Native putA Overexpression in Synechocystis sp. PCC 6803 Significantly Enhances Polyhydroxybutyrate Production, Further Augmented by the adc1 Knockout Under Prolonged Nitrogen Deprivation
Abstract
1. Introduction
2. Results
2.1. Overexpression of Native putA Gene in Synechocystis sp. PCC 6803
2.2. Cell Growth Under Normal Growth Condition and Contents of Intracellular Pigments and Other Metabolite Productions
2.3. Cell Growth Under the Adaptation Phase Nitrogen-Deprived Condition and Contents of Intracellular Pigments and Other Metabolite Productions
3. Discussion
4. Materials and Methods
4.1. Construction of Native putA Overexpression in Synechocystis sp. PCC6803
4.2. Strains and Culture Condition
4.3. Determination of Intracellular Pigments
4.4. Total RNAs Extraction and Reverse Transcription-Polymerase Reaction (RT-PCR)
4.5. HPLC Analysis of PHB Content and Nile Red Staining
4.6. Extraction and Determination of Glycogen Content
4.7. Extraction and Determination of Polyamine Content
4.8. Quantification of Proline, Glutamate and GABA Contents
4.9. Lipid Extraction and Determination of Total Lipid Content
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
adc | Arginine decarboxylase |
ArgD | N-acetylornithine aminotransferase |
Car | Carotenoids |
Chl a | Chlorophyll a |
CO2 | Carbon dioxide |
dcw | Dry cell weight |
DMF | N,N-Dimethylformamide |
GABA | Gamma-aminobutyric acid |
gad | Glutamate decarboxylase |
gdhA | Glutamate dehydrogenase |
glgC | ADP-glucose pyrophosphorylase |
glgX | Glycerol-3-phosphate dehydrogenase |
gltA | Citrate synthase |
GOGAT | Glutamate synthase |
G6P | Glucose-6-phosphate |
GS | Glutamine synthetase |
h | Hour |
m | Meter |
µg | Microgram |
µL | Microliter |
mL | Milliliter |
mM | Millimolar |
nm | Nanometer |
ntcA | The nitrogen control A (NtcA) regulator |
OD | Optical density |
2-OG | 2-Oxogutarate |
OX | Overexpressing strain |
PII | The signal transduction protein PII |
PCR | Polymerase chain reaction |
3-PGA | 3-Phosphoglycerate |
phaA | β-ketothiolase |
phaB | Acetocetyl-CoA reductase |
phaC | The heterodimeric PHB synthase |
phaE | The heterodimeric PHB synthase |
PHB | Polyhydroxybutyrate |
plsX | Fatty acid/phospholipid synthesis protein |
ProA | Gamma-glutamyl phosphate reductase |
ProB | Gamma-glutamyl kinase |
ProC | ∆1pyrroline-5-carboxylate reductase |
PutA | Proline oxidase in proline utilization A |
rbc | Ribulose-1,5-bisphosphate carboxylase/oxygenase |
rpm | Revolutions per minute |
s | Second |
SSA | Succinic semialdehyde |
WT | Wild type |
WTc | Wild type control |
References
- Zhang, Z.; Zou, S.; Li, P. Aging of plastics in aquatic environments: Pathways, environmental behavior, ecological impacts, analyses and quantifications. Environ. Pollut. 2024, 341, 122926. [Google Scholar] [CrossRef]
- Andoh, C.N.; Donkor, P.; Aboagye, J. Ghana’s environmental law and waterbody protection: A critical assessment of plastic pollution regulations. J. Environ. Manag. 2025, 380, 125172. [Google Scholar] [CrossRef]
- Marchelli, F.; Fiori, L. The growing problem of waste bioplastics disposal, and a way to tackle it. Waste Manag. 2025, 201, 114786. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Fatma, T. Cyanobacterial polyhydroxybutyrate (PHB): Screening, optimization and characterization. PLoS ONE 2016, 11, e0158168. [Google Scholar] [CrossRef] [PubMed]
- McAdam, B.; Fournet, M.B.; McDonald, P.; Mojicevic, M. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers 2020, 12, 2908. [Google Scholar] [CrossRef]
- Amir, M.; Rizvi, S.F.; Asif, M.; Ahmad, A.; Alshammari, M.B.; Gupta, A.; Roohi, R. Polyhydroxybutyrate (PHB) bioplastic characterization from the isolate Pseudomonas stutzeri PSB1 synthesized using potato peel feedstock to combat solid waste management. Biocatal. Agric. Biotechnol. 2024, 57, 103097. [Google Scholar] [CrossRef]
- Koch, M.; Forchhammer, K. Polyhydroxybutyrate: A useful product of chlorotic cyanobacteria. Microb. Physiol. 2021, 31, 67–77. [Google Scholar] [CrossRef]
- Utharn, S.; Yodsang, P.; Incharoensakdi, A.; Jantaro, S. Cyanobacterium Synechocystis sp. PCC 6803 lacking adc1 gene produces higher polyhydroxybutyrate accumulation under modified nutrients of acetate supplementation and nitrogen-phosphorus starvation. Biotechnol. Rep. 2021, 31, e00661. [Google Scholar] [CrossRef]
- Utharn, S.; Jantaro, S. The adc1 knockout with proC overexpression in Synechocystis sp. PCC 6803 induces a diversion of acetyl-CoA to produce more polyhydroxybutyrate. Biotechnol. Biofuels Bioprod. 2024, 17, 6. [Google Scholar] [CrossRef]
- Tharasirivat, V.; Lindblad, P.; Jantaro, S. Enhanced metabolic flow to polyhydroxybutyrate storage and carbon capture capacity in the native phaAB_RuBisCO-overexpressing Synechocystis sp. PCC6803 strains. Algal Res. 2025, 85, 103872. [Google Scholar] [CrossRef]
- Olabi, A.G.; Shehata, N.; Sayed, E.T.; Rodriguez, C.; Anyanwu, R.C.; Russell, C.; Abdelkareem, M.A. Role of microalgae in achieving sustainable development goals and circular economy. Sci. Total Environ. 2023, 854, 158689. [Google Scholar] [CrossRef]
- Vishwakarma, R.; Dhaka, V.; Ariyadasa, T.U.; Malik, A. Exploring algal technologies for a circular bio-based economy in rural sector. J. Clean. Prod. 2022, 354, 131653. [Google Scholar] [CrossRef]
- Quintero, M.J.; Muro-Pastor, A.M.; Herrero, A.; Flores, E. Arginine catabolism in the cyanobacterium Synechocystis sp. strain PCC 6803 involves the urea cycle and arginase pathway. J. Bacteriol. 2000, 182, 1008–1015. [Google Scholar] [CrossRef]
- Flores, E. Studies on the regulation of arginine metabolism in cyanobacteria should include mixotrophic conditions. mBio 2021, 12, e01433–e1521. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-M.; Bai, F.; Wang, X.; Xie, C.; Wan, Y.; Li, Y.; Liu, J.; Li, Z. Kinetic Characterization and catalytic mechanism of N-acetylornithine aminotransferase encoded by slr1022 gene from Synechocystis sp. PCC6803. Int. J. Mol. Sci. 2023, 24, 5853. [Google Scholar] [CrossRef]
- Mills, L.A.; McCormick, A.J.; Lea-Smith, D.J. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci. Rep. 2020, 40, BSR20193325. [Google Scholar] [CrossRef] [PubMed]
- Tarditi, A.M.; Klipfel, M.W.; Rodriguez, A.M.; Suvire, F.D.; Chasse, G.A.; Farkas, O.; Perczrl, A.; Enriz, R.D. An ab initio exploratory study of side chain conformations for selected backbone conformations of N-acetyl-l-glutamine-N-methylamide. J. Mol. Struct. Theochem 2001, 545, 29–47. [Google Scholar] [CrossRef]
- Chavez, S.; Lucena, J.M.; Reyes, J.C.; Florencio, F.J.; Candau, P. The presence of glutamate dehydrogenase is a selective advantage for the cyanobacterium Synechocystis sp. strain PCC 6803 under nonexponential growth conditions. J. Bacteriol. 1999, 181, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Florencio, F.J.; Marqués, S.; Candau, P. Identification and characterization of a glutamate dehydrogenase in the unicellular cyanobacterium Synechocystis PCC 6803. FEBS Lett. 1987, 223, 37–41. [Google Scholar] [CrossRef]
- Forchhammer, K.; Selim, K.A. Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiol. Rev. 2019, 44, 33–53. [Google Scholar] [CrossRef]
- Forchhammer, K.; Selim, K.A.; Huergo, L.F. New views on PII signaling: From nitrogen sensing to global metabolic control. Trends Microbiol. 2022, 30, 722–735. [Google Scholar] [CrossRef]
- Dutt, V.; Srivastava, S. Novel quantitative insights into carbon sources for synthesis of poly hydroxybutyrate in Synechocystis PCC 6803. Photosynth. Res. 2018, 136, 303–314. [Google Scholar] [CrossRef]
- Koch, M.; Doello, S.; Gutekunst, K.; Forchhammer, K. PHB is produced from glycogen turn-over during nitrogen starvation in Synechocystis sp. PCC 6803. Int. J. Mol. Sci. 2019, 20, 1942. [Google Scholar] [CrossRef]
- Hein, S.; Tran, H.; Steinbüchel, A. Synechocystis sp. PCC6803 possesses a two component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch. Microbiol. 1998, 170, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Khetkorn, W.; Incharoensakdi, A.; Lindblad, P.; Jantaro, S. Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. Biores. Technol. 2016, 214, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Tyo, K.E.; Jin, Y.S.; Espinoza, F.A.; Stephanopoulos, G. Identification of gene disruptions for increased poly-3-hydroxybutyrate accumulation in Synechocystis PCC 6803. Biotechnol. Prog. 2009, 25, 1236–1243. [Google Scholar] [CrossRef]
- Klotz, A.; Georg, J.; Bučinská, L.; Watanabe, S.; Reimann, V.; Januszewski, W.; Sobotka, R.; Jendrossek, D.; Hess, W.R.; Forchhammer, K. Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr. Biol. 2016, 26, 2862–2872. [Google Scholar] [CrossRef]
- Forchhammer, K.; Schwarz, R. Nitrogen chlorosis in unicellular cyanobacteria-a developmental program for surviving nitrogen deprivation. Environ. Microbiol. 2019, 21, 1173–1184. [Google Scholar] [CrossRef]
- Gründel, M.; Scheunemann, R.; Lockau, W.; Zilliges, Y. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in Synechocystis sp. PCC 6803. Microbiology 2012, 158, 3032–3043. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Hidese, R.; Matsuda, M.; Ohbayashi, R.; Ashida, H.; Kondo, A.; Hasanuma, T. Glycogen deficiency enhances carbon partitioning into glutamate for an alternative extracellular metabolic sink in cyanobacteria. Commun. Biol. 2024, 7, 233. [Google Scholar] [CrossRef]
- Boonburapong, B.; Laloknam, S.; Incharoensakdi, A. Accumulation of gamma-aminobutyric acid in the halotolerant cyanobacterium Aphanothece halophytica under salt and acid stress. J. Appl. Phycol. 2016, 28, 141–148. [Google Scholar] [CrossRef]
- Bhargava, S.; Saxena, R.K.; Pandey, P.K.; Bisen, P.S. Mutational engineering of the cyanobacterium Nostoc muscorum for resistance to growth-inhibitory action of LiCl and NaCl. Curr. Microbiol. 2003, 47, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Escribano, I.; Brenes-Álvarez, M.; Olmedo-Verd, E.; Georg, J.; Hess, W.R.; Vioque, A.; Muro-Pastor, A.M. NsiR3, a nitrogen stress-inducible small RNA, regulates proline oxidase expression in the cyanobacterium Nostoc sp. PCC 7120. FEBS J. 2020, 288, 1614–1629. [Google Scholar] [CrossRef]
- Mittermair, S.; Lakatos, G.; Nicoletti, C.; Ranglová, K.; Manoel, J.C.; Grivalský, T.; Kozhan, D.M.; Masojídek, J.; Pichter, J. Impact of glgA1, glgA2 or glgC overexpression on growth and glycogen production in Synechocystis sp. PCC 6803. J. Biotechnol. 2021, 340, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Martínez, P.; Nikkanen, L.; Wey, L.T.; Florencio, F.J.; Allahverdiyeva, Y.; Díaz-Troya, S. Glycogen synthesis prevents metabolic imbalance and disruption of photosynthetic electron transport from photosystem II during transition to photomixotrophy in Synechocystis sp. PCC 6803. New Phytol. 2024, 243, 162–179. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, G.P.; Peterson, D.M.; Schön, A.; Chen, M.-W.; Söll, D. Formation of the chlorophyll precursor i-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGlu species. J. Bacteriol. 1988, 170, 3810–3816. [Google Scholar] [CrossRef] [PubMed]
- Rueda, E.; Altamira-Algarra, B.; García, J. Process optimization of the polyhydroxybutyrate production in the cyanobacteria Synechocystis sp. and Synechococcus sp. Bioresour. Technol. 2022, 356, 127330. [Google Scholar]
- Mulders, M.; Tamis, J.; Stouten, G.R.; Kleerenezem, R. Simultaneous growth and poly(3-hydroxybutyrate) (PHB) accumulation in a Plasticicumulans acidivorans dominated enrichment culture. J. Biotechnol. 2020, 324, 100027. [Google Scholar] [CrossRef] [PubMed]
- Englund, E.; Andersen-Ranberg, J.; Miao, R.; Hamberger, B.; Lindberg, P. Metabolic engineering of Synechocystis sp. PCC 6803 for production of the plant diterpenoid manoyl oxide. ACS Synth. Biol. 2015, 4, 1270–1278. [Google Scholar] [CrossRef]
- Chamovitz, D.; Sandmann, G.; Hirschberg, J. Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J. Biol. Chem. 1993, 268, 17348–17353. [Google Scholar] [CrossRef]
- Moran, R. Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiol. 1982, 69, 1376–1381. [Google Scholar] [CrossRef]
- Vidal, R.; Venegas-Calerón, M. Simple, fast and accurate method for the determination of glycogen in the model unicellular cyanobacterium Synechocystis sp. PCC 6803. J. Microbiol. Methods. 2019, 164, 105686. [Google Scholar] [CrossRef]
- Ernst, A.; Kirschenlohr, H.; Diez, J.; Böger, P. Glycogen content and nitrogenase activity in Anabaena variabilis. Arch. Microbiol. 1984, 140, 120–125. [Google Scholar] [CrossRef]
- Meuser, J.E.; Boyd, E.S.; Ananyev, G.; Karns, D.; Radakovits, R.; Narayana Murthy, U.M.; Ghirardi, M.L.; Charles Dismukes, G.; Peters, J.W.; Posewitz, M.C. Evolutionary significance of an algal gene encoding an [FeFe]-hydrogenase with F-domain homology and hydrogenase activity in Chlorella variabilis NC64A. Planta 2011, 234, 829–843. [Google Scholar] [CrossRef]
- Flores, M.E.; Galston, A.W. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 1982, 69, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Jantaro, S.; Mäenpää, P.; Mulo, P.; Incharoensakdi, A. Content and biosynthesis of polyamines in salt and osmotically stressed cells of Synechocystis sp. PCC 6803. FEMS Microbiol. Lett. 2003, 228, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.W.; Ricker, R.D.; Bidlingmeyer, B.A.; Woodward, C. Rapid, Accurate, Sensitive, and Reproducible HPLC Analysis of Amino Acids; Application Note, 2000, No: 5980–1193; Agilent Technologies: Santa Clara, CA, USA.
- Herbert, P.; Barros, P.; Ratola, N.; Alves, A. HPLC determination of amino acids in musts and port wine using OPA/FMOC derivatives. J. Food Sci. 2000, 65, 1130–1133. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Fales, F.W. Evaluation of a spectrophotometric method for determination of total fecal lipid. Clin. Chem. 1971, 17, 1103–1108. [Google Scholar] [CrossRef]
Name | Relevant Genotype | Reference |
---|---|---|
Cyanobacterial strains | ||
WT control | WT, CmR integrated at flanking region of psbA2 gene in Synechocystis genome | [9] |
OXProC | proC, CmR integrated at flanking region of psbA2 gene in Synechocystis genome | [9] |
OXPutA | putA, CmR integrated at flanking region of psbA2 gene in Synechocystis genome | In this study |
Δadc1 control | Δadc1, CmR integrated at flanking region of psbA2 gene in Synechocystis mutant genome | [9] |
OXProC/Δadc1 | proC, CmR integrated at flanking region of psbA2 gene in Synechocystis mutant genome | [9] |
OXPutA/Δadc1 | putA, CmR integrated at flanking region of psbA2 gene in Synechocystis mutant genome | In this study |
Plasmids | ||
pEERM | PpsbA2-CmR; plasmid containing flanking region of psbA2 gene | [10] |
pEERM-proC | PpsbA2-proC-CmR; integrated between SpeI and PstI sites of pEERM | [9] |
pEERM-putA | PpsbA2-putA-CmR; integrated between SpeI and PstI sites of pEERM | In this study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utharn, S.; Lindblad, P.; Jantaro, S. Native putA Overexpression in Synechocystis sp. PCC 6803 Significantly Enhances Polyhydroxybutyrate Production, Further Augmented by the adc1 Knockout Under Prolonged Nitrogen Deprivation. Int. J. Mol. Sci. 2025, 26, 7815. https://doi.org/10.3390/ijms26167815
Utharn S, Lindblad P, Jantaro S. Native putA Overexpression in Synechocystis sp. PCC 6803 Significantly Enhances Polyhydroxybutyrate Production, Further Augmented by the adc1 Knockout Under Prolonged Nitrogen Deprivation. International Journal of Molecular Sciences. 2025; 26(16):7815. https://doi.org/10.3390/ijms26167815
Chicago/Turabian StyleUtharn, Suthira, Peter Lindblad, and Saowarath Jantaro. 2025. "Native putA Overexpression in Synechocystis sp. PCC 6803 Significantly Enhances Polyhydroxybutyrate Production, Further Augmented by the adc1 Knockout Under Prolonged Nitrogen Deprivation" International Journal of Molecular Sciences 26, no. 16: 7815. https://doi.org/10.3390/ijms26167815
APA StyleUtharn, S., Lindblad, P., & Jantaro, S. (2025). Native putA Overexpression in Synechocystis sp. PCC 6803 Significantly Enhances Polyhydroxybutyrate Production, Further Augmented by the adc1 Knockout Under Prolonged Nitrogen Deprivation. International Journal of Molecular Sciences, 26(16), 7815. https://doi.org/10.3390/ijms26167815