A RUBY Reporter for Efficient Banana Transformation and Development of Betalain-Rich Musa Germplasm
Abstract
1. Introduction
2. Results
2.1. RUBY Drives Betalain Synthesis in Nicotiana Benthamiana Leaves and Banana Fruit
2.2. RUBY Synthesizes Betalains in Banana Plants
2.3. Betalain Accumulation Slightly Affects Banana Plant Growth
3. Discussion
3.1. Betalains Enrich the Appearance and Nutritional Value of Bananas
3.2. High-Efficiency Accumulation of Betalains in Transgenic Banana
3.3. RUBY Serves as a Visual Screening Marker for Banana Genetic Transformation
4. Materials and Methods
4.1. Plant Materials and Vectors
4.2. Banana Transformation
4.2.1. Preparation of Infection Solution
4.2.2. Infection and Selection of ECSs
4.2.3. Plantlet Regeneration
4.3. Transient Gene Expression in N. benthamiana Leaves and Banana Fruits
4.4. Extraction and Quantification of Betalains
4.5. RNA Isolation and RT-qPCR Analysis
4.6. PCR Identification of Transgenic Banana Plants
4.7. Liquid Chromatography–Mass Spectrometry (LC-MS)
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bubici, G.; Kaushal, M.; Prigigallo, M.I.; Gómez–Lama Cabanás, C.; Mercado–Blanco, J. Biological control agents against Fusarium wilt of banana. Front. Microbiol. 2019, 10, 616. [Google Scholar] [CrossRef]
- Huang, H.; Tian, Y.; Huo, Y.; Liu, Y.; Yang, W.; Li, Y.; Zhuo, M.; Xiang, D.; Li, C.; Yi, G.; et al. The Autophagy-Related Musa acuminata Protein MaATG8F Interacts with MaATG4B, Regulating Banana Disease Resistance to Fusarium oxysporum f. sp. cubense Tropical Race 4. J. Fungi 2024, 10, 91. [Google Scholar] [CrossRef]
- ProMusa. Available online: https://www.promusa.org/ (accessed on 22 July 2024).
- FAOSTAT. Food and Agricultural Organization (FAO). Available online: https://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 6 May 2024).
- Drenth, A.; Kema, G. The vulnerability of bananas to globally emerging disease threats. Phytopathology 2021, 111, 2146–2161. [Google Scholar] [CrossRef]
- Thangavelu, R.; Amaresh, H.; Gopi, M.; Loganathan, M.; Nithya, B.; Ganga Devi, P.; Anuradha, C.; Thirugnanavel, A.; Patil, K.B.; Blomme, G.; et al. Geographical Distribution, Host Range and Genetic Diversity of Fusarium oxysporum f. sp. cubense Causing Fusarium Wilt of Banana in India. J. Fungi 2024, 10, 887. [Google Scholar] [CrossRef]
- Dong, Z.; Luo, M.; Wang, Z. An Exo-Polygalacturonase Pgc4 Regulates Aerial Hyphal Growth and Virulence in Fusarium oxysporum f. sp. cubense race 4. Int. J. Mol. Sci. 2020, 21, 5886. [Google Scholar] [CrossRef]
- Harding, R.; Paul, J.Y.; James, A.; Smith, M.; Kleidon, J.; Shekhawat, U.; Phillips, A.; Kidanemariam, D.; Dawit, A.; Dale, J. QCAV-4, the first genetically modified Cavendish (cv. Grand Nain) banana resistant to Fusarium wilt tropical race 4 approved for commercial production and consumption. Plant Biotechnol. J. 2025, 9, 1–10. [Google Scholar] [CrossRef]
- Dale, J.; James, A.; Paul, J.Y.; Khanna, H.; Smith, M.; Peraza-Echeverria, S.; Garcia-Bastidas, F.; Kema, G.; Waterhouse, P.; Mengersen, K.; et al. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat. Commun. 2017, 8, 1496. [Google Scholar] [CrossRef]
- Tripathi, J.N.; Ntui, V.O.; Shah, T.; Tripathi, L. CRISPR/Cas9-mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnol. J. 2021, 19, 1291–1293. [Google Scholar] [CrossRef]
- Ntui, V.O.; Tripathi, J.N.; Shah, T.; Tripathi, L. Targeted knockout of early nodulin-like 3 (MusaENODL3) gene in banana reveals its function in resistance to Xanthomonas wilt disease. Plant Biotechnol. J. 2024, 22, 1101–1112. [Google Scholar] [CrossRef]
- Pedreo, M.A.; Escribano, J. Correlation between antiradical activity and stability of betanine from Beta vulgaris L. roots under different pH, temperature and light conditions. J. Sci. Food Agric. 2001, 81, 627–631. [Google Scholar] [CrossRef]
- Adedayo, B.C.; Oboh, G.; Oyeleye, S.I.; Olasehinde, T.A. Antioxidant and antihyperglycemic properties of three banana cultivars (Musa spp.). Scientifica 2016, 2016, 8391398. [Google Scholar] [CrossRef]
- He, Y.; Zhang, T.; Sun, H.; Zhan, H.; Zhao, Y. A reporter for noninvasively monitoring gene expression and plant transformation. Hortic. Res. 2020, 7, 152. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, J.; Tan, J.; Yang, Y.; Li, S.; Gou, Y.; Luo, Y.; Li, T.; Xiao, W.; Xue, Y.; et al. Efficient assembly of long DNA fragments and multiple genes with improved nickase–based cloning and Cre/loxP recombination. Plant Biotechnol. J. 2022, 20, 1983–1995. [Google Scholar] [CrossRef]
- Polturak, G.; Aharoni, A. Advances and future directions in betalain metabolic engineering. New Phytol. 2019, 224, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.S.; Fu, X.Y.; Yang, Z.Q.; Wang, B.; Gao, J.J.; Wang, M.Q.; Xu, J.; Han, H.J.; Li, Z.J.; Yao, Q.H.; et al. Metabolic engineering of rice endosperm for betanin biosynthesis. New Phytol. 2020, 225, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
- Polturak, G.; Grossman, N.; Vela–Corcia, D.; Dong, Y.; Nudel, A.; Pliner, M.; Levy, M.; Rogachev, I.; Aharoni, A. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain–producing crops and ornamentals. Proc. Natl. Acad. Sci. USA 2017, 114, 9062–9067. [Google Scholar] [CrossRef]
- Wang, D.; Zhong, Y.; Feng, B.; Qi, X.; Yan, T.; Liu, J.; Guo, S.; Wang, Y.; Liu, Z.; Cheng, D.; et al. The RUBY reporter enables efficient haploid identification in maize and tomato. Plant Biotechnol. J. 2023, 21, 1707–1715. [Google Scholar] [CrossRef]
- Deng, Y.J.; Duan, A.Q.; Liu, H.; Wang, Y.H.; Zhang, R.R.; Xu, Z.S.; Xiong, A.S. Generating colorful carrot germplasm through metabolic engineering of betalains pigments. Hortic. Res. 2023, 10, uhad024. [Google Scholar] [CrossRef]
- Dong, T.; Sun, C.K.; Ma, Z.C.; Dou, T.X.; Gao, H.J.; Yi, G.J. Establishment of a determination method of MAPs in banana fruit and study on its content variation rule. J. South. Agric. 2022, 53, 1235–1244. [Google Scholar]
- Paul, J.Y.; Khanna, H.; Kleidon, J.; Hoang, P.; Geijskes, J.; Daniells, J.; Zaplin, E.; Rosenberg, Y.; James, A.; Mlalazi, B.; et al. Golden bananas in the field: Elevated fruit pro–vitamin A from the expression of a single banana transgene. Plant Biotechnol. J. 2017, 15, 520–532. [Google Scholar] [CrossRef]
- Yadav, K.; Patel, P.; Srivastava, A.K.; Ganapathi, T.R. Overexpression of native ferritin gene MusaFer1 enhances iron content and oxidative stress tolerance in transgenic banana plants. PLoS ONE 2017, 12, e0188933. [Google Scholar] [CrossRef]
- Farré, G.; Blancquaert, D.; Capell, T.; Van Der Straeten, D.; Christou, P.; Zhu, C. Engineering complex metabolic pathways in plants. Annu. Rev. Plant Biol. 2014, 65, 187–223. [Google Scholar] [CrossRef] [PubMed]
- Sreedharan, S.; Shekhawat, U.K.; Ganapathi, T.R. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnol. J. 2013, 11, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Tak, H.; Negi, S.; Ganapathi, T.R. Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana. PLoS ONE 2017, 12, e0172695. [Google Scholar] [CrossRef] [PubMed]
- Tak, H.; Negi, S.; Rajpurohit, Y.S.; Misra, H.S.; Ganapathi, T.R. MusaMPK5, a mitogen activated protein kinase is involved in regulation of cold tolerance in banana. Plant Physiol. Biochem. 2020, 146, 112–123. [Google Scholar] [CrossRef]
- Shao, X.; Wu, S.; Dou, T.; Zhu, H.; Hu, C.; Huo, H.; He, W.; Deng, G.; Sheng, O.; Bi, F.; et al. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene–modified semi–dwarf banana. Plant Biotechnol. J. 2020, 18, 17–19. [Google Scholar] [CrossRef]
- Hu, C.H.; Wei, Y.R.; Huang, Y.H.; Yi, G.J. An efficient protocol for the production of chit42 transgenic Furenzhi banana (Musa spp. AA group) resistant to Fusarium oxysporum. Vitr. Cell. Dev. Biol.–Plant 2013, 49, 584–592. [Google Scholar] [CrossRef]
- Hwang, I.S.; Choi, D.S.; Kim, N.H.; Kim, D.S.; Hwang, B.K. Pathogenesis–related protein 4b interacts with leucine–rich repeat protein 1 to suppress PR4b–triggered cell death and defense response in pepper. Plant J. 2014, 77, 521–533. [Google Scholar] [CrossRef]
- Shan, W.; Kuang, J.F.; Wei, W.; Fan, Z.Q.; Deng, W.; Li, Z.G.; Bouzayen, M.; Pirrello, J.; Lu, W.J.; Chen, J.Y. MaXB3 modulates MaNAC2, MaACS1, and MaACO1 dtability to tepress rthylene biosynthesis during banana fruit ripening. Plant Physiol. 2020, 184, 1153–1171. [Google Scholar] [CrossRef]
Primer Name | Sequences (5′-3′) | Notes |
---|---|---|
BvCYP76AD1S-F | CTGCGAGATCGATGTTAAGG | RT-qPCR primers of BvCYP76AD1S gene |
BvCYP76AD1S-R | GAACTTCTCGTCCATGTCGAG | |
BvDODA1S-F | CACCGCACTACTTCGATGGTG | RT-qPCR primers of BvDODA1S gene |
BvDODA1S-R | GAGTGGATAAGCTCGGCCTTC | |
cDOPA5GT-F | CATCGTCGAGATGATCCTTGAG | RT-qPCR primers of cDOPA5GT gene |
cDOPA5GT-R | GAAATCGTCGATCGCCTTCACG | |
MaActin-F | ACATTGTCAGGTGGGGAGTT | RT-qPCR primers of endogenous reference gene MaActin |
MaActin-R | CCTTTTGTTCCACACGAGATT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Huang, H.; Wang, S.; Wang, D.; Xie, Y.; Hu, C. A RUBY Reporter for Efficient Banana Transformation and Development of Betalain-Rich Musa Germplasm. Int. J. Mol. Sci. 2025, 26, 7805. https://doi.org/10.3390/ijms26167805
He W, Huang H, Wang S, Wang D, Xie Y, Hu C. A RUBY Reporter for Efficient Banana Transformation and Development of Betalain-Rich Musa Germplasm. International Journal of Molecular Sciences. 2025; 26(16):7805. https://doi.org/10.3390/ijms26167805
Chicago/Turabian StyleHe, Weidi, Huoqing Huang, Shuxian Wang, Dalin Wang, Yanling Xie, and Chunhua Hu. 2025. "A RUBY Reporter for Efficient Banana Transformation and Development of Betalain-Rich Musa Germplasm" International Journal of Molecular Sciences 26, no. 16: 7805. https://doi.org/10.3390/ijms26167805
APA StyleHe, W., Huang, H., Wang, S., Wang, D., Xie, Y., & Hu, C. (2025). A RUBY Reporter for Efficient Banana Transformation and Development of Betalain-Rich Musa Germplasm. International Journal of Molecular Sciences, 26(16), 7805. https://doi.org/10.3390/ijms26167805