Neutrophil Gelatinase-Associated Lipocalin: A Shared Early Biomarker of Remote Organ Dysfunction in Blast-Induced Extremity Trauma
Abstract
1. Introduction
2. Results
2.1. Lung Gene Expression Profiles
2.2. Kidney Gene Expression Profiles
2.3. Liver Gene Expression Profiles
2.4. Systemic and Cross-Organ NGAL Responses
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Polytrauma Models, Animal Procedures, and Tissue Collection
4.3. Total RNA Isolation and RT-qPCR
4.4. Protein–Protein Interaction Analysis
4.5. NGAL Analysis
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ARRIVE | Animal research: reporting of in vivo experiments |
BCA | Bicinchoninic acid |
BOP | Blast overpressure |
cDNA | Complementary DNA |
DAMPs | Damage-associated molecular patterns |
DEGs | Differentially expressed genes |
dHLA | delayed hindlimb amputation |
ELISA | Enzyme-linked immunosorbent assay |
hpi | hours post injury |
IACUC | Institutional animal care and use committee |
MODS | Multi-organ dysfunction syndrome |
MOFS | Multiple organ failure syndrome |
mRNA | Messenger RNA |
NGAL | Neutrophil gelatinase-associated lipocalin |
non-IRI | Injury model minus tourniquet-induced ischemia insult |
O.D. | Optical density |
PPI | protein–protein interaction networks |
qRT-PCR | Quantitative real-time reverse transcription polymerase chain reaction |
RIPA buffer | Radioimmunoprecipitation assay buffer |
tIRI | Tourniquet-induced ischemia/reperfusion injury model |
References
- Iyengar, K.P.; Venkatesan, A.S.; Jain, V.K.; Shashidhara, M.K.; Elbana, H.; Botchu, R. Risks in the Management of Polytrauma Patients: Clinical Insights. Orthop. Res. Rev. 2023, 15, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Pape, H.C.; Moore, E.E.; McKinley, T.; Sauaia, A. Pathophysiology in patients with polytrauma. Injury 2022, 53, 2400–2412. [Google Scholar] [CrossRef]
- Johnson, E.R.; Matthay, M.A. Acute lung injury: Epidemiology, pathogenesis, and treatment. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, 243–252. [Google Scholar] [CrossRef]
- Keel, M.; Trentz, O. Pathophysiology of polytrauma. Injury 2005, 36, 691–709. [Google Scholar] [CrossRef]
- Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Randolph, A.G.; Calfee, C.S. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers 2019, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Barie, P.S.; Hydo, L.J.; Pieracci, F.M.; Shou, J.; Eachempati, S.R. Multiple organ dysfunction syndrome in critical surgical illness. Surg. Infect. (Larchmt) 2009, 10, 369–377. [Google Scholar] [CrossRef]
- Soo, A.; Zuege, D.J.; Fick, G.H.; Niven, D.J.; Berthiaume, L.R.; Stelfox, H.T.; Doig, C.J. Describing organ dysfunction in the intensive care unit: A cohort study of 20,000 patients. Crit. Care 2019, 23, 186. [Google Scholar] [CrossRef]
- Carden, D.L.; Granger, D.N. Pathophysiology of ischaemia-reperfusion injury. J. Pathol. 2000, 190, 255–266. [Google Scholar] [CrossRef]
- Chen, G.Y.; Nunez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef]
- Lenz, A.; Franklin, G.A.; Cheadle, W.G. Systemic inflammation after trauma. Injury 2007, 38, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Lord, J.M.; Midwinter, M.J.; Chen, Y.F.; Belli, A.; Brohi, K.; Kovacs, E.J.; Koenderman, L.; Kubes, P.; Lilford, R.J. The systemic immune response to trauma: An overview of pathophysiology and treatment. Lancet 2014, 384, 1455–1465. [Google Scholar] [CrossRef]
- Bianchi, M.E. DAMPs, PAMPs and alarmins: All we need to know about danger. J. Leukoc. Biol. 2007, 81, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bortolotti, P.; Faure, E.; Kipnis, E. Inflammasomes in Tissue Damages and Immune Disorders After Trauma. Front. Immunol. 2018, 9, 1900. [Google Scholar] [CrossRef] [PubMed]
- Hwang, P.F.; Porterfield, N.; Pannell, D.; Davis, T.A.; Elster, E.A. Trauma is danger. J. Transl. Med. 2011, 9, 92. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Palmer, A.; Lupu, L.; Huber-Lang, M. Inflammatory response to the ischaemia-reperfusion insult in the liver after major tissue trauma. Eur. J. Trauma. Emerg. Surg. 2022, 48, 4431–4444. [Google Scholar] [CrossRef]
- Relja, B.; Land, W.G. Damage-associated molecular patterns in trauma. Eur. J. Trauma. Emerg. Surg. 2020, 46, 751–775. [Google Scholar] [CrossRef]
- Vourc’h, M.; Roquilly, A.; Asehnoune, K. Trauma-Induced Damage-Associated Molecular Patterns-Mediated Remote Organ Injury and Immunosuppression in the Acutely Ill Patient. Front. Immunol. 2018, 9, 1330. [Google Scholar] [CrossRef]
- Rowe, C.J.; Walsh, S.A.; Dragon, A.H.; Rhodes, A.M.; Pak, O.L.; Ronzier, E.; Levi, B.; Potter, B.K.; Spreadborough, P.J.; Davis, T.A. Tourniquet-induced ischemia creates increased risk of organ dysfunction and mortality following delayed limb amputation. Injury 2023, 54, 1792–1803. [Google Scholar] [CrossRef]
- Kaltenmeier, C.; Yazdani, H.O.; Handu, S.; Popp, B.; Geller, D.; Tohme, S. The Role of Neutrophils as a Driver in Hepatic Ischemia-Reperfusion Injury and Cancer Growth. Front. Immunol. 2022, 13, 887565. [Google Scholar] [CrossRef]
- Oliveira, T.H.C.; Marques, P.E.; Proost, P.; Teixeira, M.M.M. Neutrophils: A cornerstone of liver ischemia and reperfusion injury. Lab. Investig. 2018, 98, 51–62. [Google Scholar] [CrossRef]
- Furubeppu, H.; Ito, T.; Kakuuchi, M.; Yasuda, T.; Kamikokuryo, C.; Yamada, S.; Maruyama, I.; Kakihana, Y. Differential Regulation of Damage-Associated Molecular Pattern Release in a Mouse Model of Skeletal Muscle Ischemia/Reperfusion Injury. Front. Immunol. 2021, 12, 628822. [Google Scholar] [CrossRef]
- Tu, H.; Li, Y.L. Inflammation balance in skeletal muscle damage and repair. Front. Immunol. 2023, 14, 1133355. [Google Scholar] [CrossRef]
- Huber-Lang, M.; Lambris, J.D.; Ward, P.A. Innate immune responses to trauma. Nat. Immunol. 2018, 19, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Jawa, R.S.; Anillo, S.; Huntoon, K.; Baumann, H.; Kulaylat, M. Analytic review: Interleukin-6 in surgery, trauma, and critical care: Part I: Basic science. J. Intensive Care Med. 2011, 26, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ye, J.J.; Gan, L.; Zhang, M.; Sun, D.; Li, Y.; Wang, T.; Chang, P. Traumatic inflammatory response: Pathophysiological role and clinical value of cytokines. Eur. J. Trauma. Emerg. Surg. 2024, 50, 1313–1330. [Google Scholar] [CrossRef] [PubMed]
- Friedl, H.P.; Till, G.O.; Trentz, O.; Ward, P.A. Roles of histamine, complement and xanthine oxidase in thermal injury of skin. Am. J. Pathol. 1989, 135, 203–217. [Google Scholar]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef]
- Karki, R.; Sharma, B.R.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.K.S.; et al. Synergism of TNF-alpha and IFN-gamma Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 2021, 184, 149–168.e17. [Google Scholar] [CrossRef]
- Spreadborough, P.J.; Strong, A.L.; Mares, J.; Levi, B.; Davis, T.A. Tourniquet use following blast-associated complex lower limb injury and traumatic amputation promotes end organ dysfunction and amplified heterotopic ossification formation. J. Orthop. Surg. Res. 2022, 17, 422. [Google Scholar] [CrossRef]
- Rowe, C.J.; Mang, J.; Huang, B.; Dommaraju, K.; Potter, B.K.; Schobel, S.A.; Gann, E.R.; Davis, T.A. Systemic inflammation induced from remote extremity trauma is a critical driver of secondary brain injury. Mol. Cell Neurosci. 2023, 126, 103878. [Google Scholar] [CrossRef]
- Rowe, C.J.; Nwaolu, U.; Martin, L.; Huang, B.J.; Mang, J.; Salinas, D.; Schlaff, C.D.; Ghenbot, S.; Lansford, J.L.; Potter, B.K.; et al. Systemic inflammation following traumatic injury and its impact on neuroinflammatory gene expression in the rodent brain. J. Neuroinflamm. 2024, 21, 211. [Google Scholar] [CrossRef] [PubMed]
- Guardado, S.; Ojeda-Juarez, D.; Kaul, M.; Nordgren, T.M. Comprehensive review of lipocalin 2-mediated effects in lung inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 321, L726–L733. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, R.J.; Hyeon, S.J.; Ryu, H.; Joo, H.; Bu, Y.; Kim, J.H.; Suk, K. Lipocalin-2 Is a Key Regulator of Neuroinflammation in Secondary Traumatic and Ischemic Brain Injury. Neurotherapeutics 2023, 20, 803–821. [Google Scholar] [CrossRef]
- Tan, Q.; Zhang, C.; Rao, X.; Wan, W.; Lin, W.; Huang, S.; Ying, J.; Lin, Y.; Hua, F. The interaction of lipocalin-2 and astrocytes in neuroinflammation: Mechanisms and therapeutic application. Front. Immunol. 2024, 15, 1358719. [Google Scholar] [CrossRef]
- An, H.S.; Yoo, J.W.; Jeong, J.H.; Heo, M.; Hwang, S.H.; Jang, H.M.; Jeong, E.A.; Lee, J.; Shin, H.J.; Kim, K.E.; et al. Lipocalin-2 promotes acute lung inflammation and oxidative stress by enhancing macrophage iron accumulation. Int. J. Biol. Sci. 2023, 19, 1163–1177. [Google Scholar] [CrossRef]
- Makris, K.; Markou, N.; Evodia, E.; Dimopoulou, E.; Drakopoulos, I.; Ntetsika, K.; Rizos, D.; Baltopoulos, G.; Haliassos, A. Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin. Chem. Lab. Med. 2009, 47, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Minami, S.; Doi, T.; Abe, T.; Takeuchi, I. Neutrophil gelatinase-associated lipocalin as a biomarker for short-term outcomes among trauma patients: A single-center observational study. PLoS ONE 2021, 16, e0251319. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, H.; Zhang, M.; Zhang, Y.; Qian, C.; Liu, Y.; He, S.; Zou, Y.; Liu, H. Early expression of serum neutrophil gelatinase-associated lipocalin (NGAL) is associated with neurological severity immediately after traumatic brain injury. J. Neurol. Sci. 2016, 368, 392–398. [Google Scholar] [CrossRef]
- Qiu, S.; Chen, X.; Pang, Y.; Zhang, Z. Lipocalin-2 protects against renal ischemia/reperfusion injury in mice through autophagy activation mediated by HIF1alpha and NF-kappab crosstalk. Biomed. Pharmacother. 2018, 108, 244–253. [Google Scholar] [CrossRef]
- Mishra, J.; Mori, K.; Ma, Q.; Kelly, C.; Yang, J.; Mitsnefes, M.; Barasch, J.; Devarajan, P. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J. Am. Soc. Nephrol. 2004, 15, 3073–3082. [Google Scholar] [CrossRef]
- Vinuesa, E.; Sola, A.; Jung, M.; Alfaro, V.; Hotter, G. Lipocalin-2-induced renal regeneration depends on cytokines. Am. J. Physiol. Renal Physiol. 2008, 295, F1554–F1562. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Qiao, S.K.; Wang, R.Y.; Guo, X.N. NGAL attenuates renal ischemia/reperfusion injury through autophagy activation and apoptosis inhibition in rats. Chem. Biol. Interact. 2018, 289, 40–46. [Google Scholar] [CrossRef]
- Gong, H.; Xia, Y.; Jing, G.; Yuan, M.; Zhou, H.; Wu, D.; Zuo, J.; Lei, C.; Aidebaike, D.; Wu, X.; et al. Berberine alleviates neuroinflammation by downregulating NFkappaB/LCN2 pathway in sepsis-associated encephalopathy: Network pharmacology, bioinformatics, and experimental validation. Int. Immunopharmacol. 2024, 133, 112036. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Sanchez, G.S.; Noriega-Rivera, R.; Hernandez-O’Farrill, E.; Valiyeva, F.; Quinones-Diaz, B.; Villodre, E.S.; Debeb, B.G.; Rosado-Albacarys, A.; Vivas-Mejia, P.E. Targeting Lipocalin-2 in Inflammatory Breast Cancer Cells with Small Interference RNA and Small Molecule Inhibitors. Int. J. Mol. Sci. 2021, 22, 8581. [Google Scholar] [CrossRef] [PubMed]
- Dragon, A.H.; Rowe, C.J.; Rhodes, A.M.; Pak, O.L.; Davis, T.A.; Ronzier, E. Systematic Identification of the Optimal Housekeeping Genes for Accurate Transcriptomic and Proteomic Profiling of Tissues following Complex Traumatic Injury. Methods Protoc. 2023, 6, 22. [Google Scholar] [CrossRef]
- Brownstein, B.H.; Logvinenko, T.; Lederer, J.A.; Cobb, J.P.; Hubbard, W.J.; Chaudry, I.H.; Remick, D.G.; Baker, H.V.; Xiao, W.; Mannick, J.A. Commonality and differences in leukocyte gene expression patterns among three models of inflammation and injury. Physiol. Genom. 2006, 24, 298–309. [Google Scholar] [CrossRef]
- Cobb, J.P.; Mindrinos, M.N.; Miller-Graziano, C.; Calvano, S.E.; Baker, H.V.; Xiao, W.; Laudanski, K.; Brownstein, B.H.; Elson, C.M.; Hayden, D.L.; et al. Application of genome-wide expression analysis to human health and disease. Proc. Natl. Acad. Sci. USA 2005, 102, 4801–4806. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.L.; Kim, L.A.; Patro, R.; Rosati, B.; McKinnon, D. Common and differential transcriptional responses to different models of traumatic stress exposure in rats. Transl. Psychiatry 2018, 8, 165. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, R.; Doi, K.; Rabb, H. Acute kidney injury and distant organ dysfunction-network system analysis. Kidney Int. 2023, 103, 1041–1055. [Google Scholar] [CrossRef]
- Horst, K.; Mollnes, T.E.; Huber-Lang, M.; Hildebrand, F. Editorial: Organ cross talk and its impact on the clinical course in multiple trauma and critical illness. Front. Immunol. 2023, 14, 1195371. [Google Scholar] [CrossRef]
- Battaglini, D.; De Rosa, S.; Godoy, D.A. Crosstalk Between the Nervous System and Systemic Organs in Acute Brain Injury. Neurocrit. Care 2024, 40, 337–348. [Google Scholar] [CrossRef]
- Li, X.; Yuan, F.; Zhou, L. Organ Crosstalk in Acute Kidney Injury: Evidence and Mechanisms. J. Clin. Med. 2022, 11, 6637. [Google Scholar] [CrossRef]
- Choudhry, M.A.; Bland, K.I.; Chaudry, I.H. Trauma and immune response--effect of gender differences. Injury 2007, 38, 1382–1391. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Xie, J.; Yang, F.; Chen, J.J.; Li, Z.F.; Yi, C.L.; Gao, W.; Bai, X.J. The influence of sex on outcomes in trauma patients: A meta-analysis. Am. J. Surg. 2015, 210, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rowe, C.J.; Nwaolu, U.; Spreadborough, P.J.; Davis, T.A. Neutrophil Gelatinase-Associated Lipocalin: A Shared Early Biomarker of Remote Organ Dysfunction in Blast-Induced Extremity Trauma. Int. J. Mol. Sci. 2025, 26, 7794. https://doi.org/10.3390/ijms26167794
Rowe CJ, Nwaolu U, Spreadborough PJ, Davis TA. Neutrophil Gelatinase-Associated Lipocalin: A Shared Early Biomarker of Remote Organ Dysfunction in Blast-Induced Extremity Trauma. International Journal of Molecular Sciences. 2025; 26(16):7794. https://doi.org/10.3390/ijms26167794
Chicago/Turabian StyleRowe, Cassie J., Uloma Nwaolu, Philip J. Spreadborough, and Thomas A. Davis. 2025. "Neutrophil Gelatinase-Associated Lipocalin: A Shared Early Biomarker of Remote Organ Dysfunction in Blast-Induced Extremity Trauma" International Journal of Molecular Sciences 26, no. 16: 7794. https://doi.org/10.3390/ijms26167794
APA StyleRowe, C. J., Nwaolu, U., Spreadborough, P. J., & Davis, T. A. (2025). Neutrophil Gelatinase-Associated Lipocalin: A Shared Early Biomarker of Remote Organ Dysfunction in Blast-Induced Extremity Trauma. International Journal of Molecular Sciences, 26(16), 7794. https://doi.org/10.3390/ijms26167794