller, A.O.; et al. Osteoarticular mycoses. Clin. Microbiol. Rev. 2022, 35, e0008619. [Google Scholar] [CrossRef]
- van de Sande, W.W.J.; Maghoub, E.S.; Fahal, A.H.; Goodfellow, M.; Welsh, O.; Zijlstra, E. The mycetoma knowledge gap: Identification of research priorities. PLoS Negl. Trop. Dis. 2014, 8, e2667. [Google Scholar] [CrossRef]
- Kobayashi-Sakamoto, M.; Maeda, T.; Yusa, J.; Kato, Y.; Kiyoura, Y. RANK-RANKL signaling upregulates Il-10 mRNA expression in mucosal Candida infection in vivo. Microb. Pathog. 2020, 149, 104285. [Google Scholar] [CrossRef]
- Ahmed, Y.L.; Gerke, J.; Park, H.-S.; Bayram, Ö.; Neumann, P.; Ni, M.; Dickmanns, A.; Kim, S.C.; Yu, J.-H.; Braus, G.H.; et al. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. PLoS Biol. 2013, 11, e1001750. [Google Scholar] [CrossRef]
- Bayram, Ö.; Braus, G.H. Coordination of secondary metabolism and development in fungi: The velvet family of regulatory proteins. FEMS Microbiol. Res. 2012, 36, 1–24. [Google Scholar] [CrossRef]
- Rauscher, S.; Pacher, S.; Hedtke, M.; Kniemeyer, O.; Fischer, R. A phosphorylation code of the Aspergillus nidulans global regulator VelvetA (VeA) determines specific functions. Mol. Microbiol. 2016, 99, 909–924. [Google Scholar] [CrossRef]
- Wang, P.; Ma, L.; Jin, J.; Zheng, M.; Pan, L.; Zhao, Y.; Sun, X.; Liu, Y.; Xing, F. The anti-aflatoxigenic mechanism of cinnamaldehyde in Aspergillus flavus. Sci. Rep. 2019, 9, 10499. [Google Scholar] [CrossRef] [PubMed]
- Niu, A.; Tan, L.; Tan, S.; Wang, G.; Qiu, W. The temporal dynamics of sensitivity, aflatoxin production, and oxidative stress of Aspergillus flavus in response to cinnamaldehyde vapor. Foods 2023, 12, 4311. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, Y.; Li, Q. 2-Hydroxy-4-methoxybenzaldehyde (HMB) disrupts ergosterol biosynthesis, redox metabolism, and DON biosynthesis of Fusarium graminearum revealed by transcriptome analysis. Front. Microbiol. 2025, 16, 1514170. [Google Scholar] [CrossRef] [PubMed]
- Spreckelmeyer, S.; Orvig, C.; Casini, A. Cellular transport mechanisms of cytotoxic metallodrugs: An overview beyond cisplatin. Molecules 2014, 19, 15584–15610. [Google Scholar] [CrossRef] [PubMed]
- Navale, A.M. Glucose transporter and sensor mechanisms in fungal pathogens as potential drug targets. Curr. Rev. Clin. Exp. Pharmacol. 2024, 19, 250–258. [Google Scholar] [CrossRef]
- Snyder, R.M.; Mirabelli, C.K.; Crooke, S.T. Cellular association, intracellular distribution, and efflux of auranofin via sequential ligand exchange reactions. Biochem. Pharmacol. 1986, 35, 923–932. [Google Scholar] [CrossRef]
- Graham, G.G.; Haavisto, T.M.; Jones, H.M.; Champion, G.D. The effect of cyanide on the uptake of gold by red blood cells. Biochem. Pharmacol. 1984, 33, 1257–1262. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, H.; Lin, J.; Li, Z.; Tian, G.; Yang, Y.Y.; Yuan, P.; Ding, X. Repurposing non-antibiotic drugs auranofin and pentamidine in combination to combat multidrug-resistant Gram-negative bacteria. Int. J. Antimicrob. Agents 2022, 59, 106582. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Karaman, R. Design and synthesis of novel antimicrobial agents. Antibiotics 2023, 12, 628. [Google Scholar] [CrossRef]
- Tang, M.; Zhao, D.; Liu, S.; Zhang, X.; Yao, Z.; Chen, H.; Zhou, C.; Zhou, T.; Xu, C. The properties of linezolid, rifampicin, and vancomycin, as well as the mechanism of action of pentamidine, determine their synergy against Gram-negative bacteria. Int. J. Mol. Sci. 2023, 24, 13812. [Google Scholar] [CrossRef]
- Fishman, J.A. Treatment of infection due to Pneumocystis carinii. Antimicrob. Agents Chemother. 1998, 42, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Brilhante, R.S.; Pereira, V.S.; Oliveira, J.S.; Lopes, R.G.; Rodrigues, A.M.; Camargo, Z.P.; Pereira-Neto, W.A.; Castelo-Branco, D.S.; Cordeiro, R.A.; Sidrim, J.J.; et al. Pentamidine inhibits the growth of Sporothrix schenckii complex and exhibits synergism with antifungal agents. Future Microbiol. 2018, 13, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- Venturini, T.P.; Rossato, L.; Chassot, F.; Keller, J.T.; Piasentin, F.B.; Santurio, J.M.; Alves, S.H. In vitro synergistic combinations of pentamidine, polymyxin B, tigecycline and tobramycin with antifungal agents against Fusarium spp. J. Med. Microbiol. 2016, 65, 770–774. [Google Scholar] [CrossRef]
- Wesseling, C.M.J.; Slingerland, C.J.; Veraar, S.; Lok, S.; Martin, N.I. Structure-activity studies with bis-amidines that potentiate Gram-positive specific antibiotics against Gram-negative pathogens. ACS Infect. Dis. 2021, 7, 3314–3335. [Google Scholar] [CrossRef] [PubMed]
- Pugh, B.A.; Rao, A.B.; Angeles-Solano, M.; Grosser, M.R.; Brock, J.W.; Murphy, K.E.; Wolfe, A.L. Design and evaluation of poly-nitrogenous adjuvants capable of potentiating antibiotics in Gram-negative bacteria. RSC Med. Chem. 2022, 13, 1058–1063. [Google Scholar] [CrossRef]
- Ghia, M.; Mattioli, F.; Novelli, F.; Minganti, V. Inhibitory properties of triethylphosphine goldlupinylsulfide in adjuvant-induced arthritis in rats. Farmaco 1995, 50, 601–604. [Google Scholar] [PubMed]
- Cely-Veloza, W.; Kato, M.J.; Coy-Barrera, E. Quinolizidine-type alkaloids: Chemodiversity, occurrence, and bioactivity. ACS Omega 2023, 8, 27862–27893. [Google Scholar] [CrossRef]
- Dennis, E.K.; Kim, J.H.; Parkin, S.; Awuah, S.G.; Garneau-Tsodikova, S. Distorted gold(I)-phosphine complexes as antifungal agents. J. Med. Chem. 2020, 63, 2455–2469. [Google Scholar] [CrossRef]
- Cortat, Y.; Zobi, F. Resurgence and repurposing of antifungal azoles by transition metal coordination for drug discovery. Pharmaceutics 2023, 15, 2398. [Google Scholar] [CrossRef]
- Gagini, T.; Colina-Vegas, L.; Villareal, W.; Borba-Santos, L.P.; Pereira, C.d.S.; Batista, A.A.; Fleury, M.K.; de Souza, W.; Rozental, S.; Costa, L.A.S.; et al. Metal-azole fungistatic drug complexes as anti-Sporothrix spp. agents. New. J. Chem. 2018, 42, 13641–13650. [Google Scholar] [CrossRef]
- Stevanović, N.L.; Kljun, J.; Aleksic, I.; Bogojevic, S.S.; Milivojevic, D.; Veselinovic, A.; Turel, I.; Djuran, M.I.; Nikodinovic-Runic, J.; Glišić, B.Đ. Clinically used antifungal azoles as ligands for gold(III) complexes: The influence of the Au(III) ion on the antimicrobial activity of the complex. Dalton Trans. 2022, 51, 5322. [Google Scholar] [CrossRef]
- Porchia, M.; Pellei, M.; Marinelli, M.; Tisato, F.; del Bello, F.; Santini, C. New insights in Au-NHCs complexes as anticancer agents. Eur. J. Med. Chem. 2018, 146, 709–746. [Google Scholar] [CrossRef]
- Checconi, P.; Mariconda, A.; Catalano, A.; Ceramella, J.; Pellegrino, M.; Aquaro, S.; Sinicropi, M.S.; Longo, P. Searching for new gold(I)-based complexes as anticancer and/or antiviral agents. Molecules 2025, 30, 1726. [Google Scholar] [CrossRef] [PubMed]
- Samanta, T.; Roymahapatra, G.; Porto, W.F.; Seth, S.; Ghorai, S.; Saha, S.; Sengupta, J.; Franco, O.L.; Dinda, J.; Mandal, S.M. N,N’-Olefin functionalized bis-imidazolium gold(I) salt is an efficient candidate to control keratitis-associated eye infection. PLoS ONE 2013, 8, e58346. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, İ.; Temelli, N.; Günal, S.; Demir, S. Gold(I) complexes of N-heterocyclic carbene ligands containing benzimidazole: Synthesis and antimicrobial activity. Molecules 2010, 15, 2203–2210. [Google Scholar] [CrossRef] [PubMed]
- Frei, A.; Elliott, A.G.; Kan, A.; Dinh, H.; Bräse, S.; Bruce, A.R.; Bruce, M.R.; Chen, F.; Humaidy, D.; Jung, N.; et al. Metal complexes as antifungals? From a crowd-sourced compound library to the first in vivo experiments. JACS Au 2022, 2, 2277–2294. [Google Scholar] [CrossRef] [PubMed]
- Salmain, M.; Gaschard, M.; Baroud, M.; Lepeltier, E.; Jaouen, G.; Passirani, C.; Vessières, A. Thioredoxin reductase and organometallic complexes: A pivotal system to tackle multidrug resistant tumors? Cancers 2023, 15, 4448. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.; Chen, X.; Wen, Z.; Bi, C.; Xu, Z.; Liu, W. Gold(I) complexes bearing EGFR-inhibiting ligands as anti-HCC agents through dual targeting of EGFR and TrxR. Eur. J. Med. Chem. 2025, 283, 117137. [Google Scholar] [CrossRef]
- Wang, L.; Ma, X.; Zhou, L.; Luo, M.; Lu, Y.; Wang, Y.; Zheng, P.; Liu, H.; Liu, X.; Liu, W.; et al. Dual-targeting TrxR-EGFR alkynyl-Au(I) gefitinib complex induces ferroptosis in gefitinib-resistant lung cancer via degradation of GPX4. J. Med. Chem. 2025, 68, 5275–5291. [Google Scholar] [CrossRef]
- Tharmalingam, N.; Xu, S.; Felix, L.O.; Roy, B.; Xian, M.; Mylonakis, E.; Fuchs, B.B. Gold complex compounds that inhibit drug-resistant Staphylococcus aureus by targeting thioredoxin reductase. Front. Antibiot. 2023, 2, 1179354. [Google Scholar] [CrossRef] [PubMed]
- Coffer, M.T.; Shaw, C.F., 3rd; Hormann, A.L.; Mirabelli, C.K.; Crooke, S.T. Thiol competition for Et3PAuS-albumin: A nonenzymatic mechanism for Et3PO formation. J. Inorg. Biochem. 1987, 30, 177–187. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; van de Sande, W.; Biersack, B. Exploring a Therapeutic Gold Mine: The Antifungal Potential of the Gold-Based Antirheumatic Drug Auranofin. Int. J. Mol. Sci. 2025, 26, 7909. https://doi.org/10.3390/ijms26167909
Ma J, van de Sande W, Biersack B. Exploring a Therapeutic Gold Mine: The Antifungal Potential of the Gold-Based Antirheumatic Drug Auranofin. International Journal of Molecular Sciences. 2025; 26(16):7909. https://doi.org/10.3390/ijms26167909
Chicago/Turabian StyleMa, Jingyi, Wendy van de Sande, and Bernhard Biersack. 2025. "Exploring a Therapeutic Gold Mine: The Antifungal Potential of the Gold-Based Antirheumatic Drug Auranofin" International Journal of Molecular Sciences 26, no. 16: 7909. https://doi.org/10.3390/ijms26167909
APA StyleMa, J., van de Sande, W., & Biersack, B. (2025). Exploring a Therapeutic Gold Mine: The Antifungal Potential of the Gold-Based Antirheumatic Drug Auranofin. International Journal of Molecular Sciences, 26(16), 7909. https://doi.org/10.3390/ijms26167909