Comprehensive Genetic and Molecular Characterization Confirms Hepatic Stellate Cell Origin of the Immortal Col-GFP HSC Line
Abstract
1. Introduction
2. Results
2.1. Microscopic Appearance of the Col-GFP HSC Line
2.2. Actin Cytoskeleton Organization in the Col-GFP HSC Line
2.3. Electron Microscopic Analysis of Col-GFP HSCs
2.4. Short Tandem Repeat Profiling of the Col-GFP HSC Line
2.5. Karyotype Analysis Combined with Multiplex Fluorescence in Situ Hybridization (M-FISH) of Col-GFP HSCs
2.6. Next Generation mRNA Sequencing of Col-GFP HSC
2.7. Validation of Expression Data Using Conventional and Quantitative Real-Time PCR
2.8. Validation of Expression Data by Western Blot Analysis
2.9. Comparison of Marker Expression in Hepatic Stellate and Fibroblastic Cell Lines
3. Discussion
4. Materials and Methods
4.1. Literature Search
4.2. Cell Culture
4.3. Light Microscopic Analysis
4.4. Electron Microscopy
4.5. Short Tandem Repeat Profiling
4.6. RNA Extraction, Real-Time PCR, and Real-Time Quantitative PCR
4.7. Next-Generation Sequencing
4.8. Western Blot Analysis
4.9. Phalloidin Stain
4.10. Karyotype and M-FISH Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ECM | extracellular matrix |
GFP | green fluorescent protein |
HSC | hepatic stellate cells |
LSEC | liver sinusoidal endothelial cells |
NGS | next-generation sequencing |
PBS | phosphate-buffered saline |
M-FISH | multiplex fluorescence in situ hybridization |
STR | short tandem repeat |
References
- Acharya, P.; Chouhan, K.; Weiskirchen, S.; Weiskirchen, R. Cellular Mechanisms of liver fibrosis. Front. Pharmacol. 2021, 12, 671640. [Google Scholar] [CrossRef]
- Herrmann, J.; Gressner, A.M.; Weiskirchen, R. Immortal hepatic stellate cell lines: Useful tools to study hepatic stellate cell biology and function? J. Cell. Mol. Med. 2007, 11, 704–722. [Google Scholar] [CrossRef]
- Weiskirchen, S.; Schröder, S.K.; Buhl, E.M.; Weiskirchen, R. A beginner’s guide to cell culture: Practical advice for preventing needless problems. Cells 2023, 12, 682. [Google Scholar] [CrossRef]
- Meurer, S.K.; Alsamman, M.; Sahin, H.; Wasmuth, H.E.; Kisseleva, T.; Brenner, D.A.; Trautwein, C.; Weiskirchen, R.; Scholten, D. Overexpression of endoglin modulates TGF-β1-signalling pathways in a novel immortalized mouse hepatic stellate cell line. PLoS ONE 2013, 8, e56116. [Google Scholar] [CrossRef]
- Meurer, S.K.; Weiskirchen, R. Usage of mitogen-activated protein kinase small molecule inhibitors: More than just inhibition! Front. Pharmacol. 2018, 9, 98. [Google Scholar] [CrossRef]
- Meurer, S.; Wimmer, A.E.; Leur, E.V.; Weiskirchen, R. Endoglin trafficking/exosomal targeting in liver cells depends on N-Glycosylation. Cells 2019, 8, 997. [Google Scholar] [CrossRef]
- Cierpka, R.; Weiskirchen, R.; Asimakopoulos, A. Perilipin 5 ameliorates hepatic stellate cell activation via SMAD2/3 and SNAIL signaling pathways and suppresses STAT3 activation. Cells 2021, 10, 2184. [Google Scholar] [CrossRef]
- Meurer, S.K.; Brenner, D.A.; Weiskirchen, R. Multiplex short tandem repeat profiling of immortalized hepatic stellate cell line Col-GFP HSC. PLoS ONE 2022, 17, e0274219. [Google Scholar] [CrossRef] [PubMed]
- Nanda, I.; Steinlein, C.; Haaf, T.; Buhl, E.M.; Grimm, D.G.; Friedman, S.L.; Meurer, S.K.; Schröder, S.K.; Weiskirchen, R. Genetic characterization of rat hepatic stellate cell line HSC-T6 for in vitro cell line authentication. Cells 2022, 11, 1783. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.L.; Weiskirchen, R. Working with immortalized hepatic stellate cell lines. Methods Mol. Biol. 2023, 2669, 129–162. [Google Scholar] [CrossRef] [PubMed]
- Weiskirchen, R. Established hepatic stellate cell line in hepatology research. Fibrosis 2023, 1, 10003. [Google Scholar] [CrossRef]
- Chand, V. Targeting Fibrosis: Identification and Characterisation of Chemical and Genetic Modulators of Collagen Expression. Master’s Thesis, Queensland University of Technology, Brisbane, Australia, 2023. Available online: https://eprints.qut.edu.au/249238/ (accessed on 23 June 2025).
- Meurer, S.K.; Bronneberg, G.; Penners, C.; Kauffmann, M.; Braunschweig, T.; Liedtke, C.; Huber, M.; Weiskirchen, R. TGF-β1 induces mucosal mast cell genes and is negatively regulated by the IL-3/ERK1/2 axis. Cell Commun. Signal. 2025, 23, 76. [Google Scholar] [CrossRef]
- Yamada, M.; Blaner, W.S.; Soprano, D.R.; Dixon, J.L.; Kjeldbye, H.M.; Goodman, D.S. Biochemical characteristics of isolated rat liver stellate cells. Hepatology 1987, 7, 1224–1229. [Google Scholar] [CrossRef]
- Geerts, A.; Niki, T.; Hellemans, K.; De Craemer, D.; Van Den Berg, K.; Lazou, J.-M.; Stange, G.; Van De Winkel, M.; De Bleser, P. Purification of rat hepatic stellate cells by side scatter-activated cell sorting. Hepatology 1998, 27, 590–598. [Google Scholar] [CrossRef]
- Wake, K. Hepatic stellate cells: Three-dimensional structure, localization, heterogeneity and development. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2006, 82, 155–164. [Google Scholar] [CrossRef]
- Chang, K.-T.; Tsai, M.-J.; Cheng, Y.-T.; Chen, J.-J.; Hsia, R.-H.; Lo, Y.-S.; Ma, Y.-R.; Weng, C.-F. Comparative atomic force and scanning electron microscopy: An investigation of structural differentiation of hepatic stellate cells. J. Struct. Biol. 2009, 167, 200–208. [Google Scholar] [CrossRef]
- Urushima, H.; Yuasa, H.; Matsubara, T.; Kuroda, N.; Hara, Y.; Inoue, K.; Wake, K.; Sato, T.; Friedman, S.L.; Ikeda, K. Activation of hepatic stellate cells requires dissociation of E-cadherin–containing adherens junctions with hepatocytes. Am. J. Pathol. 2020, 191, 438–453. [Google Scholar] [CrossRef]
- Cellosaurus AML12 (CVCL_0140). Available online: https://www.cellosaurus.org/CVCL_0140 (accessed on 23 June 2025).
- Cassiman, D.; van Pelt, J.; De Vos, R.; Van Lommel, F.; Desmet, V.; Yap, S.-H.; Roskams, T. Synaptophysin: A novel marker for human and rat hepatic stellate cells. Am. J. Pathol. 1999, 155, 1831–1839. [Google Scholar] [CrossRef]
- Kobold, D.; Grundmann, A.; Piscaglia, F.; Eisenbach, C.; Neubauer, K.; Steffgen, J.; Ramadori, G.; Knittel, T. Expression of reelin in hepatic stellate cells and during hepatic tissue repair: A novel marker for the differentiation of HSC from other liver myofibroblasts. J. Hepatol. 2002, 36, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Berg, T.; Rountree, B.C.; Lee, L.; Estrada, J.; Sala, F.G.; Choe, A.; Veltmaat, J.M.; De Langhe, S.; Lee, R.; Tsukamoto, H.; et al. Fibroblast growth factor 10 is critical for liver growth during embryogenesis and controls hepatoblast survival via β-catenin activation. Hepatology 2007, 46, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Buniatian, G.; Hamprecht, B.; Gebhardt, R. Glial fibrillary acidic protein as a marker of perisinusoidal stellate cells that can distinguish between the normal and myofibroblast-like phenotypes. Biol. Cell 1996, 87, 65–73. [Google Scholar] [CrossRef]
- Lim, M.C.C.; Maubach, G.; Lang, Z. Glial fibrillary acidic protein splice variants in hepatic stellate cells--expression and regulation. Mol. Cells 2008, 25, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, Y.; Namihisa, T.; Kuroda, H.; Komatsu, I.; Miyazaki, A.; Watanabe, S.; Usui, K. Immunocytochemical detection of desmin in fat-storing cells (Ito cells). Hepatology 1984, 4, 709–714. [Google Scholar] [CrossRef]
- Toi, M.; Hayashi, Y.; Murakami, I. Hepatic stellate cells derived from the nestin-positive cells in septum transversum during rat liver development. Med. Mol. Morphol. 2018, 51, 199–207. [Google Scholar] [CrossRef]
- Chen, H.; Cai, J.; Wang, J.; Qiu, Y.; Jiang, C.; Wang, Y.; Wang, Y.; Yi, C.; Lv, G.; Pan, L.; et al. Targeting Nestin+ hepatic stellate cells ameliorates liver fibrosis by facilitating TβRI degradation. J. Hepatol. 2021, 74, 1176–1187. [Google Scholar] [CrossRef]
- Wang, P.-W.; Wu, T.-H.; Lin, T.-Y.; Chen, M.-H.; Yeh, C.-T.; Pan, T.-L. Characterization of the roles of vimentin in regulating the proliferation and migration of HSCs during hepatic fibrogenesis. Cells 2019, 8, 1184. [Google Scholar] [CrossRef]
- Bogomolova, A.; Balakrishnan, A.; Ott, M.; Sharma, A.D. “The good, the bad, and the ugly”—About diverse phenotypes of hepatic stellate cells in the liver. Cell. Mol. Gastroenterol. Hepatol. 2024, 17, 607–622. [Google Scholar] [CrossRef]
- Magness, S.T.; Bataller, R.; Yang, L.; Brenner, D. A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology 2004, 40, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Krenkel, O.; Hundertmark, J.; Ritz, T.P.; Weiskirchen, R.; Tacke, F. Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis. Cells 2019, 8, 503. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, S.B.; Liu, X.; Ganguly, S.; Dhar, D.; Pasillas, M.P.; Ricciardelli, E.; Li, R.Z.; Troutman, T.D.; Kisseleva, T.; Glass, C.K.; et al. Heterogeneity of HSCs in a Mouse Model of NASH. Hepatology 2021, 74, 667–685. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Conway, S.J.; Liu, Y.; Snider, P.; Chen, H.; Gao, H.; Liu, Y.; Isidan, K.; Lopez, K.J.; Campana, G.; et al. Heterogeneity of hepatic stellate cells in fibrogenesis of the liver: Insights from single-cell transcriptomic analysis in liver injury. Cells 2021, 10, 2129. [Google Scholar] [CrossRef]
- Govaere, O.; Komuta, M.; Berkers, J.; Spee, B.; Janssen, C.; de Luca, F.; Katoonizadeh, A.; Wouters, J.; van Kempen, L.C.; Durnez, A.; et al. Keratin 19: A key role player in the invasion of human hepatocellular carcinomas. Gut 2014, 63, 674–685. [Google Scholar] [CrossRef]
- Paulsen, J.D.; Zeck, B.; Sun, K.; Simoes, C.; Theise, N.D.; Chiriboga, L. Keratin 19 and mesenchymal markers for evaluation of epithelial–mesenchymal transition and stem cell niche components in primary biliary cholangitis by sequential elution-stripping multiplex immunohistochemistry. J. Histotechnol. 2020, 43, 163–173. [Google Scholar] [CrossRef]
- Kordes, C.; Sawitza, I.; Götze, S.; Herebian, D.; Häussinger, D. Hepatic stellate cells contribute to progenitor cells and liver regeneration. J. Clin. Investig. 2014, 124, 5503–5515. [Google Scholar] [CrossRef] [PubMed]
- PangoaDB. Cell Type Gene Expression Markers. Hepatic Stellate Cells. Available online: https://panglaodb.se/markers.html?cell_type=%27Hepatic%20stellate%20cells%27 (accessed on 17 July 2025).
- Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Liehr, T.; Rincic, M. Cytogenomic characterization of murine osteosarcoma cell line SEWA. Cytogenet. Genome Res. 2024, 164, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Weiskirchen, S.; Monteiro, A.M.; Borojevic, R.; Weiskirchen, R. Unlocking potential: A comprehensive overview of cell culture banks and their impact on biomedical research. Cells 2024, 13, 1861. [Google Scholar] [CrossRef] [PubMed]
- PubMed. National Library of Medicine. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 23 June 2025).
- Google. Available online: https://www.google.com/ (accessed on 23 June 2025).
- Wu, J.C.; Merlino, G.; Fausto, N. Establishment and characterization of differentiated, nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor alpha. Proc. Natl. Acad. Sci. USA 1994, 91, 674–678. [Google Scholar] [CrossRef]
- Borojevic, R.; Monteiro, A.N.A.; Vinhas, S.A.; Domont, G.B.; Mourão, P.A.S.; Emonard, H.; Grimaldi, G.; Grimaud, J.-A. Establishment of a continuous cell line from fibrotic schistosomal granulomas in mice livers. In Vitro Cell. Dev. Biol. 1985, 21, 382–390. [Google Scholar] [CrossRef]
- Schröder, S.K.; Schüler, H.M.; Petersen, K.V.; Tesauro, C.; Knudsen, B.R.; Pedersen, F.S.; Krus, F.; Buhl, E.M.; Roeb, E.; Roderfeld, M.; et al. Genetic and molecular characterization of the immortalized murine hepatic stellate cell line GRX. Cells 2022, 11, 1504. [Google Scholar] [CrossRef]
- Greenwel, P.; Schwartz, M.; Rosas, M.; Peyrol, S.; A Grimaud, J.; Rojkind, M. Characterization of fat-storing cell lines derived from normal and CCl4-cirrhotic livers. Differences in the production of interleukin-6. Lab. Investig. 1991, 65, 644–653. [Google Scholar] [PubMed]
- Greenwel, P.; Rubin, J.; Schwartz, M.; Hertzberg, E.L.; Rojkind, M. Liver fat-storing cell clones obtained from a CCl4-cirrhotic rat are heterogeneous with regard to proliferation, expression of extracellular matrix components, interleukin-6, and connexin 43. Lab. Investig. 1993, 69, 210–216. [Google Scholar] [PubMed]
- Nanda, I.; Schröder, S.K.; Steinlein, C.; Haaf, T.; Buhl, E.M.; Grimm, D.G.; Weiskirchen, R. Rat Hepatic stellate cell line CFSC-2G: Genetic markers and short tandem repeat profile useful for cell line authentication. Cells 2022, 11, 2900. [Google Scholar] [CrossRef] [PubMed]
- Vogel, S.; Piantedosi, R.; Frank, J.; Lalazar, A.; Rockey, D.C.; Friedman, S.L.; Blaner, W.S. An immortalized rat liver stellate cell line (HSC-T6): A new cell model for the study of retinoid metabolism in vitro. J. Lipid Res. 2000, 41, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Sauvant, P.; Sapin, V.; Abergel, A.; Schmidt, C.K.; Blanchon, L.; Alexandre-Gouabau, M.-C.; Rosenbaum, J.; Bommelaer, G.; Rock, E.; Dastugue, B.; et al. PAV-1, a new rat hepatic stellate cell line converts retinol into retinoic acid, a process altered by ethanol. Int. J. Biochem. Cell Biol. 2002, 34, 1017–1029. [Google Scholar] [CrossRef] [PubMed]
- Gäberlein, K.; Schröder, S.K.; Nanda, I.; Steinlein, C.; Haaf, T.; Buhl, E.M.; Sauvant, P.; Sapin, V.; Abergel, A.; Weiskirchen, R. Genetic characterization of rat hepatic stellate cell line PAV-1. Cells 2023, 12, 1603. [Google Scholar] [CrossRef]
- Xu, L.; Hui, A.Y.; Albanis, E.; Arthur, M.J.; O’Byrne, S.M.; Blaner, W.S.; Mukherjee, P.; Friedman, S.L.; Eng, F.J. Human hepatic stellate cell lines, LX-1 and LX-2: New tools for analysis of hepatic fibrosis. Gut 2005, 54, 142–151. [Google Scholar] [CrossRef]
- Weiskirchen, R.; Weimer, J.; Meurer, S.K.; Kron, A.; Seipel, B.; Vater, I.; Arnold, N.; Siebert, R.; Xu, L.; Friedman, S.L.; et al. Genetic characteristics of the human hepatic stellate cell line LX-2. PLoS ONE 2013, 8, e75692. [Google Scholar] [CrossRef]
- Kaplan, P.L.; Ozanne, B. Cellular responsiveness to growth factors correlates with a cell’s ability to express the transformed phenotype. Cell 1983, 33, 931–938. [Google Scholar] [CrossRef]
- Liehr, T.; Kankel, S.; Buhl, E.M.; Schröder-Lange, S.K.; Weiskirchen, R. Genetic characteristics of the rat fibroblast cell line rat-1. Cells 2024, 14, 21. [Google Scholar] [CrossRef]
- Reynolds, V.L.; DiPietro, M.; Lebovitz, R.M.; Lieberman, M.W. Inherent tumorigenic and metastatic properties of rat-1 and rat-2 cells. Cancer Res. 1987, 47, 6384–6387. [Google Scholar] [PubMed]
- Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef] [PubMed]
- Kessel, J.C.; Weiskirchen, R.; Schröder, S.K. Expression analysis of lipocalin 2 (LCN2) in reproductive and non-reproductive tissues of Esr1-deficient mice. Int. J. Mol. Sci. 2023, 24, 9280. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Schröder, S.K.; Tag, C.G.; Weiskirchen, S.; Weiskirchen, R. Phalloidin staining for F-actin in hepatic stellate cells. Methods Mol. Med. 2023, 2669, 55–66. [Google Scholar] [CrossRef]
- Stewart, T.J.; Abrams, S.I. Altered immune function during long-term host-tumor interactions can be modulated to retard autochthonous neoplastic growth. J. Immunol. 2007, 179, 2851–2859. [Google Scholar] [CrossRef]
- Murphy, B.M.; Jensen, D.M.; Arnold, T.E.; Aguilar-Valenzuela, R.; Hughes, J.; Posada, V.; Nguyen, K.T.; Chu, V.T.; Tsai, K.Y.; Burd, C.J.; et al. The OSUMMER lines: A series of ultraviolet-accelerated NRAS-mutant mouse melanoma cell lines syngeneic to C57BL/6. Pigment Cell Melanoma Res. 2023, 36, 365–377. [Google Scholar] [CrossRef]
- Meeth, K.; Wang, J.X.; Micevic, G.; Damsky, W.; Bosenberg, M.W. The YUMM lines: A series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment Cell Melanoma Res. 2016, 29, 590–597. [Google Scholar] [CrossRef]
- Wang, J.; Perry, C.J.; Meeth, K.; Thakral, D.; Damsky, W.; Micevic, G.; Kaech, S.; Blenman, K.; Bosenberg, M. UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model. Pigment Cell Melanoma Res. 2017, 30, 428–435. [Google Scholar] [CrossRef]
- Kordes, C.; Sawitza, I.; Müller-Marbach, A.; Ale-Agha, N.; Keitel, V.; Klonowski-Stumpe, H.; Häussinger, D. CD133+ hepatic stellate cells are progenitor cells. Biochem. Biophys. Res. Commun. 2007, 352, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Borkham-Kamphorst, E.; van de Leur, E.; Zimmermann, H.W.; Karlmark, K.R.; Tihaa, L.; Haas, U.; Tacke, F.; Berger, T.; Mak, T.W.; Weiskirchen, R. Protective effects of lipocalin-2 (LCN2) in acute liver injury suggest a novel function in liver homeostasis. Biochim. Biophys. Acta 2013, 1832, 660–673. [Google Scholar] [CrossRef]
- PCR Primer Design. Available online: https://eurofinsgenomics.eu/en/ecom/tools/pcr-primer-design/ (accessed on 23 June 2025).
- Oh, H.R.; Kim, J.; Kim, J. Critical roles of Cyclin D1 in mouse embryonic fibroblast cell reprogramming. FEBS J. 2016, 283, 4549–4568. [Google Scholar] [CrossRef] [PubMed]
- Boaru, S.G.; Borkham-Kamphorst, E.; Tihaa, L.; Haas, U.; Weiskirchen, R. Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease. J. Inflamm. 2012, 9, 49. [Google Scholar] [CrossRef]
- Kofent, J.; Zhang, J.; Spagnoli, F.M. The histone methyltransferase Setd7 promotes pancreatic progenitor identity. Development 2016, 143, 3573–3581. [Google Scholar] [CrossRef]
- Ito, J.; Omiya, S.; Rusu, M.C.; Ueda, H.; Murakawa, T.; Tanada, Y.; Abe, H.; Nakahara, K.; Asahi, M.; Taneike, M.; et al. Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice. eLife 2021, 10, e62174. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Liu, X.; Li, S.; Cheng, C.; Chen, S.; Le, W. Dynamic changes of CX3CL1/CX3CR1 axis during microglial activation and motor neuron loss in the spinal cord of ALS mouse model. Transl. Neurodegener. 2018, 7, 35. [Google Scholar] [CrossRef]
- Fan, L.; Lesser, A.F.; Sweet, D.R.; Keerthy, K.S.; Lu, Y.; Chan, E.R.; Vinayachandran, V.; Ilkayeva, O.; Das, T.; Newgard, C.B.; et al. KLF15 controls brown adipose tissue transcriptional flexibility and metabolism in response to various energetic demands. iScience 2022, 25, 105292. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Nace, G.W.; McDonald, K.A.; Tai, S.; Klune, J.R.; Rosborough, B.R.; Ding, Q.; Loughran, P.; Zhu, X.; Beer-Stolz, D.; et al. Hepatocyte-specific high-mobility group box 1 deletion worsens the injury in liver ischemia/reperfusion: A role for intracellular high-mobility group box 1 in cellular protection. Hepatology 2014, 59, 1984–1997. [Google Scholar] [CrossRef] [PubMed]
- Park, M.R.; Wong, M.S.; Araúzo-Bravo, M.J.; Lee, H.; Nam, D.; Park, S.Y.; Seo, H.D.; Lee, S.M.; Zeilhofer, H.F.; Zaehres, H.; et al. Oct4 and Hnf4α-induced hepatic stem cells ameliorate chronic liver injury in liver fibrosis model. PLoS ONE 2019, 14, e0221085. [Google Scholar] [CrossRef]
- Tanaka, Y.; Watari, M.; Saito, T.; Morishita, Y.; Ishibashi, K. Enhanced autophagy in polycystic kidneys of AQP11 null mice. Int. J. Mol. Sci. 2016, 17, 1993. [Google Scholar] [CrossRef]
- Lee, J.Y.; Khan, A.A.; Min, H.; Wang, X.; Kim, M.H. Identification and characterization of a noncoding RNA at the mouse Pcna locus. Mol. Cells 2012, 33, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Asimakopoulou, A.; Vucur, M.; Luedde, T.; Schneiders, S.; Kalampoka, S.; Weiss, T.S.; Weiskirchen, R. Perilipin 5 and lipocalin 2 expression in hepatocellular carcinoma. Cancers 2019, 11, 385. [Google Scholar] [CrossRef]
- Gong, Z.K.; Wang, S.J.; Huang, Y.Q.; Zhao, R.Q.; Zhu, Q.F.; Lin, W.Z. Identification and validation of suitable reference genes for RT-qPCR analysis in mouse testis development. Mol. Genet. Genom. 2014, 289, 1157–1169. [Google Scholar] [CrossRef]
- Dong, Z.; Bian, L.; Wang, Y.L.; Sun, L.M. Gastrodin protects against high glucose-induced cardiomyocyte toxicity via GSK-3β-mediated nuclear translocation of Nrf2. Hum. Exp. Toxicol. 2021, 40, 1584–1597. [Google Scholar] [CrossRef]
- Schroder, A.L.; Pelch, K.E.; Nagel, S.C. Estrogen modulates expression of putative housekeeping genes in the mouse uterus. Endocrine 2009, 35, 211–219. [Google Scholar] [CrossRef]
- Lin, P.; Lan, X.; Chen, F.; Yang, Y.; Jin, Y.; Wang, A. Reference gene selection for real-time quantitative PCR analysis of the mouse uterus in the peri-implantation period. PLoS ONE 2013, 8, e62462. [Google Scholar] [CrossRef]
- Schröder, S.K.; Krizanac, M.; Kim, P.; Kessel, J.C.; Weiskirchen, R. Ovaries of estrogen receptor 1-deficient mice show iron overload and signs of aging. Front. Endocrinol. 2024, 15, 1325386. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ma, H.M.; Shen, M.Q.; Wang, Y.Y.; Bao, Y.X.; Liu, Y.; Ke, Y.; Qian, Z.M. The role of Iron in atherosclerosis in apolipoprotein E deficient mice. Front. Cardiovasc. Med. 2022, 9, 857933. [Google Scholar] [CrossRef] [PubMed]
- Faragó, N.; Kocsis, G.F.; Fehér, L.Z.; Csont, T.; Hackler, L., Jr.; Varga-Orvos, Z.; Csonka, C.; Kelemen, J.Z.; Ferdinandy, P.; Puskás, L.G. Gene and protein expression changes in response to normoxic perfusion in mouse hearts. J. Pharmacol. Toxicol. Methods 2008, 57, 145–154. [Google Scholar] [CrossRef] [PubMed]
Year of Publication | Major Findings | Reference |
---|---|---|
2013 | This article introduces this mouse hepatic stellate cell line expressing green fluorescent protein (GFP) under the collagen 1(I) promoter and demonstrates its responsiveness to fibrogenic stimuli such as platelet-derived growth factor (PDGF) and transforming growth factor-β1 (TGF-β1). It also shows that endoglin overexpression enhances SMAD 1/5/8 and ERK1/2 signaling, upregulates fibrogenic markers, and reduces collagen I expression. | [4] |
2018 | The article found that p38 inhibitors increase the activation of other mitogen-activated protein kinases in various cell types, including Col-GFP HSCs. | [5] |
2019 | This study reveals that full-length endoglin (FL-Eng) localizes to caveolin-1-positive membrane domains and is incorporated into exosomes from hepatic stellate cells. It further demonstrated that all liver cell types can direct endoglin to exosomes, regardless of endogenous expression. N-glycosylation is not necessary for endoglin dimerization but is crucial for the secretion of soluble endoglin and the exosomal targeting of FL-Eng. | [6] |
2021 | The study examines the relevance of Perilipin 5 (PLIN5) in maintaining HSC quiescence in vivo and in vitro. Overexpression of PLIN5 suppresses the activation of the signal transducer and activator of transcription 3 (STAT3), as well as the TGF-β1-SMAD2/3 and SNAIL signaling pathways. | [7] |
2022 | A short tandem repeat (STR) profile for Col-GFP HSCs is established, enabling accurate authentication and helping resolve issues related to misidentification, cross-contamination, and genetic drift in biomedical research. | [8] |
2022 | The study reports the genetic characterization of the rat hepatic stellate cell line HSC-T6 using the Col-GFP HSC cell line as a control, which expresses typical HSC markers such as α-smooth muscle actin, collagen type I, fibronectin, and vimentin. | [9] |
2023 | This study provides information on the specific culture conditions and marker expression of Col-GFP HSCs and offers guidance on working with various other immortalized HSC cells from mice, rats, and humans. | [10] |
2023 | This communication summarizes available immortalized HSC cell lines from mice, rats, and humans, including Col-GFP HSCs. | [11] |
2023 | The study examines the effects of collagen modulatory compounds on GRX and Col-GFP HSC lines in (2D) monolayer and 3D mono-spheroid models. | [12] |
2025 | This article investigates aspects of mast cell biology, using Col-GFP HSCs as a control cell line for TGF-β signaling constituents (receptors and SMAD proteins) and responsiveness. | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buitkamp, L.F.; Liehr, T.; Kankel, S.; Buhl, E.M.; Hardt, K.S.; Keller, D.T.; Schröder-Lange, S.K.; Weiskirchen, R. Comprehensive Genetic and Molecular Characterization Confirms Hepatic Stellate Cell Origin of the Immortal Col-GFP HSC Line. Int. J. Mol. Sci. 2025, 26, 7764. https://doi.org/10.3390/ijms26167764
Buitkamp LF, Liehr T, Kankel S, Buhl EM, Hardt KS, Keller DT, Schröder-Lange SK, Weiskirchen R. Comprehensive Genetic and Molecular Characterization Confirms Hepatic Stellate Cell Origin of the Immortal Col-GFP HSC Line. International Journal of Molecular Sciences. 2025; 26(16):7764. https://doi.org/10.3390/ijms26167764
Chicago/Turabian StyleBuitkamp, Larissa F., Thomas Liehr, Stefanie Kankel, Eva M. Buhl, Katharina S. Hardt, Diandra T. Keller, Sarah K. Schröder-Lange, and Ralf Weiskirchen. 2025. "Comprehensive Genetic and Molecular Characterization Confirms Hepatic Stellate Cell Origin of the Immortal Col-GFP HSC Line" International Journal of Molecular Sciences 26, no. 16: 7764. https://doi.org/10.3390/ijms26167764
APA StyleBuitkamp, L. F., Liehr, T., Kankel, S., Buhl, E. M., Hardt, K. S., Keller, D. T., Schröder-Lange, S. K., & Weiskirchen, R. (2025). Comprehensive Genetic and Molecular Characterization Confirms Hepatic Stellate Cell Origin of the Immortal Col-GFP HSC Line. International Journal of Molecular Sciences, 26(16), 7764. https://doi.org/10.3390/ijms26167764