Partial eNOS Deficiency Results in Greater Levels of Vascular Inflammation and BBB Disruption in Response to Chronic Mild Hypoxia
Abstract
1. Introduction
2. Results
2.1. Chronic Mild Hypoxia Enhances eNOS Expression
2.2. eNOS+/− Mice Show Greater Hypoxia-Induced BBB Disruption, but Endothelial Proliferation Is Not Affected
2.3. Cerebral Blood Vessels in eNOS+/− Mice Are More Activated
2.4. Enhanced Vascular Activation in eNOS+/− Mice Correlates with Increased Levels of Microglial Activation and Demyelination
3. Discussion
3.1. Hypoxic Enhancement of Cerebrovascular eNOS Expression
3.2. Role of eNOS in Angiogenesis
3.3. The Influence of eNOS on Vascular Activation and BBB Permeability
4. Materials and Methods
4.1. Animals
4.2. Chronic Hypoxia Model
4.3. Immunohistochemistry and Antibodies
4.4. Image Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ballabh, P.; Braun, A.; Nedergaard, M. The blood-brain barrier: An overview. Structure, regulation and clinical implications. Neurobiol. Dis. 2004, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412. [Google Scholar] [CrossRef]
- Huber, J.D.; Egleton, R.D.; Davis, T.P. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neourosci. 2001, 24, 719–725. [Google Scholar] [CrossRef]
- Keaney, J.; Campbell, M. The dynamic blood-brain barrier. Febs J. 2015, 282, 4067–4079. [Google Scholar] [CrossRef]
- Pardridge, W.M. Blood-brain barrier drug targetting: The future of brain drug development. Mol. Med. 2003, 3, 90–105. [Google Scholar]
- Daneman, R.; Zhou, L.; Kebede, A.A.; Barres, B.A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 2010, 468, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Del Zoppo, G.J.; Milner, R. Integrin-matrix interactions in the cerebral microvasculature. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1966–1975. [Google Scholar] [CrossRef] [PubMed]
- Janzer, R.C.; Raff, M.C. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 1987, 325, 253–257. [Google Scholar] [CrossRef]
- Pivoriūnas, A.; Verkhratsky, A. Astrocyte-Endotheliocyte Axis in the Regulation of the Blood-Brain Barrier. Neurochem. Res. 2021, 46, 2538–2550. [Google Scholar] [CrossRef]
- Wolburg, H.; Lippoldt, A. Tight junctions of the blood-brain barrier; development, composition and regulation. Vasc. Pharmacol. 2002, 38, 323–337. [Google Scholar] [CrossRef]
- Wolburg-Burcholz, K.; Mack, A.F.; Steiner, E.; Pfeiffer, F.; Engelhardt, B.; Wolburg, H. Loss of astrocyte polarity marks blood-brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol. 2006, 118, 219–233. [Google Scholar] [CrossRef]
- Bennett, J.; Basivreddy, J.; Kollar, A.; Biron, K.E.; Reickmann, P.; Jefferies, W.A.; McQuaid, S. Blood-brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J. Neuroimmunol. 2010, 229, 180–191. [Google Scholar] [CrossRef]
- Davies, D.C. Blood-brain barrier breakdown in septic encephalopathy and brain tumours. J. Anat. 2002, 200, 639–646. [Google Scholar] [CrossRef]
- Gay, D.; Esiri, M. Blood-Brain Barrier Damage in Acute Multiple Sclerosis Plaques. Brain 1991, 114, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.; Plumb, J.; Mirakhur, M.; McQuaid, S. Tight junction abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J. Pathol. 2003, 201, 319–327. [Google Scholar] [CrossRef]
- Roberts, J.; de Hoog, L.; Bix, G.J. Mice deficient in endothelial a5 integrin are profoundly resistant to experimental ischemic stroke. J. Cereb. Blood Flow Metab. 2015, 37, 85–96. [Google Scholar] [CrossRef]
- Brown, W.R.; Thore, C.R. Cerebral microvascular pathology in aging and neurodegeneration. Neuropathol. Appl. Neurobiol. 2011, 37, 56–74. [Google Scholar] [CrossRef]
- Farrall, A.J.; Wardlaw, J.M. Blood-brain barrier: Ageing and microvascular disease- a systematic review and meta-analysis. Neurobiol. Aging 2009, 30, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Fukumura, D.; Gohongi, T.; Kadambi, A.; Izumi, Y.; Ang, J.; Yun, C.O.; Buerk, D.G.; Huang, P.L.; Jain, R.K. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl. Acad. Sci. USA 2001, 98, 2604–2609. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.L.; Xue, Y.Q.; Ma, T.; Wang, X.; Li, J.J.; Lan, L.; Malik, K.U.; McDonald, M.P.; Dopico, A.M.; Liao, F.F. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol. Neurodegener. 2015, 10, 24. [Google Scholar] [CrossRef]
- Chen, X.; Chen, L.; Lin, G.; Wang, Z.; Kodali, M.C.; Li, M.; Chen, H.; Lebovitz, S.G.; Ortyl, T.C.; Li, L.; et al. White matter damage as a consequence of vascular dysfunction in a spontaneous mouse model of chronic mild chronic hypoperfusion with eNOS deficiency. Mol. Psychiatry 2022, 27, 4754–4769. [Google Scholar] [CrossRef]
- Halder, S.K.; Milner, R. Mild hypoxia triggers transient blood-brain barrier disruption: A fundamental protective role for microglia. Acta Neuropathol. Commun. 2020, 8, 175. [Google Scholar] [CrossRef]
- LaManna, J.C.; Vendel, L.M.; Farrell, R.M. Brain adaptation to chronic hypobaric hypoxia in rats. J. Appl. Physiol. 1992, 72, 2238–2243. [Google Scholar] [CrossRef]
- Halder, S.K.; Milner, R. Exaggerated hypoxic vascular breakdown in aged brain due to reduced microglial vasculo-protection. Aging Cell 2022, 21, e13720. [Google Scholar] [CrossRef] [PubMed]
- Hallman, R.; Mayer, D.N.; Berg, E.L.; Broermann, R.; Butcher, E.C. Novel mouse endothelial cell surface marker is suppressed during differentiation of the blood brain barrier. Dev. Dyn. 1995, 202, 325–332. [Google Scholar] [CrossRef]
- Li, L.; Welser, J.V.; Dore-Duffy, P.; Del Zoppo, G.J.; LaManna, J.C.; Milner, R. In the hypoxic central nervous system, endothelial cell proliferation is followed by astrocyte activation, proliferation, and increased expression of the a6b4 integrin and dystroglycan. Glia 2010, 58, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Boroujerdi, A.; Welser-Alves, J.; Milner, R. Matrix metalloproteinase-9 mediates post-hypoxic vascular pruning of cerebral blood vessels by degrading laminin and claudin-5. Angiogenesis 2015, 18, 255–264. [Google Scholar] [CrossRef]
- Smith, T.L.; Oubaha, M.; Cagnone, G.; Boscher, C.; Kim, J.S.; El Bakkouri, Y.; Zhang, Y.; Chidiac, R.; Corriveau, J.; Delisle, C.; et al. eNOS controls angiogenic sprouting and retinal neovascularization through the regulation of endothelial cell polarity. Cell. Mol. Life Sci. 2021, 79, 37. [Google Scholar] [CrossRef]
- Li, L.; Welser, J.V.; Milner, R. Absence of the avb3 integrin dictates the time-course of angiogenesis in the hypoxic central nervous system: Accelerated endothelial proliferation correlates with compensatory increases in a5b1 integrin expression. J. Cereb. Blood Flow Metab. 2010, 30, 1031–1043. [Google Scholar] [CrossRef]
- Sapkota, A.; Halder, S.K.; Milner, R. Blood-brain barrier disruption and microglial activation during hypoxia and post-hypoxic recovery. Brain Commun. 2024, 7, fcae456. [Google Scholar] [CrossRef] [PubMed]
- Arnet, U.A.; McMillan, A.; Dinerman, J.L.; Ballermann, B.; Lowenstein, C.J. Regulation of endothelial nitric-oxide synthase during hypoxia. J. Biol. Chem. 1996, 271, 15069–15073. [Google Scholar] [CrossRef]
- Min, J.; Jin, Y.M.; Moon, J.S.; Sung, M.S.; Jo, S.A.; Jo, I. Hypoxia-induced endothelial NO synthase gene transcriptional activation is mediated through the tax-responsive element in endothelial cells. Hypertension 2006, 47, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Shaul, P.W.; North, A.J.; Brannon, T.S.; Ujiie, K.; Wells, L.B.; Nisen, P.A.; Lowenstein, C.J.; Snyder, S.H.; Star, R.A. Prolonged in vivo hypoxia enhances nitric oxide synthase type I and type III gene expression in adult rat lung. Am. J. Respir. Cell Mol. Biol. 1995, 13, 167–174. [Google Scholar] [CrossRef]
- Toporsian, M.; Govindaraju, K.; Nagi, M.; Eidelman, D.; Thibault, G.; Ward, M.E. Downregulation of endothelial nitric oxide synthase in rat aorta after prolonged hypoxia in vivo. Circ. Res. 2000, 86, 671–675. [Google Scholar] [CrossRef]
- Chen, Y.F.; Wang, Z.H.; Chen, Z.K.; Lv, G.R.; Ferrari, M. Intermittent maternal hypoxia has an influence on regional expression of endothelial nitric oxide synthase in fetal arteries of rabbits. Pediatr. Res. 2013, 73, 706–712. [Google Scholar] [CrossRef]
- Ha, J.M.; Jin, S.Y.; Lee, H.S.; Shin, H.K.; Lee, D.H.; Song, S.H.; Kim, C.D.; Bae, S.S. Regulation of retinal angiogenesis by endothelial nitric oxide synthase signaling pathway. Korean J. Physiol. Pharmacol. 2016, 20, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Murohara, T.; Witzenbichler, B.; Spyridopoulos, I.; Asahara, T.; Ding, B.; Sullivan, A.; Losordo, D.W.; Isner, J.M. Role of endothelial nitric oxide synthase in endothelial cell migration. Arter. Thromb. Vasc. Biol. 1999, 19, 1156–1161. [Google Scholar] [CrossRef]
- Chavez, J.C.; Agani, F.; Pichiule, P.; LaManna, J.C. Expression of hypoxic inducible factor 1a in the brain of rats during chronic hypoxia. J. Appl. Physiol. 2000, 89, 1937–1942. [Google Scholar] [CrossRef] [PubMed]
- Pichiule, P.; Chávez, J.C.; Xu, K.; LaManna, J.C. Vascular endothelial growth factor upregulation in transient global ischemia induced by cardiac arrest and resuscitation in rat brain. Brain Res. Mol. Brain Res. 1999, 74, 83–90. [Google Scholar] [CrossRef]
- Pichiule, P.; LaManna, J.C. Angiopoietin-2 and rat brain capillary remodeling during adaptation and de-adaptation to prolonged mild hypoxia. J. Appl. Physiol. 2002, 93, 1131–1139. [Google Scholar] [CrossRef]
- Brown, W.R. A review of string vessels or collapsed empty basement membrane tubes. J. Alzheimer’s Dis. 2010, 21, 725–739. [Google Scholar] [CrossRef]
- Senatorov, V.V.J.; Friedman, A.R.; DZ, M.; Ofer, J.; Saar-Ashkenazy, R.; Charbash, A.; Jahan, N.; Chin, G.; Mihaly, E.; Lin, J.M.; et al. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci. Transl. Med. 2019, 11, 521. [Google Scholar] [CrossRef] [PubMed]
- Bucks, R.S.; Olaithe, M.; Eastwood, P. Neurocognitive function in obstructive sleep apnoea: A meta-review. Respirology 2013, 18, 61–70. [Google Scholar] [CrossRef]
- Leng, Y.; McEvoy, C.T.; Allen, I.E.; Yaffe, K. Association of sleep-disordered breathing with cognitive function and risk of cognitive impairment: A systematic review and meta-analysis. JAMA Neurol. 2017, 74, 1237–1245. [Google Scholar] [CrossRef]
- Russ, T.C.; Kivimäki, M.; Batty, G.D. Respiratory disease and lower pulmonary function as risk factors for dementia: A systematic review with meta-analysis: Pulmonary function and dementia. Chest 2020, 157, 1538–1558. [Google Scholar] [CrossRef]
- Yaffe, K.; Laffan, A.M.; Harrison, S.L.; Redline, S.; Spira, A.P.; Ensrud, K.E.; Ancoli-Israel, S.; Stone, K.L. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA 2011, 306, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Yohannes, A.M.; Chen, W.; Moga, A.M.; Leroi, I.; Connolly, M.J. Cognitive Impairment in Chronic Obstructive Pulmonary Disease and Chronic Heart Failure: A Systematic Review and Meta-analysis of Observational Studies. J. Am. Med. Dir. Assoc. 2017, 18, 451. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapkota, A.; Halder, S.K.; Ismael, S.; Bix, G.J.; Milner, R. Partial eNOS Deficiency Results in Greater Levels of Vascular Inflammation and BBB Disruption in Response to Chronic Mild Hypoxia. Int. J. Mol. Sci. 2025, 26, 7902. https://doi.org/10.3390/ijms26167902
Sapkota A, Halder SK, Ismael S, Bix GJ, Milner R. Partial eNOS Deficiency Results in Greater Levels of Vascular Inflammation and BBB Disruption in Response to Chronic Mild Hypoxia. International Journal of Molecular Sciences. 2025; 26(16):7902. https://doi.org/10.3390/ijms26167902
Chicago/Turabian StyleSapkota, Arjun, Sebok K. Halder, Saifudeen Ismael, Gregory J. Bix, and Richard Milner. 2025. "Partial eNOS Deficiency Results in Greater Levels of Vascular Inflammation and BBB Disruption in Response to Chronic Mild Hypoxia" International Journal of Molecular Sciences 26, no. 16: 7902. https://doi.org/10.3390/ijms26167902
APA StyleSapkota, A., Halder, S. K., Ismael, S., Bix, G. J., & Milner, R. (2025). Partial eNOS Deficiency Results in Greater Levels of Vascular Inflammation and BBB Disruption in Response to Chronic Mild Hypoxia. International Journal of Molecular Sciences, 26(16), 7902. https://doi.org/10.3390/ijms26167902