CO and NO Coordinate Developmental Neuron Migration
Abstract
1. Introduction
2. Results
2.1. Paracrine and Autocrine Gaseous Messengers Induce cGMP Production in Migrating Enteric Neurons
2.2. Heme Oxygenase Activity Modulates Enteric Neuron Migration
2.3. Regulation of Enteric Neuron Migration Downstream of cGMP
3. Discussion
3.1. CO and NO Signalling and Embryonic Neuron Migration
3.2. A Potential Interaction Between CO and NO Signalling
3.3. Signalling Pathways Downstream of Cyclic Nucleotide Formation
3.4. Future Research Directions
4. Materials and Methods
4.1. Anti-cGMP Pre-Incubation and General Immunocytochemistry
4.2. In Vivo Culture Experiments
4.3. Gut Tissue Blot Preparation and Life Cell Imaging
4.4. Microscopic Image Acquisition and Processing
4.5. Statistical Analysis and Data Visualisation
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sasselli, V.; Pachnis, V.; Burns, A.J. The enteric nervous system. Dev. Biol. 2012, 366, 64–73. [Google Scholar] [CrossRef]
- Nagy, N.; Goldstein, A.M. Enteric nervous system development: A crest cell’s journey from neural tube to colon. Semin. Cell Dev. Biol. 2017, 66, 94–106. [Google Scholar] [CrossRef]
- Hartenstein, V. Development of the insect stomatogastric nervous system. Trends Neurosci. 1997, 20, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Copenhaver, P.F. How to innervate a simple gut: Familiar themes and unique aspects in the formation of the insect enteric nervous system. Dev. Dyn. 2007, 236, 1841–1864. [Google Scholar] [CrossRef] [PubMed]
- Copenhaver, P.F.; Ramaker, J.M. Neuronal migration during development and the amyloid precursor protein. Curr. Opin. Insect Sci. 2016, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ganfornina, M.D.; Sanchez, D.; Bastiani, M.J. Embryonic development of the enteric nervous system of the grasshopper Schistocerca americana. J. Comp. Neurol. 1996, 372, 581–596. [Google Scholar] [CrossRef]
- Stern, M.; Knipp, S.; Bicker, G. Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria). J. Comp. Neurol. 2007, 501, 38–51. [Google Scholar] [CrossRef]
- Guo, X.; Kang, L. Phenotypic Plasticity in Locusts: Trade-Off Between Migration and Reproduction. Annu. Rev. Entomol. 2025, 70, 23–44. [Google Scholar] [CrossRef]
- Knipp, S.; Bicker, G. A developmental study of enteric neuron migration in the grasshopper using immunological probes. Dev. Dyn. 2009, 238, 2837–2849. [Google Scholar] [CrossRef]
- Bastiani, M.J.; Harrelson, A.L.; Snow, P.M.; Goodman, C.S. Expression of fasciclin I and II glycoproteins on subsets of axon pathways during neuronal development in the grasshopper. Cell 1987, 48, 745–755. [Google Scholar] [CrossRef]
- Haase, A.; Bicker, G. Nitric oxide and cyclic nucleotides are regulators of neuronal migration in an insect embryo. Development 2003, 130, 3977–3987. [Google Scholar] [CrossRef]
- Knipp, S.; Bicker, G. Regulation of enteric neuron migration by the gaseous messenger molecules CO and NO. Development 2009, 136, 85–93. [Google Scholar] [CrossRef]
- Peunova, N.; Scheinker, V.; Cline, H.; Enikolopov, G. Nitric Oxide Is an Essential Negative Regulator of Cell Proliferation in Xenopus Brain. J. Neurosci. 2001, 21, 8809–8818. [Google Scholar] [CrossRef]
- Boehning, D.; Snyder, S.H. Novel Neural Modulators. Annu. Rev. Neurosci. 2003, 26, 105–131. [Google Scholar] [CrossRef]
- Godfrey, E.W.; Schwarte, R.C. The role of nitric oxide signaling in the formation of the neuromuscular junction. J. Neurocytol. 2003, 32, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.A.; Stasiv, Y.; Benraiss, A.; Chmielnicki, E.; Grinberg, A.; Westphal, H.; Goldman, S.A.; Enikolopov, G. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc. Natl. Acad. Sci. USA 2003, 100, 9566–9571. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-G.; Lu, F.-M.; Jin, I.; Udo, H.; Kandel, E.R.; de Vente, J.; Walter, U.; Lohmann, S.M.; Hawkins, R.D.; Antonova, I. Presynaptic and Postsynaptic Roles of NO, cGK, and RhoA in Long-Lasting Potentiation and Aggregation of Synaptic Proteins. Neuron 2005, 45, 389–403. [Google Scholar] [CrossRef] [PubMed]
- Carreira, B.P.; Morte, M.I.; Lourenço, A.S.; Santos, A.I.; Inácio, Â.; Ambrósio, A.F.; Carvalho, C.M.; Araújo, I.M. Differential Contribution of the Guanylyl Cyclase-Cyclic GMP-Protein Kinase G Pathway to the Proliferation of Neural Stem Cells Stimulated by Nitric Oxide. Neurosignals 2013, 21, 1–13. [Google Scholar] [CrossRef]
- Nikonenko, I.; Nikonenko, A.; Mendez, P.; Michurina, T.V.; Enikolopov, G.; Muller, D. Nitric oxide mediates local activity-dependent excitatory synapse development. Proc. Natl. Acad. Sci. USA 2013, 110, E4142–E4151. [Google Scholar] [CrossRef]
- Garthwaite, J. NO as a multimodal transmitter in the brain: Discovery and current status. Br. J. Pharmacol. 2019, 176, 197–211. [Google Scholar] [CrossRef]
- Gibbs, S.M.; Truman, J.W. Nitric Oxide and Cyclic GMP Regulate Retinal Patterning in the Optic Lobe of Drosophila. Neuron 1998, 20, 83–93. [Google Scholar] [CrossRef]
- Champlin, D.T.; Truman, J.W. Ecdysteroid coordinates optic lobe neurogenesis via a nitric oxide signaling pathway. Development 2000, 127, 3543–3551. [Google Scholar] [CrossRef]
- Cayre, M.; Malaterre, J.; Scotto-Lomassese, S.; Holstein, G.R.; Martinelli, G.P.; Forni, C.; Nicolas, S.; Aouane, A.; Strambi, C.; Strambi, A. A role for nitric oxide in sensory-induced neurogenesis in an adult insect brain. Eur. J. Neurosci. 2005, 21, 2893–2902. [Google Scholar] [CrossRef]
- Rabinovich, D.; Yaniv, S.; Alyagor, I.; Schuldiner, O. Nitric Oxide as a Switching Mechanism between Axon Degeneration and Regrowth during Developmental Remodeling. Cell 2016, 164, 170–182. [Google Scholar] [CrossRef]
- Hou, L.; Yang, P.; Jiang, F.; Liu, Q.; Wang, X.; Kang, L. The neuropeptide F/nitric oxide pathway is essential for shaping locomotor plasticity underlying locust phase transition. eLife 2017, 6, e22526. [Google Scholar] [CrossRef]
- Aso, Y.; Ray, R.P.; Long, X.; Bushey, D.; Cichewicz, K.; Ngo, T.-T.B.; Sharp, B.; Christoforou, C.; Hu, A.; Lemire, A.L.; et al. Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. eLife 2019, 8, e49257. [Google Scholar] [CrossRef] [PubMed]
- Giachello, C.N.G.; Fan, Y.N.; Landgraf, M.; Baines, R.A. Nitric oxide mediates activity-dependent change to synaptic excitation during a critical period in Drosophila. Sci. Rep. 2021, 11, 20286. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Nakane, M.; Pollock, J.S.; Kuk, J.E.; Förstermann, U. A correlation between soluble brain nitric oxide synthase and NADPH-diaphorase activity is only seen after exposure of the tissue to fixative. Neurosci. Lett. 1993, 155, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Lucas, K.A.; Pitari, G.M.; Kazerounian, S.; Ruiz-Stewart, I.; Park, J.; Schulz, S.; Chepenik, K.P.; Waldman, S.A. Guanylyl Cyclases and Signaling by Cyclic GMP. Pharmacol. Rev. 2000, 52, 375–413. [Google Scholar] [CrossRef]
- Mueller, U.; Bicker, G. Calcium-activated release of nitric oxide and cellular distribution of nitric oxide-synthesizing neurons in the nervous system of the locust. J. Neurosci. 1994, 14, 7521–7528. [Google Scholar] [CrossRef]
- Elphick, M.R.; Rayne, R.C.; Riveros-Moreno, V.; Moncada, S.; O’Shea, M. Nitric Oxide Synthesis in Locust Olfactory Interneurones. J. Exp. Biol. 1995, 198, 821–829. [Google Scholar] [CrossRef]
- Vente, J.D.; Steinbusch, H.W.M.; Schipper, J. A new approach to immunocytochemistry of 3′,5′-cyclic guanosine monophosphate: Preparation, specificity, and initial application of a new antiserum against formaldehyde-fixed 3′,5′-cyclic guanosine monophosphate. Neuroscience 1987, 22, 361–373. [Google Scholar] [CrossRef]
- Verma, A.; Hirsch, D.J.; Glatt, C.E.; Ronnett, G.V.; Snyder, S.H. Carbon Monoxide: A Putative Neural Messenger. Science 1993, 259, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Boehning, D.; Moon, C.; Sharma, S.; Hurt, K.J.; Hester, L.D.; Ronnett, G.V.; Shugar, D.; Snyder, S.H. Carbon Monoxide Neurotransmission Activated by CK2 Phosphorylation of Heme Oxygenase-2. Neuron 2003, 40, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Boehning, D.; Sedaghat, L.; Sedlak, T.W.; Snyder, S.H. Heme Oxygenase-2 Is Activated by Calcium-Calmodulin. J. Biol. Chem. 2004, 279, 30927–30930. [Google Scholar] [CrossRef]
- Kim, H.P.; Ryter, S.W.; Choi, A.M. CO as a cellular signaling molecule. Annu. Rev. Pharmacol. Toxicol. 2006, 46, 411–449. [Google Scholar] [CrossRef]
- Wegiel, B.; Hanto, D.W.; Otterbein, L.E. The social network of carbon monoxide in medicine. Trends Mol. Med. 2013, 19, 3–11. [Google Scholar] [CrossRef]
- Lu, W.; Yang, X.; Wang, B. Carbon monoxide signaling and soluble guanylyl cyclase: Facts, myths, and intriguing possibilities. Biochem. Pharmacol. 2022, 200, 115041. [Google Scholar] [CrossRef]
- Ingi, T.; Cheng, J.; Ronnett, G.V. Carbon Monoxide: An Endogenous Modulator of the Nitric Oxide–Cyclic GMP Signaling System. Neuron 1996, 16, 835–842. [Google Scholar] [CrossRef]
- Zhang, X.; Sato, M.; Sasahara, M.; Migita, C.T.; Yoshida, T. Unique features of recombinant heme oxygenase of Drosophila melanogaster compared with those of other heme oxygenases studied. Eur. J. Biochem. 2004, 271, 1713–1724. [Google Scholar] [CrossRef]
- Watanabe, T.; Kikuchi, M.; Hatakeyama, D.; Shiga, T.; Yamamoto, T.; Aonuma, H.; Takahata, M.; Suzuki, N.; Ito, E. Gaseous neuromodulator-related genes expressed in the brain of honeybee Apis mellifera. Dev. Neurobiol. 2007, 67, 456–473. [Google Scholar] [CrossRef]
- Spencer, C.S.; Yunta, C.; de Lima, G.P.G.; Hemmings, K.; Lian, L.-Y.; Lycett, G.; Paine, M.J.I. Characterisation of Anopheles gambiae heme oxygenase and metalloporphyrin feeding suggests a potential role in reproduction. Insect Biochem. Mol. Biol. 2018, 98, 25–33. [Google Scholar] [CrossRef]
- Walter-Nuno, A.B.; Taracena, M.L.; Mesquita, R.D.; Oliveira, P.L.; Paiva-Silva, G.O. Silencing of Iron and Heme-Related Genes Revealed a Paramount Role of Iron in the Physiology of the Hematophagous Vector Rhodnius prolixus. Front. Genet. 2018, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.R.; Marletta, M.A. Soluble Guanylate Cyclase from Bovine Lung: Activation with Nitric Oxide and Carbon Monoxide and Spectral Characterization of the Ferrous and Ferric States. Biochemistry 1994, 33, 5636–5640. [Google Scholar] [CrossRef] [PubMed]
- Ott, S.R.; Delago, A.; Elphick, M.R. An evolutionarily conserved mechanism for sensitization of soluble guanylyl cyclase reveals extensive nitric oxide-mediated upregulation of cyclic GMP in insect brain. Eur. J. Neurosci. 2004, 20, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- Meijering, E.; Dzyubachyk, O.; Smal, I. Methods for Cell and Particle Tracking. Methods Enzymol. 2012, 504, 183–200. [Google Scholar] [CrossRef]
- Petrie, R.J.; Doyle, A.D.; Yamada, K.M. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell Biol. 2009, 10, 538–549. [Google Scholar] [CrossRef]
- Sawada, N.; Itoh, H.; Yamashita, J.; Doi, K.; Inoue, M.; Masatsugu, K.; Fukunaga, Y.; Sakaguchi, S.; Sone, M.; Yamahara, K.; et al. cGMP-Dependent Protein Kinase Phosphorylates and Inactivates RhoA. Biochem. Biophys. Res. Commun. 2001, 280, 798–805. [Google Scholar] [CrossRef]
- Kato, M.; Blanton, R.; Wang, G.-R.; Judson, T.J.; Abe, Y.; Myoishi, M.; Karas, R.H.; Mendelsohn, M.E. Direct Binding and Regulation of RhoA Protein by Cyclic GMP-dependent Protein Kinase Iα. J. Biol. Chem. 2012, 287, 41342–41351. [Google Scholar] [CrossRef]
- Ridley, A.J. Rho GTPase signalling in cell migration. Curr. Opin. Cell Biol. 2015, 36, 103–112. [Google Scholar] [CrossRef]
- Hall, A. Rho GTPases and the Actin Cytoskeleton. Science 1998, 279, 509–514. [Google Scholar] [CrossRef]
- Wright, J.W.; Schwinof, K.M.; Snyder, M.A.; Copenhaver, P.F. A Delayed Role for Nitric Oxide-Sensitive Guanylate Cyclases in a Migratory Population of Embryonic Neurons. Dev. Biol. 1998, 204, 15–33. [Google Scholar] [CrossRef]
- Koshland, D.E. The Molecule of the Year. Science 1992, 258, 1861. [Google Scholar] [CrossRef]
- Ryter, S.W.; Morse, D.; Choi, A.M.K. Carbon Monoxide: To Boldly Go Where NO Has Gone Before. Sci. STKE 2004, 2004, re6. [Google Scholar] [CrossRef] [PubMed]
- Stamler, J.S.; Toone, E.J.; Lipton, S.A.; Sucher, N.J. (S)NO Signals: Translocation, Regulation, and a Consensus Motif. Neuron 1997, 18, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Broillet, M.-C. S-Nitrosylation of proteins. Cell. Mol. Life Sci. 1999, 55, 1036. [Google Scholar] [CrossRef] [PubMed]
- Iwakiri, Y.; Satoh, A.; Chatterjee, S.; Toomre, D.K.; Chalouni, C.M.; Fulton, D.; Groszmann, R.J.; Shah, V.H.; Sessa, W.C. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking. Proc. Natl. Acad. Sci. USA 2006, 103, 19777–19782. [Google Scholar] [CrossRef]
- Green, D.J.; Huang, R.-C.; Sudlow, L.; Hatcher, N.; Potgieter, K.; McCrohan, C.; Lee, C.; Romanova, E.V.; Sweedler, J.V.; Gillette, M.L.U.; et al. cAMP, Ca2+, pHi, and NO Regulate H-like Cation Channels That Underlie Feeding and Locomotion in the Predatory Sea Slug Pleurobranchaea californica. ACS Chem. Neurosci. 2018, 9, 1986–1993. [Google Scholar] [CrossRef]
- Levitt, D.; Levitt, M. Carbon monoxide: A critical quantitative analysis and review of the extent and limitations of its second messenger function. Clin. Pharmacol. Adv. Appl. 2015, 37, 37–56. [Google Scholar] [CrossRef]
- Williams, S.E.J.; Wootton, P.; Mason, H.S.; Bould, J.; Iles, D.E.; Riccardi, D.; Peers, C.; Kemp, P.J. Hemoxygenase-2 Is an Oxygen Sensor for a Calcium-Sensitive Potassium Channel. Science 2004, 306, 2093–2097. [Google Scholar] [CrossRef]
- Olson, K.R.; Donald, J.A.; Dombkowski, R.A.; Perry, S.F. Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide. Respir. Physiol. Neurobiol. 2012, 184, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Motterlini, R.; Otterbein, L.E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 2010, 9, 728–743. [Google Scholar] [CrossRef] [PubMed]
- Maccallini, C.; Budriesi, R.; De Filippis, B.; Amoroso, R. Advancements in the Research of New Modulators of Nitric Oxide Synthases Activity. Int. J. Mol. Sci. 2024, 25, 8486. [Google Scholar] [CrossRef] [PubMed]
- Lois, C.; García-Verdugo, J.-M.; Alvarez-Buylla, A. Chain Migration of Neuronal Precursors. Science 1996, 271, 978–981. [Google Scholar] [CrossRef]
- Wichterle, H.; García-Verdugo, J.M.; Alvarez-Buylla, A. Direct Evidence for Homotypic, Glia-Independent Neuronal Migration. Neuron 1997, 18, 779–791. [Google Scholar] [CrossRef]
- Gutièrrez-Mecinas, M.; Crespo, C.; Blasco-Ibáñez, J.M.; Nácher, J.; Varea, E.; Martínez-Guijarro, F.J. Migrating neuroblasts of the rostral migratory stream are putative targets for the action of nitric oxide. Eur. J. Neurosci. 2007, 26, 392–402. [Google Scholar] [CrossRef]
- Kajimura, M.; Shimoyama, M.; Tsuyama, S.; Suzuki, T.; Kozaki, S.; Takenaka, S.; Tsubota, K.; Oguchi, Y.; Suematsu, M. Visualization of gaseous monoxide reception by soluble guanylate cyclase in the rat retina. FASEB J. 2003, 17, 1–23. [Google Scholar] [CrossRef]
- Estes, S.; Zhong, L.; Artinian, L.; Rehder, V. Regulation of electrical activity and neuronal excitability in Helisoma trivolvis by carbon monoxide. Neuroscience 2015, 311, 453–463. [Google Scholar] [CrossRef]
- Estes, S.; Artinian, L.; Rehder, V. Modulation of growth cone filopodial length by carbon monoxide. Dev. Neurobiol. 2016, 77, 677–690. [Google Scholar] [CrossRef]
- Guan, G.; Cannon, R.D.; Coates, D.E.; Mei, L. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes 2023, 14, 272. [Google Scholar] [CrossRef]
- Schaks, M.; Giannone, G.; Rottner, K. Actin dynamics in cell migration. Essays Biochem. 2019, 63, 483–495. [Google Scholar] [CrossRef]
- van Haastert, P.J.M.; Keizer-Gunnink, I.; Pots, H.; Ortiz-Mateos, C.; Veltman, D.; van Egmond, W.; Kortholt, A. Forty-five years of cGMP research in Dictyostelium: Understanding the regulation and function of the cGMP pathway for cell movement and chemotaxis. Mol. Biol. Cell 2021, 32, ar8. [Google Scholar] [CrossRef]
- Mandal, S.; Stanco, A.; Buys, E.S.; Enikolopov, G.; Rubenstein, J.L.R. Soluble Guanylate Cyclase Generation of cGMP Regulates Migration of MGE Neurons. J. Neurosci. 2013, 33, 16897–16914. [Google Scholar] [CrossRef]
- Sato, M.; Hida, N.; Umezawa, Y. Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells. Proc. Natl. Acad. Sci. USA 2005, 102, 14515–14520. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, A.M.; Bartus, K.; Reynell, C.; Constantinou, S.; Halvey, E.J.; Held, K.F.; Dostmann, W.R.; Vernon, J.; Garthwaite, J. Exquisite sensitivity to subsecond, picomolar nitric oxide transients conferred on cells by guanylyl cyclase-coupled receptors. Proc. Natl. Acad. Sci. USA 2010, 107, 22060–22065. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, E.; Hallström, S.; Bischof, H.; Opelt, M.; Schmidt, K.; Mayer, B.; Waldeck-Weiermair, M.; Graier, W.F.; Malli, R. Real-time visualization of distinct nitric oxide generation of nitric oxide synthase isoforms in single cells. Nitric Oxide 2017, 70, 59–67. [Google Scholar] [CrossRef]
- Wang, J.; Karpus, J.; Zhao, B.S.; Luo, Z.; Chen, P.R.; He, C. A Selective Fluorescent Probe for Carbon Monoxide Imaging in Living Cells. Angew. Chem. Int. Ed. 2012, 124, 9790–9794. [Google Scholar] [CrossRef]
- Hartenstein, V.; Tepass, U.; Gruszynski-Defeo, E. Embryonic development of the stomatogastric nervous system in Drosophila. J. Comp. Neurol. 1994, 350, 367–381. [Google Scholar] [CrossRef]
- Kuraishi, T.; Kenmoku, H.; Kurata, S. From mouth to anus: Functional and structural relevance of enteric neurons in the Drosophila melanogaster gut. Insect Biochem. Mol. Biol. 2015, 67, 21–26. [Google Scholar] [CrossRef]
- Seidel, C.; Bicker, G. Nitric oxide and cGMP influence axonogenesis of antennal pioneer neurons. Development 2000, 127, 4541–4549. [Google Scholar] [CrossRef]
- Bergmann, G.; Frömbling, S.; Joseph, N.; Bode, K.; Bicker, G.; Stern, M. An intact insect embryo for developmental neurotoxicity testing of directed axonal elongation. ALTEX 2019, 36, 643–649. [Google Scholar] [CrossRef]
- Bode, K.; Bohn, M.; Reitmeier, J.; Betker, P.; Stern, M.; Bicker, G. A locust embryo as predictive developmental neurotoxicity testing system for pioneer axon pathway formation. Arch. Toxicol. 2020, 94, 4099–4113. [Google Scholar] [CrossRef] [PubMed]
- Bode, K.; Nolte, L.; Kamin, H.; Desens, M.; Ulmann, A.; Bergmann, G.A.; Betker, P.; Reitmeier, J.; Ripken, T.; Stern, M.; et al. Scanning laser optical tomography resolves developmental neurotoxic effects on pioneer neurons. Sci. Rep. 2020, 10, 2641. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, G.A.; Bicker, G. Cholinergic calcium responses in cultured antennal lobe neurons of the migratory locust. Sci. Rep. 2021, 11, 10018. [Google Scholar] [CrossRef] [PubMed]
- Bentley, D.; Keshishian, H.; Shankland, M.; Toroian-Raymond, A. Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. Development 1979, 54, 47–74. [Google Scholar] [CrossRef]
- Ball, E.E.; Truman, J.W. Developing Grasshopper Neurons Show Variable Levels of Guanylyl Cyclase Activity on Arrival at Their Targets. J. Comp. Neurol. 1998, 394, 1–13. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R Package Version 0.7.2. 2023. Available online: https://rpkgs.datanovia.com/rstatix/ (accessed on 15 March 2025).
- Yap, B.W.; Sim, C.H. Comparisons of various types of normality tests. J. Stat. Comput. Sim. 2011, 81, 2141–2155. [Google Scholar] [CrossRef]
- Diedenhofen, B.; Musch, J. cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLoS ONE 2015, 10, e0121945. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knipp, S.; Rohwedder, A.; Bicker, G. CO and NO Coordinate Developmental Neuron Migration. Int. J. Mol. Sci. 2025, 26, 7783. https://doi.org/10.3390/ijms26167783
Knipp S, Rohwedder A, Bicker G. CO and NO Coordinate Developmental Neuron Migration. International Journal of Molecular Sciences. 2025; 26(16):7783. https://doi.org/10.3390/ijms26167783
Chicago/Turabian StyleKnipp, Sabine, Arndt Rohwedder, and Gerd Bicker. 2025. "CO and NO Coordinate Developmental Neuron Migration" International Journal of Molecular Sciences 26, no. 16: 7783. https://doi.org/10.3390/ijms26167783
APA StyleKnipp, S., Rohwedder, A., & Bicker, G. (2025). CO and NO Coordinate Developmental Neuron Migration. International Journal of Molecular Sciences, 26(16), 7783. https://doi.org/10.3390/ijms26167783