IL-15 Promotes the Survival of Anti-Inflammatory (M2), Immunoinhibitory (IL-10+) Dermal Macrophages in Human Eyelid Skin Under IFNγ-Dominated Inflammatory Conditions
Abstract
1. Introduction
2. Results
2.1. IFNγ Reduces the Total Pool of Human Dermal MACs Ex Vivo
2.2. rhIL-15 Reverses the IFNγ-Induced Reduction in M2 CD206+MACs
2.3. Human Dermal M2 CD206+MAC Survival Depends on IL-15Rα-Mediated Signaling
3. Discussion
4. Materials and Methods
4.1. Human Eyelid Skin Samples
4.2. Eyelid Skin Organ Culture
4.3. IL-15Rα Silencing Ex Vivo
4.4. Quantitative Reverse Transcription-Polymerase Chain Reaction
4.5. Immunofluorescence Microscopy and Quantitative Immunohistomorphometry
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CD68 | Cluster of differentiation 68 |
CD86 | Cluster of differentiation 86 |
CD206 | Cluster of differentiation 206 |
IL-10 | Interleukin-10 |
IL-15 | Interleukin-15 |
IL-15Rα | Interleukin-15 receptor alpha |
BSA | Bovine serum albumin |
TBS | Tris-buffered saline |
PBS | Phosphate-buffered saline |
IFNγ | Interferon gamma |
SEM | Standard error of the mean |
MAC | Macrophage |
qIHM | Quantitative immunohistomorphometry |
iNKT10 | IL-10-secreting inhibitory natural killer T |
siIL-15Rα | Small interfering RNA interleukin-15 receptor alpha |
DAPI | 4′,6-diamidino-2-phenylindole |
TUNEL | TdT-mediated dUTP-biotin nick end labeling |
N/A | Not applicable |
References
- He, X.; Gao, X.; Xie, W. Research Progress in Skin Aging and Immunity. Int. J. Mol. Sci. 2024, 25, 4101. [Google Scholar] [CrossRef]
- Apeku, E.; Tantuoyir, M.M.; Zheng, R.; Tanye, N. Exploring the Polarization of M1 and M2 Macrophages in the Context of Skin Diseases. Mol. Biol. Rep. 2024, 51, 269. [Google Scholar] [CrossRef]
- Gu, S.; Xu, L.; Huang, B.; Xiong, K.; Yang, X.; Ye, J. Decoding Macrophage Dynamics: A Pathway to Understanding and Treating Inflammatory Skin Diseases. Int. J. Mol. Sci. 2025, 26, 4287. [Google Scholar] [CrossRef]
- Xia, T.; Fu, S.; Yang, R.; Yang, K.; Lei, W.; Yang, Y.; Zhang, Q.; Zhao, Y.; Yu, J.; Yu, L.; et al. Advances in the Study of Macrophage Polarization in Inflammatory Immune Skin Diseases. J. Inflamm. 2023, 20, 33. [Google Scholar] [CrossRef] [PubMed]
- McGrath, J.A. Recently Discovered Roles for Macrophages in Human Skin Development. Br. J. Dermatol. 2025, 192, 371–372. [Google Scholar] [CrossRef]
- Gherardini, J.; Uchida, Y.; Hardman, J.A.; Chéret, J.; Mace, K.; Bertolini, M.; Paus, R. Tissue-Resident Macrophages Can Be Generated de Novo in Adult Human Skin from Resident Progenitor Cells during Substance P-Mediated Neurogenic Inflammation Ex Vivo. PLoS ONE 2020, 15, e0227817. [Google Scholar] [CrossRef]
- Yadav, S.; Dwivedi, A.; Tripathi, A. Biology of Macrophage Fate Decision: Implication in Inflammatory Disorders. Cell Biol. Int. 2022, 46, 1539–1556. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wu, S. B Cells Recruitment Promotes M2 Macrophage Polarization to Inhibit Inflammation during Wound Healing. Clin. Exp. Immunol. 2025, 219, uxaf002. [Google Scholar] [CrossRef]
- Kolliniati, O.; Ieronymaki, E.; Vergadi, E.; Tsatsanis, C. Metabolic Regulation of Macrophage Activation. J. Innate Immun. 2022, 14, 51–68. [Google Scholar] [CrossRef]
- Peng, Y.; Fu, S.; Zhao, Q. 2022 Update on the Scientific Premise and Clinical Trials for IL-15 Agonists as Cancer Immunotherapy. J. Leukoc. Biol. 2022, 112, 823–834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Jagannath, C. Crosstalk between Metabolism and Epigenetics during Macrophage Polarization. Epigenetics Chromatin 2025, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-H.; Lai, C.-Y.; Yeh, D.-W.; Liu, Y.-L.; Su, Y.-W.; Hsu, L.-C.; Chang, C.-H.; Catherine Jin, S.-L.; Chuang, T.-H. Involvement of M1 Macrophage Polarization in Endosomal Toll-Like Receptors Activated Psoriatic Inflammation. Mediat. Inflamm. 2018, 2018, 3523642. [Google Scholar] [CrossRef]
- Lee, S.H.; Sacks, D.L. Resilience of Dermis Resident Macrophages to Inflammatory Challenges. Exp. Mol. Med. 2024, 56, 2105–2112. [Google Scholar] [CrossRef]
- Behr, N.J.; Pierre, S.; Ickelsheimer, T.; Ziegler, N.; Luckhardt, S.; Kannt, A.; Pinter, A.; Geisslinger, G.; Schäfer, S.M.G.; König, A.; et al. High Content Imaging Shows Distinct Macrophage and Dendritic Cell Phenotypes for Psoriasis and Atopic Dermatitis. Sci. Rep. 2025, 15, 18904. [Google Scholar] [CrossRef]
- Kasraie, S.; Werfel, T. Role of Macrophages in the Pathogenesis of Atopic Dermatitis. Mediat. Inflamm. 2013, 2013, 942375. [Google Scholar] [CrossRef]
- Kamata, M.; Tada, Y. Dendritic Cells and Macrophages in the Pathogenesis of Psoriasis. Front. Immunol. 2022, 13, 941071. [Google Scholar] [CrossRef]
- Kim, H.J.; Jang, J.; Lee, E.-H.; Jung, S.; Roh, J.Y.; Jung, Y. Decreased Expression of Response Gene to Complement 32 in Psoriasis and Its Association with Reduced M2 Macrophage Polarization. J. Dermatol. 2019, 46, 166–168. [Google Scholar] [CrossRef]
- De Benedetti, F.; Prencipe, G.; Bracaglia, C.; Marasco, E.; Grom, A.A. Targeting Interferon-γ in Hyperinflammation: Opportunities and Challenges. Nat. Rev. Rheumatol. 2021, 17, 678–691. [Google Scholar] [CrossRef] [PubMed]
- Orzan, O.A.; Tutunaru, C.V.; Ianoși, S.L. Understanding the Intricate Pathophysiology of Psoriasis and Related Skin Disorders. Int. J. Mol. Sci. 2025, 26, 749. [Google Scholar] [CrossRef] [PubMed]
- Guha Ray, A.; Odum, O.P.; Wiseman, D.; Weinstock, A. The Diverse Roles of Macrophages in Metabolic Inflammation and Its Resolution. Front. Cell Dev. Biol. 2023, 11, 1147434. [Google Scholar] [CrossRef]
- Turchin, I.; Bourcier, M. The Role of Interleukins in the Pathogenesis of Dermatological Immune-Mediated Diseases. Adv. Ther. 2022, 39, 4474–4508. [Google Scholar] [CrossRef] [PubMed]
- Sieminska, I.; Pieniawska, M.; Grzywa, T.M. The Immunology of Psoriasis-Current Concepts in Pathogenesis. Clin. Rev. Allergy Immunol. 2024, 66, 164–191. [Google Scholar] [CrossRef]
- Suzuki, T.; Chéret, J.; Scala, F.D.; Rajabi-Estarabadi, A.; Akhundlu, A.; Demetrius, D.-L.; Gherardini, J.; Keren, A.; Harries, M.; Rodriguez-Feliz, J.; et al. Interleukin-15 Is a Hair Follicle Immune Privilege Guardian. J. Autoimmun. 2024, 145, 103217. [Google Scholar] [CrossRef] [PubMed]
- Bulfone-Paus, S. Exploring the Role of IL-15 in the Skin Immune System. Exp. Dermatol. 2002, 11, 481–482. [Google Scholar] [CrossRef]
- Rappl, G.; Kapsokefalou, A.; Heuser, C.; Rössler, M.; Ugurel, S.; Tilgen, W.; Reinhold, U.; Abken, H. Dermal Fibroblasts Sustain Proliferation of Activated T Cells via Membrane-Bound Interleukin-15 upon Long-Term Stimulation with Tumor Necrosis Factor-Alpha. J. Investig. Dermatol. 2001, 116, 102–109. [Google Scholar] [CrossRef]
- Jabri, B.; Abadie, V. IL-15 Functions as a Danger Signal to Regulate Tissue-Resident T Cells and Tissue Destruction. Nat. Reviews Immunol. 2015, 15, 771–783. [Google Scholar] [CrossRef]
- Waldmann, T.A.; Waldmann, R.; Lin, J.-X.; Leonard, W.J. The Implications of IL-15 Trans-Presentation on the Immune Response. Adv. Immunol. 2022, 156, 103–132. [Google Scholar] [CrossRef]
- Skariah, N.; James, O.J.; Swamy, M. Signalling Mechanisms Driving Homeostatic and Inflammatory Effects of Interleukin-15 on Tissue Lymphocytes. Discov. Immunol. 2024, 3, kyae002. [Google Scholar] [CrossRef]
- Villadsen, L.S.; Schuurman, J.; Beurskens, F.; Dam, T.N.; Dagnaes-Hansen, F.; Skov, L.; Rygaard, J.; Voorhorst-Ogink, M.M.; Gerritsen, A.F.; van Dijk, M.A.; et al. Resolution of Psoriasis upon Blockade of IL-15 Biological Activity in a Xenograft Mouse Model. J. Clin. Investig. 2003, 112, 1571–1580. [Google Scholar] [CrossRef]
- Rückert, R.; Asadullah, K.; Seifert, M.; Budagian, V.M.; Arnold, R.; Trombotto, C.; Paus, R.; Bulfone-Paus, S. Inhibition of Keratinocyte Apoptosis by IL-15: A New Parameter in the Pathogenesis of Psoriasis? J. Immunol. 2000, 165, 2240–2250. [Google Scholar] [CrossRef] [PubMed]
- Karlen, H.; Yousefi, S.; Simon, H.-U.; Simon, D. IL-15 Expression Pattern in Atopic Dermatitis. Int. Arch. Allergy Immunol. 2020, 181, 417–421. [Google Scholar] [CrossRef]
- Prados-Carmona, A.; Navarro-Triviño, F.J.; Ruiz-Villaverde, R.; Corell, A. Role of Interleukins in Dermatology: Exploring the Immune Mechanisms in Skin Diseases. JEADV Clin. Pract. 2024, 3, 1381–1398. [Google Scholar] [CrossRef]
- Beneat, A.; Rueda, V.; Patel, H.; Brune, Z.; Sherry, B.; Shih, A.; Kaplan, S.; Rao, A.; Lee, A.; Varghese, A.; et al. Elevation of Plasma IL-15 and RANTES as Potential Biomarkers of Healing in Chronic Venous Ulcerations: A Pilot Study. Biomolecules 2025, 15, 395. [Google Scholar] [CrossRef]
- Mack, M.R.; Brestoff, J.R.; Berrien-Elliott, M.M.; Trier, A.M.; Yang, T.-L.B.; McCullen, M.; Collins, P.L.; Niu, H.; Bodet, N.D.; Wagner, J.A.; et al. Blood Natural Killer Cell Deficiency Reveals an Immunotherapy Strategy for Atopic Dermatitis. Sci. Transl. Med. 2020, 12, eaay1005. [Google Scholar] [CrossRef]
- Bouchaud, G.; Gehrke, S.; Krieg, C.; Kolios, A.; Hafner, J.; Navarini, A.A.; French, L.E.; Boyman, O. Epidermal IL-15Rα Acts as an Endogenous Antagonist of Psoriasiform Inflammation in Mouse and Man. J. Exp. Med. 2013, 210, 2105–2117. [Google Scholar] [CrossRef] [PubMed]
- Ghraieb, A.; Keren, A.; Ginzburg, A.; Ullmann, Y.; Schrum, A.G.; Paus, R.; Gilhar, A. iNKT Cells Ameliorate Human Autoimmunity: Lessons from Alopecia Areata. J. Autoimmun. 2018, 91, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Kwon, H.-Y.; Lee, S.H.; Lee, H.-G.; Kang, N.-Y.; Chang, Y.-T. Development of a Fluorescent Probe for M2 Macrophages via Gating-Oriented Live-Cell Distinction. J. Am. Chem. Soc. 2023, 145, 2951–2957. [Google Scholar] [CrossRef]
- Ray, A.; Hu, K.H.; Kersten, K.; Courau, T.; Kuhn, N.F.; Zaleta-Linares, I.; Samad, B.; Combes, A.J.; Krummel, M.F. Critical Role of CD206+ Macrophages in Promoting a cDC1-NK-CD8 T Cell Anti-Tumor Immune Axis. bioRxiv 2024. [Google Scholar] [CrossRef]
- Masuda, A.; Matsuguchi, T.; Yamaki, K.; Hayakawa, T.; Yoshikai, Y. Interleukin-15 Prevents Mouse Mast Cell Apoptosis through STAT6-Mediated Bcl-xL Expression. J. Biol. Chem. 2001, 276, 26107–26113. [Google Scholar] [CrossRef]
- Meghnem, D.; Maillasson, M.; Barbieux, I.; Morisseau, S.; Keita, D.; Jacques, Y.; Quéméner, A.; Mortier, E. Selective Targeting of IL-15Rα Is Sufficient to Reduce Inflammation. Front. Immunol. 2022, 13, 886213. [Google Scholar] [CrossRef]
- Suzuki, T.; Scala, F.; Demetrius, D.-L.; Gherardini, J.; Rodriguez-Feliz, J.; Kuka-Epstein, G.; Chéret, J.; Paus, R. IL-15 Prolongs Anagen, Stimulates Proliferation, and Suppresses Apoptosis in the Hair Matrix of Human Scalp Hair Follicles. J. Investig. Dermatol. 2024, 144, 165–170.e5. [Google Scholar] [CrossRef]
- Wollenberg, A.; Mommaas, M.; Oppel, T.; Schottdorf, E.-M.; Günther, S.; Moderer, M. Expression and Function of the Mannose Receptor CD206 on Epidermal Dendritic Cells in Inflammatory Skin Diseases. J. Investig. Dermatol. 2002, 118, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Allard-Chamard, H.; Mishra, H.K.; Nandi, M.; Mayhue, M.; Menendez, A.; Ilangumaran, S.; Ramanathan, S. Interleukin-15 in Autoimmunity. Cytokine 2020, 136, 155258. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, C.S.; Levinger, C.; Abongwa, M.; Ceriani, C.; Archin, N.M.; Siegel, M.; Ghosh, M.; Bosque, A. HIV-1 Latency Reversal and Immune Enhancing Activity of IL-15 Is Not Influenced by Sex Hormones. JCI Insight 2024, 9, e180609. [Google Scholar] [CrossRef]
- Clark, S.E.; Burrack, K.S.; Jameson, S.C.; Hamilton, S.E.; Lenz, L.L. NK Cell IL-10 Production Requires IL-15 and IL-10 Driven STAT3 Activation. Front. Immunol. 2019, 10, 2087. [Google Scholar] [CrossRef]
- Rafei, H.; Basar, R.; Acharya, S.; Hsu, Y.-S.; Liu, P.; Zhang, D.; Bohn, T.; Liang, Q.; Mohanty, V.; Upadhyay, R.; et al. CREM Is a Regulatory Checkpoint of CAR and IL-15 Signalling in NK Cells. Nature 2025, 643, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Buhtoiarov, I.N.; Guo, H.; Cheung, N.-K.V. A Novel Multimeric IL15/IL15Rα-Fc Complex to Enhance Cancer Immunotherapy. Oncoimmunology 2021, 10, 1893500. [Google Scholar] [CrossRef]
- Vestergaard, C.; Just, H.; Baumgartner Nielsen, J.; Thestrup-Pedersen, K.; Deleuran, M. Expression of CCR2 on Monocytes and Macrophages in Chronically Inflamed Skin in Atopic Dermatitis and Psoriasis. Acta Derm. Venereol. 2004, 84, 353–358. [Google Scholar] [CrossRef]
- Peng, Y.; Zhou, M.; Yang, H.; Qu, R.; Qiu, Y.; Hao, J.; Bi, H.; Guo, D. Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases. Mediat. Inflamm. 2023, 2023, 8821610. [Google Scholar] [CrossRef]
- Rhode, P.R.; Egan, J.O.; Xu, W.; Hong, H.; Webb, G.M.; Chen, X.; Liu, B.; Zhu, X.; Wen, J.; You, L.; et al. Comparison of the Superagonist Complex, ALT-803, to IL15 as Cancer Immunotherapeutics in Animal Models. Cancer Immunol. Res. 2016, 4, 49–60. [Google Scholar] [CrossRef]
- Sevilla, A.; Chéret, J.; Lee, W.; Paus, R. Concentration-Dependent Stimulation of Melanin Production as Well as Melanocyte and Keratinocyte Proliferation by Melatonin in Human Eyelid Epidermis. Exp. Dermatol. 2023, 32, 684–693. [Google Scholar] [CrossRef]
- Samra, T.; Gomez-Gomez, T.; Linowiecka, K.; Akhundlu, A.; Lopez de Mendoza, G.; Gompels, M.; Lee, W.W.; Gherardini, J.; Chéret, J.; Paus, R. Melatonin Exerts Prominent, Differential Epidermal and Dermal Anti-Aging Properties in Aged Human Eyelid Skin Ex Vivo. Int. J. Mol. Sci. 2023, 24, 15963. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Park, S.B.; Inuzuka, T.; Zhang, M.; Allen, J.N.; Chayama, K.; Liang, T.J. Genetically Edited Hepatic Cells Expressing the NTCP-S267F Variant Are Resistant to Hepatitis B Virus Infection. Mol. Ther. Methods Clin. Dev. 2021, 23, 597–605. [Google Scholar] [CrossRef]
- Lu, Z.; Hasse, S.; Bodo, E.; Rose, C.; Funk, W.; Paus, R. Towards the Development of a Simplified Long-Term Organ Culture Method for Human Scalp Skin and Its Appendages under Serum-Free Conditions. Exp. Dermatol. 2007, 16, 37–44. [Google Scholar] [CrossRef]
- Bertolini, M.; Pretzlaff, M.; Sulk, M.; Bähr, M.; Gherardini, J.; Uchida, Y.; Reibelt, M.; Kinori, M.; Rossi, A.; Bíró, T.; et al. Vasoactive Intestinal Peptide, Whose Receptor-Mediated Signalling May Be Defective in Alopecia Areata, Provides Protection from Hair Follicle Immune Privilege Collapse. Br. J. Dermatol. 2016, 175, 531–541. [Google Scholar] [CrossRef]
- Han, G.; Gu, B.-H.; Park, S.Y.; Park, D.S.; Hwang, S.M.; Ji, W.; Kim, S.B.; Kim, M. Topical Administration of Coumarin Derivatives Alleviates Skin Inflammatory Symptoms in Atopic Dermatitis Model. Biomed. Pharmacother. 2025, 186, 118004. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Feng, S.; Zhu, H.; Bai, R.; Gan, X.; He, K.; Du, W.; Cheng, B.; Liu, X.; Wang, Z.; et al. Therapeutic Potential of Plasma-Treated Solutions in Atopic Dermatitis. Free Radic. Biol. Med. 2024, 225, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Zima, K.; Purzycka-Bohdan, D.; Szczerkowska-Dobosz, A.; Gabig-Cimińska, M. Keratinocyte-Mediated Antigen Presentation in Psoriasis: Preliminary Insights from In Vitro Studies. Int. J. Mol. Sci. 2024, 25, 13387. [Google Scholar] [CrossRef]
- Xu, R.; Li, X.; Huang, X.; Lin, Z.; Xiong, Y.; Chen, X.; Chu, C.; Han, J.; Wang, F. Translation-Dependent Skin Hyperplasia Is Promoted by Type 1/17 Inflammation in Psoriasis. J. Dermatol. Sci. 2023, 110, 10–18. [Google Scholar] [CrossRef]
- Johnson-Huang, L.M.; Suárez-Fariñas, M.; Pierson, K.C.; Fuentes-Duculan, J.; Cueto, I.; Lentini, T.; Sullivan-Whalen, M.; Gilleaudeau, P.; Krueger, J.G.; Haider, A.S.; et al. A Single Intradermal Injection of IFN-γ Induces an Inflammatory State in Both Non-Lesional Psoriatic and Healthy Skin. J. Investig. Dermatol. 2012, 132, 1177–1187. [Google Scholar] [CrossRef]
- Suzuki, T.; Chéret, J.; Scala, F.D.; Akhundlu, A.; Gherardini, J.; Demetrius, D.-L.; O’Sullivan, J.D.B.; Kuka Epstein, G.; Bauman, A.J.; Demetriades, C.; et al. mTORC1 Activity Negatively Regulates Human Hair Follicle Growth and Pigmentation. EMBO Rep. 2023, 24, e56574. [Google Scholar] [CrossRef] [PubMed]
- Hardman, J.A.; Muneeb, F.; Pople, J.; Bhogal, R.; Shahmalak, A.; Paus, R. Human Perifollicular Macrophages Undergo Apoptosis, Express Wnt Ligands, and Switch Their Polarization during Catagen. J. Investig. Dermatol. 2019, 139, 2543–2546.e9. [Google Scholar] [CrossRef] [PubMed]
- Hawkshaw, N.J.; Hardman, J.A.; Haslam, I.S.; Shahmalak, A.; Gilhar, A.; Lim, X.; Paus, R. Identifying Novel Strategies for Treating Human Hair Loss Disorders: Cyclosporine A Suppresses the Wnt Inhibitor, SFRP1, in the Dermal Papilla of Human Scalp Hair Follicles. PLoS Biol. 2018, 16, e2003705. [Google Scholar] [CrossRef]
- Lee, S.G.; Kim, S.-E.; Jeong, I.-H.; Lee, S.E. Mechanism Underlying Pruritus in Recessive Dystrophic Epidermolysis Bullosa: Role of Interleukin-31 from Mast Cells and Macrophages. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 895–903. [Google Scholar] [CrossRef]
- Wright, P.B.; McDonald, E.; Bravo-Blas, A.; Baer, H.M.; Heawood, A.; Bain, C.C.; Mowat, A.M.; Clay, S.L.; Robertson, E.V.; Morton, F.; et al. The Mannose Receptor (CD206) Identifies a Population of Colonic Macrophages in Health and Inflammatory Bowel Disease. Sci. Rep. 2021, 11, 19616. [Google Scholar] [CrossRef]
- Soltani-Arabshahi, R.; Leboeuf, C.; Rivet, J.; Pisonero, H.; Zhao, W.-L.; Bachelez, H.; Ameisen, J.C.; Janin, A. Bcl-xL Gene Expression Correlated with Lower Apoptotic Cell Numbers and Shorter Progression-Free Survival in PCFCL. J. Investig. Dermatol. 2009, 129, 1703–1709. [Google Scholar] [CrossRef]
- Saito, Y.; Lotti, R.; Kimura, H.; Hasegawa, A.; Bennett, B.; Amato, A.; Pincelli, C.; Abe, R. Advancements in Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis Treatment: Utilizing Fas-FasL Inhibition to Target Cell Death Signaling Pathways for Practical Human Application. J. Investig. Dermatol. 2025, 145, 962–965.e4. [Google Scholar] [CrossRef] [PubMed]
Antigen | Blocking | Primary Antibody | Secondary Antibody | References |
---|---|---|---|---|
CD68 | N/A | Rabbit anti-human CD68 [EPR23917-164] Abcam, ab213363 1:50 | Goat anti-rabbit IgG-Alexa Fluor® 555 Life Technology 1:400 | [6] |
CD86 | 5% BSA in TBS | Mouse anti-human CD86 Novus Biologicals, NBP2-25208 1:50 | Goat anti-mouse IgG FITC Jackson ImmunoResearch 1:200 | [62] |
CD206 | N/A | Rabbit anti-mannose receptor CD206 Abcam, ab64693 1:50 | Goat anti-rabbit IgG FITC Life Technology 1:200 | [38,62,65] |
IL-10 | N/A | Mouse anti-human IL-10 R&D systems, MAB217 1:50 | Goat anti-mouse- Rhodamine Jackson ImmunoResearch 1:200 | [23,36] |
IL-15Rα | 5% BSA in PBS | Mouse anti-IL-15Rα Abcam, ab91270, clone JM7A4 1:100 | Goat anti-mouse Alexa Fluor® 594 Life Technology 1:400 | [23,41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demetrius, D.-L.; Perez, S.M.; Suzuki, T.; Gherardini, J.; Lee, W.; Chéret, J.; Paus, R. IL-15 Promotes the Survival of Anti-Inflammatory (M2), Immunoinhibitory (IL-10+) Dermal Macrophages in Human Eyelid Skin Under IFNγ-Dominated Inflammatory Conditions. Int. J. Mol. Sci. 2025, 26, 7811. https://doi.org/10.3390/ijms26167811
Demetrius D-L, Perez SM, Suzuki T, Gherardini J, Lee W, Chéret J, Paus R. IL-15 Promotes the Survival of Anti-Inflammatory (M2), Immunoinhibitory (IL-10+) Dermal Macrophages in Human Eyelid Skin Under IFNγ-Dominated Inflammatory Conditions. International Journal of Molecular Sciences. 2025; 26(16):7811. https://doi.org/10.3390/ijms26167811
Chicago/Turabian StyleDemetrius, Dana-Lee, Sofia M. Perez, Takahiro Suzuki, Jennifer Gherardini, Wendy Lee, Jérémy Chéret, and Ralf Paus. 2025. "IL-15 Promotes the Survival of Anti-Inflammatory (M2), Immunoinhibitory (IL-10+) Dermal Macrophages in Human Eyelid Skin Under IFNγ-Dominated Inflammatory Conditions" International Journal of Molecular Sciences 26, no. 16: 7811. https://doi.org/10.3390/ijms26167811
APA StyleDemetrius, D.-L., Perez, S. M., Suzuki, T., Gherardini, J., Lee, W., Chéret, J., & Paus, R. (2025). IL-15 Promotes the Survival of Anti-Inflammatory (M2), Immunoinhibitory (IL-10+) Dermal Macrophages in Human Eyelid Skin Under IFNγ-Dominated Inflammatory Conditions. International Journal of Molecular Sciences, 26(16), 7811. https://doi.org/10.3390/ijms26167811