γ-Cyclodextrin Co-Ingestion Enhances the Bioavailability of Perilla Oil, Regardless of Inclusion Complex Formation
Abstract
1. Introduction
2. Results
2.1. Food Intake, Weight Gain, and Blood Biochemical Parameters
2.2. Plasma Fatty Acid Composition
3. Discussion
3.1. Comparable Enhancement in the Bioavailability of Perilla Oil Through Co-Ingestion with γ-Cyclodextrin
3.2. Potential Mechanisms of γ-Cyclodextrin-Facilitated Absorption
3.3. Limitations of the Study and Future Perspectives
4. Materials and Methods
4.1. Reagents
4.2. Animals
4.3. Experimental Diets
4.4. Plasma Fatty Acid Analysis
4.5. Plasma Biochemical Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, L.; Zhu, L.; Zhang, X.; Han, Y.; Wang, K.; Ji, N.; Yao, X.; Zhou, Y.; Li, B.; Chen, Q.; et al. Perilla Seed Oil and Protein: Composition, Health Benefits, and Potential Applications in Functional Foods. Molecules 2024, 29, 5258. [Google Scholar] [CrossRef]
- Lane, K.E.; Wilson, M.; Hellon, T.G.; Davies, I.G. Bioavailability and conversion of plant based sources of omega-3 fatty acids—A scoping review to update supplementation options for vegetarians and vegans. Crit. Rev. Food Sci. Nutr. 2022, 62, 4982–4997. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Jiang, N.; Guo, G.; Lu, S.; Li, Z.; Mu, Y.; Xia, X.; Xu, Z.; Hu, Y.; Xiang, X. Perilla Seed Oil: A Review of Health Effects, Encapsulation Strategies and Applications in Food. Foods 2024, 13, 3615. [Google Scholar] [CrossRef]
- Chen, H.; Leng, X.; Liu, S.; Zeng, Z.; Huang, F.; Huang, R.; Zou, Y.; Xu, Y. Association between dietary intake of omega-3 poly-unsaturated fatty acids and all-cause and cardiovascular mortality among hypertensive adults: Results from NHANES 1999–2018. Clin. Nutr. 2023, 42, 2434–2442. [Google Scholar] [CrossRef] [PubMed]
- Naghshi, S.; Aune, D.; Beyene, J.; Mobarak, S.; Asadi, M.; Sadeghi, O. Dietary intake and biomarkers of alpha linolenic acid and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of cohort studies. BMJ 2021, 375, n2213. [Google Scholar] [CrossRef] [PubMed]
- Sala-Vila, A.; Fleming, J.; Kris-Etherton, P.M.; Ros, E. Impact of α-Linolenic Acid, the Vegetable ω-3 Fatty Acid, on Cardiovascular Disease and Cognition. Adv. Nutr. 2022, 13, 1584–1602. [Google Scholar] [CrossRef]
- Hashimoto, M.; Matsuzaki, K.; Maruyama, K.; Hossain, S.; Sumiyoshi, E.; Wakatsuki, H.; Kato, S.; Ohno, M.; Tanabe, Y.; Kuroda, Y.; et al. Perilla seed oil in combination with nobiletin-rich ponkan powder enhances cognitive function in healthy elderly Japanese individuals: A possible supplement for brain health in the elderly. Food Funct. 2022, 13, 2768–2781. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bao, J.; Zhang, Y.; Wang, X. Alpha-Linolenic Acid Ameliorates Cognitive Impairment and Liver Damage Caused by Obesity. Diabetes Metab. Syndr. Obes. 2024, 17, 981–995. [Google Scholar] [CrossRef]
- Jordão Candido, C.; Silva Figueiredo, P.; Del Ciampo Silva, R.; Candeloro Portugal, L.; Augusto dos Santos Jaques, J.; Alves de Almeida, J.; de Barros Penteado, B.; Albuquerque Dias, D.; Marcelino, G.; Pott, A.; et al. Protective Effect of α-Linolenic Acid on Non-Alcoholic Hepatic Steatosis and Interleukin-6 and -10 in Wistar Rats. Nutrients 2019, 12, 9. [Google Scholar] [CrossRef]
- Pauls, S.D.; Rodway, L.A.; Winter, T.; Taylor, C.G.; Zahradka, P.; Aukema, H.M. Anti-inflammatory effects of α-linolenic acid in M1-like macrophages are associated with enhanced production of oxylipins from alpha-linolenic and linoleic acid. J. Nutr. Biochem. 2018, 57, 121–129. [Google Scholar] [CrossRef]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef]
- Wang, T.Y.; Liu, M.; Portincasa, P.; Wang, D.Q. New insights into the molecular mechanism of intestinal fatty acid absorption. Eur. J. Clin. Investig. 2013, 43, 1203–1223. [Google Scholar] [CrossRef]
- Duan, H.; Song, W.; Zhao, J.; Yan, W. Polyunsaturated Fatty Acids (PUFAs): Sources, Digestion, Absorption, Application and Their Potential Adjunctive Effects on Visual Fatigue. Nutrients 2023, 15, 2633. [Google Scholar] [CrossRef]
- Carlier, H.; Bernard, A.; Caselli, C. Digestion and absorption of polyunsaturated fatty acids. Reprod. Nutr. Dev. 1991, 31, 475–500. [Google Scholar] [CrossRef] [PubMed]
- Akanbi, T.O.; Sinclair, A.J.; Barrow, C.J. Pancreatic lipase selectively hydrolyses DPA over EPA and DHA due to location of double bonds in the fatty acid rather than regioselectivity. Food Chem. 2014, 160, 61–66. [Google Scholar] [CrossRef]
- Oliver, L.; Dietrich, T.; Marañón, I.; Villarán, M.C.; Barrio, R.J. Producing Omega-3 Polyunsaturated Fatty Acids: A Review of Sustainable Sources and Future Trends for the EPA and DHA Market. Resources 2020, 9, 148. [Google Scholar] [CrossRef]
- Venugopalan, V.K.; Gopakumar, L.R.; Kumaran, A.K.; Chatterjee, N.S.; Soman, V.; Peeralil, S.; Mathew, S.; McClements, D.J.; Nagarajarao, R.C. Encapsulation and Protection of Omega-3-Rich Fish Oils Using Food-Grade Delivery Systems. Foods 2021, 10, 1566. [Google Scholar] [CrossRef] [PubMed]
- Couëdelo, L.; Lennon, S.; Abrous, H.; Chamekh, I.; Bouju, C.; Griffon, H.; Vaysse, C.; Larvol, L.; Breton, G. In Vivo Absorption and Lymphatic Bioavailability of Docosahexaenoic Acid from Microalgal Oil According to Its Physical and Chemical Form of Vectorization. Nutrients 2024, 16, 1014. [Google Scholar] [CrossRef] [PubMed]
- Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gándara, J. A review on the use of cyclodextrins in foods. Food Hydrocoll. 2009, 23, 1631–1640. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 1996, 85, 1017–1025. [Google Scholar] [CrossRef]
- Durante, M.; Milano, F.; Caroli, M.; Giotta, L.; Piro, G.; Mita, G.; Frigione, M.; Lenucci, M.S. Tomato Oil Encapsulation by α-, β-, and γ-Cyclodextrins: A Comparative Study on the Formation of Supramolecular Structures, Antioxidant Activity, and Carotenoid Stability. Foods 2020, 9, 1553. [Google Scholar] [CrossRef]
- Davis, M.E.; Brewster, M.E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035. [Google Scholar] [CrossRef]
- Martín Del Valle, E.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Szente, L.; Szejtli, J. Cyclodextrins as food ingredients. Trends Food Sci. Technol. 2004, 15, 137–142. [Google Scholar] [CrossRef]
- Marques, H.M.C. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr. J. 2010, 25, 313–326. [Google Scholar] [CrossRef]
- Yoshikiyo, K.; Takahashi, M.; Narumiya, Y.; Honda, M.; Iwasaki, K.; Ishigaki, M.; Nagato, E.G.; Noothalapati, H.; Shimizu, H.; Murota, K.; et al. Co-ingestion with γ-cyclodextrin improves bioavailability of α-linolenic acid in Perilla frutescens seed oil. Food Hydrocoll. Health 2023, 3, 100116. [Google Scholar] [CrossRef]
- Yoshikiyo, K.; Yoshioka, Y.; Narumiya, Y.; Oe, S.; Kawahara, H.; Kurata, K.; Shimizu, H.; Yamamoto, T. Thermal stability and bioavailability of inclusion complexes of perilla oil with γ-cyclodextrin. Food Chem. 2019, 294, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Dikeman, C.L.; Fahey, G.C. Viscosity as related to dietary fiber: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 649–663. [Google Scholar] [CrossRef]
- Slavin, J.L.; Green, H. Dietary fibre and satiety. Nutr. Bull. 2007, 32, 32–42. [Google Scholar] [CrossRef]
- Clark, M.J.; Slavin, J.L. The effect of fiber on satiety and food intake: A systematic review. J. Am. Coll. Nutr. 2013, 32, 200–211. [Google Scholar] [CrossRef]
- So, D.; Whelan, K.; Rossi, M.; Morrison, M.; Holtmann, G.; Kelly, J.T.; Shanahan, E.R.; Staudacher, H.M.; Campbell, K.L. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 107, 965–983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Kothapalli, K.S.; Brenna, J.T. Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 103–110. [Google Scholar] [CrossRef]
- Sprecher, H. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim. Biophys. Acta 2000, 1486, 219–231. [Google Scholar] [CrossRef]
- Calder, P.C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006, 83, 1505S–1519S. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Scorletti, E.; Byrne, C.D. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease. Annu. Rev. Nutr. 2013, 33, 231–248. [Google Scholar] [CrossRef]
- Jump, D.B. N-3 polyunsaturated fatty acid regulation of hepatic gene transcription. Curr. Opin. Lipidol. 2008, 19, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Scorletti, E.; Byrne, C.D. Omega-3 fatty acids and non-alcoholic fatty liver disease: Evidence of efficacy and mechanism of action. Mol. Asp. Med. 2018, 64, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Park, K. Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis. Clin. Nutr. 2020, 39, 765–773. [Google Scholar] [CrossRef]
- Takić, M.; Ranković, S.; Girek, Z.; Pavlović, S.; Jovanović, P.; Jovanović, V.; Šarac, I. Current Insights into the Effects of Dietary α-Linolenic Acid Focusing on Alterations of Polyunsaturated Fatty Acid Profiles in Metabolic Syndrome. Int. J. Mol. Sci. 2024, 25, 4909. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Bharadwaj, S.; Brown, J.M.; Ma, Y.; Du, W.; Davis, M.A.; Michaely, P.; Liu, P.; Willingham, M.C.; Rudel, L.L. Cholesterol-regulated translocation of NPC1L1 to the cell surface facilitates free cholesterol uptake. J. Biol. Chem. 2006, 281, 6616–6624. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Q. Regulation of intestinal cholesterol absorption. Annu. Rev. Physiol. 2007, 69, 221–248. [Google Scholar] [CrossRef]
- Tan, X.; Lindenbaum, S. Studies on complexation between β-cyclodextrin and bile salts. Int. J. Pharm. 1991, 74, 127–135. [Google Scholar] [CrossRef]
- Tepavčević, V.; Farkaš Agatić, Z.; Pilipović, A.; Puača, G.; Poša, M. Effect of β-Cyclodextrin on the Aggregation Behavior of Sodium Deoxycholate and Sodium Cholate in Aqueous Solution. Molecules 2025, 30, 2197. [Google Scholar] [CrossRef]
- Furune, T.; Ikuta, N.; Ishida, Y.; Okamoto, H.; Nakata, D.; Terao, K.; Sakamoto, N. A study on the inhibitory mechanism for cholesterol absorption by α-cyclodextrin administration. Beilstein J. Org. Chem. 2014, 10, 2827–2835. [Google Scholar] [CrossRef]
- Yoshikiyo, K.; Shimizu, H.; Nagato, E.G.; Ishizuka, S.; Yamamoto, T. Comparative Analysis of γ-Cyclodextrin, Perilla Oil, and Their Inclusion Complexes on Liver Injury and Dyslipidemia Associated with Elevated Gastrointestinal 12-Hydroxylated Bile Acid Levels. Molecules 2025, 30, 281. [Google Scholar] [CrossRef]
- Wüpper, S.; Lüersen, K.; Rimbach, G. Cyclodextrins, Natural Compounds, and Plant Bioactives—A Nutritional Perspective. Biomolecules 2021, 11, 401. [Google Scholar] [CrossRef]
- Hori, S.; Abe, T.; Lee, D.G.; Fukiya, S.; Yokota, A.; Aso, N.; Shirouchi, B.; Sato, M.; Ishizuka, S. Association between 12α-hydroxylated bile acids and hepatic steatosis in rats fed a high-fat diet. J. Nutr. Biochem. 2020, 83, 108412. [Google Scholar] [CrossRef]
- Dima, Ş.; Dima, C.; Iordăchescu, G. Encapsulation of Functional Lipophilic Food and Drug Biocomponents. Food Eng. Rev. 2015, 7, 417–438. [Google Scholar] [CrossRef]
- Wang, P.; Ke, Z.; Yi, J.; Liu, X.; Hao, L.; Kang, Q.; Lu, J. Effects of β-cyclodextrin on the enzymatic hydrolysis of hemp seed oil by lipase Candida sp.99–125. Ind. Crops Prod. 2019, 129, 688–693. [Google Scholar] [CrossRef]
- Baker, D.H. Animal models in nutrition research. J. Nutr. 2008, 138, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Gallaher, D.D. Animal models in human nutrition research. Nutr. Clin. Pract. 1992, 7, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, X. Current in Vitro and Animal Models for Understanding Foods: Human Gut—Microbiota Interactions. J. Agric. Food Chem. 2022, 70, 12733–12745. [Google Scholar] [CrossRef] [PubMed]
CTRL | IC | PM | |
---|---|---|---|
Food intake (g) | 457 ± 6 a | 430 ± 8 b | 443 ± 10 ab |
Weight gain (g) | 140 ± 4 | 135 ± 4 | 135 ± 4 |
CTRL | IC | PM | |
---|---|---|---|
AST (IU/L) | 54.7 ± 2.6 | 52.8 ± 1.3 | 55.2 ± 2.3 |
ALT (IU/L) | 30.3 ± 2.3 | 29.1 ± 1.0 | 30.1 ± 1.6 |
T-CHO (mg/100 mL) | 56.5 ± 1.7 | 57.4 ± 1.2 | 56.6 ± 2.0 |
TG (mg/100 mL) | 121 ± 16 | 166 ± 23 | 157 ± 17 |
GLU (mg/100 mL) | 189 ± 5 | 190 ± 2 | 192 ± 4 |
Fatty Acids | CTRL | IC | PM |
---|---|---|---|
Composition (%) | |||
14:0 | 0.71 ± 0.04 | 0.78 ± 0.04 | 0.81 ± 0.04 |
16:0 | 25.9 ± 0.3 | 25.0 ± 0.4 | 25.3 ± 0.2 |
18:0 | 10.4 ± 0.4 a | 8.8 ± 0.3 b | 8.5 ± 0.2 b |
16:1(n-7) | 2.05 ± 0.40 b | 3.43 ± 0.36 ab | 3.42 ± 0.22 a |
18:1(n-9) | 13.4 ± 0.5 | 14.6 ± 0.5 | 14.7 ± 0.4 |
18:2(n-6) | 26.1 ± 0.7 | 27.4 ± 1.0 | 27.0 ± 0.7 |
20:3(n-6) | 0.55 ± 0.06 | 0.68 ± 0.06 | 0.64 ± 0.04 |
20:4(n-6) | 15.6 ± 1.0 a | 11.2 ± 0.8 b | 11.2 ± 0.5 b |
18:3(n-3) | 1.71 ± 0.16 b | 4.03 ± 0.42 a | 4.07 ± 0.26 a |
20:5(n-3) | 0.60 ± 0.04 b | 1.30 ± 0.10 a | 1.33 ± 0.09 a |
22:6(n-3) | 2.06 ± 0.13 | 2.04 ± 0.12 | 2.09 ± 0.06 |
Ingredients | AIN-93G | IC Diet | PM Diet |
---|---|---|---|
Amount (g) | |||
Corn Starch | 1192.5 | 1192.5 | 1192.5 |
Casein | 600 | 600 | 600 |
Maltodextrin | 396 | 396 | 396 |
Sucrose | 300 | 300 | 300 |
Soybean Oil | 210 | 183.5 | 183.5 |
Perilla Oil | — | — | 26.5 |
Cellulose | 150 | — | — |
γ-CD | — | — | 150 |
Inclusion Complexes | — | 176.5 * | — |
Mineral Mix | 105 | 105 | 105 |
Vitamin Mix | 30 | 30 | 30 |
L-Cystine | 9 | 9 | 9 |
Choline Bitartrate | 7.5 | 7.5 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshikiyo, K.; Shimizu, H.; Okada, H.; Hasegawa, A.; Yamamoto, T. γ-Cyclodextrin Co-Ingestion Enhances the Bioavailability of Perilla Oil, Regardless of Inclusion Complex Formation. Int. J. Mol. Sci. 2025, 26, 7776. https://doi.org/10.3390/ijms26167776
Yoshikiyo K, Shimizu H, Okada H, Hasegawa A, Yamamoto T. γ-Cyclodextrin Co-Ingestion Enhances the Bioavailability of Perilla Oil, Regardless of Inclusion Complex Formation. International Journal of Molecular Sciences. 2025; 26(16):7776. https://doi.org/10.3390/ijms26167776
Chicago/Turabian StyleYoshikiyo, Keisuke, Hidehisa Shimizu, Hitomi Okada, Atsunori Hasegawa, and Tatsuyuki Yamamoto. 2025. "γ-Cyclodextrin Co-Ingestion Enhances the Bioavailability of Perilla Oil, Regardless of Inclusion Complex Formation" International Journal of Molecular Sciences 26, no. 16: 7776. https://doi.org/10.3390/ijms26167776
APA StyleYoshikiyo, K., Shimizu, H., Okada, H., Hasegawa, A., & Yamamoto, T. (2025). γ-Cyclodextrin Co-Ingestion Enhances the Bioavailability of Perilla Oil, Regardless of Inclusion Complex Formation. International Journal of Molecular Sciences, 26(16), 7776. https://doi.org/10.3390/ijms26167776