Zeta CrAss-like Phages, a Separate Phage Family Using a Variety of Adaptive Mechanisms to Persist in Their Hosts
Abstract
1. Introduction
2. Results
2.1. Analysis of the Lera Phage Genome
2.2. Comparative Analysis of the Lera Phage Genome
2.3. Comparative Analysis of the Lera Genome with the Similar Genome
2.4. Specific Genetic Features of Phages from the Proposed Echekviridae Family
2.4.1. Analysis of the Ribonucleoside-Triphosphate Reductases
2.4.2. Analysis of the DNA Polymerases
2.4.3. Analysis of the Diversity-Generating Retroelements (DGRs)
2.5. Host Prediction
3. Discussion
4. Materials and Methods
4.1. Virome Sequencing and Analysis
4.2. In Silico Host Prediction
4.3. Phage Genome Analysis
4.4. 3D Modeling of Protein Structure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dutilh, B.E.; Cassman, N.; McNair, K.; Sanchez, S.E.; Silva, G.G.Z.; Boling, L.; Barr, J.J.; Speth, D.R.; Seguritan, V.; Aziz, R.K.; et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 2014, 5, 4498. [Google Scholar] [CrossRef]
- Yutin, N.; Makarova, K.S.; Gussow, A.B.; Krupovic, M.; Segall, A.; Edwards, R.A.; Koonin, E.V. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 2018, 3, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Guerin, E.; Shkoporov, A.; Stockdale, S.R.; Clooney, A.G.; Ryan, F.J.; Sutton, T.D.S.; Draper, L.A.; Gonzalez-Tortuero, E.; Ross, R.P.; Hill, C. Biology and taxonomy of crAss-like Bacteriophages, the most abundant virus in the human gut. Cell Host Microbe 2018, 24, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Yutin, N.; Benler, S.; Shmakov, S.A.; Wolf, Y.I.; Tolstoy, I.; Rayko, M.; Antipov, D.; Pevzner, P.A.; Koonin, E.V. Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features. Nat. Commun. 2021, 12, 1044. [Google Scholar] [CrossRef] [PubMed]
- Sala-Comorera, L.; Reynolds, L.J.; Martin, N.A.; Pascual-Benito, M.; Stephens, J.H.; Nolan, T.M.; Gitto, A.; O’Hare, G.M.P.; O’Sullivan, J.J.; García-Aljaro, C.; et al. crAssphage as a human molecular marker to evaluate temporal and spatial variability in faecal contamination of urban marine bathing waters. Sci. Total Environ. 2021, 789, 147828. [Google Scholar] [CrossRef]
- Smith, L.; Goldobina, E.; Govi, B.; Shkoporov, A.N. Bacteriophages of the order Crassvirales: What do we currently know about this keystone component of the human gut virome? Biomolecules 2023, 13, 584. [Google Scholar] [CrossRef]
- Ramos-Barbero, M.D.; Gómez-Gómez, C.; Sala-Comorera, L.; Rodríguez-Rubio, L.; Morales-Cortes, S.; Mendoza-Barberá, E.; Vique, G.; Toribio-Avedillo, D.; Blanch, A.R.; Ballesté, E.; et al. Characterization of crAss-like phage isolates highlights Crassvirales genetic heterogeneity and worldwide distribution. Nat. Commun. 2023, 14, 4295. [Google Scholar] [CrossRef]
- Yarygin, K.; Tyakht, A.; Larin, A.; Kostryukova, E.; Kolchenko, S.; Bitner, V.; Alexeev, D. Abundance profiling of specific gene groups using precomputed gut metagenomes yields novel biological hypotheses. PLoS ONE 2017, 12, e0176154. [Google Scholar] [CrossRef]
- Liang, Y.; Jin, X.; Huang, Y.; Chen, S. Development and application of a real-time polymerase chain reaction assay for detection of a novel gut bacteriophage (crAssphage). J. Med. Virol. 2018, 90, 464–468. [Google Scholar] [CrossRef]
- Tikhe, C.V.; Husseneder, C. Metavirome sequencing of the termite gut reveals the presence of an unexplored bacteriophage community. Front. Microbiol. 2018, 8, 2548. [Google Scholar] [CrossRef]
- Pramono, A.K.; Kuwahara, H.; Itoh, T.; Toyoda, A.; Yamada, A.; Hongoh, Y. Discovery and complete genome sequence of a bacteriophage from an obligate intracellular symbiont of a cellulolytic protist in the termite gut. Microbes Environ. 2017, 32, 112–117. [Google Scholar] [CrossRef]
- Kurilovich, E.; Geva-Zatorsky, N. Effects of bacteriophages on gut microbiome functionality. Gut Microbes 2025, 17, 2481178. [Google Scholar] [CrossRef] [PubMed]
- Remesh, A.Y.T.; Viswanathan, R. CrAss-Like phages: From discovery in human fecal metagenome to application as a microbial source tracking marker. Food Environ. Virol. 2024, 16, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Gulyaeva, A.; Garmaeva, S.; Ruigrok, R.A.A.A.; Wang, D.; Riksen, N.P.; Netea, M.G.; Wijmenga, C.; Weersma, R.K.; Fu, J.; Vila, A.V.; et al. Discovery, diversity, and functional associations of crAss-like phages in human gut metagenomes from four Dutch cohorts. Cell Rep. 2021, 38, 110204. [Google Scholar] [CrossRef] [PubMed]
- Shkoporov, A.N.; Khokhlova, E.V.; Stephens, N.; Hueston, C.; Seymour, S.; Hryckowian, A.J.; Scholz, D.; Ross, R.P.; Hill, C. Long-term persistence of crAss-like phage crAss001 is associated with phase variation in Bacteroides intestinalis. BMC Biol. 2021, 19, 163. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R. The human gut phageome: Composition, development, and alterations in disease. Front. Microbiol. 2023, 14, 1213625. [Google Scholar] [CrossRef]
- Siranosian, B.A.; Tamburini, F.B.; Sherlock, G.; Bhatt, A.S. Acquisition, transmission and strain diversity of human gut-colonizing crAss-like phages. Nat. Commun. 2020, 11, 280. [Google Scholar] [CrossRef]
- Cuevas-Ferrando, E.; Pérez-Cataluña, A.; Falcó, I.; Randazzo, W.; Sánchez, G. Monitoring human viral pathogens reveals potential hazard for treated wastewater discharge or reuse. Front. Microbiol. 2022, 13, 836193. [Google Scholar] [CrossRef]
- Sabar, M.A.; Honda, R.; Haramoto, E. CrAssphage as an indicator of human-fecal contamination in water environment and virus reduction in wastewater treatment. Water Res. 2022, 221, 118827. [Google Scholar] [CrossRef]
- Demeter, K.; Linke, R.; Ballesté, E.; Reischer, G.; Mayer, R.E.; Vierheilig, J.; Kolm, C.; Stevenson, M.E.; Derx, J.; Kirschner, A.K.T.; et al. Have genetic targets for faecal pollution diagnostics and source tracking revolutionized water quality analysis yet? FEMS Microbiol. Rev. 2023, 47, 28. [Google Scholar] [CrossRef]
- Toribio-Avedillo, D.; Ballesté, E.; García-Aljaro, C.; Stange, C.; Tiehm, A.; Sánchez-Cid, C.; Mulogo, E.; Nasser, A.; Santos, R.; Nemes, K.; et al. The reliability of CrAssphage in human fecal pollution detection: A cross-regional MST marker assessment. J. Environ. Manag. 2025, 382, 125399. [Google Scholar] [CrossRef]
- Santos, A.F.B.; Nunes, M.; Filipa-Silva, A.; Pimentel, V.; Pingarilho, M.; Abrantes, P.; Miranda, M.N.S.; Crespo, M.T.; Abecasis, A.B.; Parreira, R.; et al. Wastewater metavirome diversity: Exploring replicate inconsistencies and bioinformatic tool disparities. Int. J. Environ. Res. Public Health 2025, 22, 707. [Google Scholar] [CrossRef]
- Shkoporov, A.; Stockdale, S.R.; Adriaenssens, E.M.; Yutin, N.; Koonin, E.V.; Dutilh, B.E.; Krupovic, M.; Edwards, R.A.; Tolstoy, I.; Hill, C. Taxonomic Proposal: Create One New Order (Crassvirales) Including Four New Families, Ten New Subfamilies, 42 New Genera and 73 New Species (Caudoviricetes). 2020. Available online: https://ictv.global/ictv/proposals/2021.022B.R.Crassvirales.zip (accessed on 10 May 2025).
- Tomofuji, Y.; Kishikawa, T.; Maeda, Y.; Ogawa, K.; Otake-Kasamoto, Y.; Kawabata, S.; Nii, T.; Okuno, T.; Oguro-Igashira, E.; Kinoshita, M.; et al. Prokaryotic and viral genomes recovered from 787 Japanese gut metagenomes revealed microbial features linked to diets, populations, and diseases. Cell Genom. 2022, 2, 100219. [Google Scholar] [CrossRef]
- Pargin, E.; Roach, M.J.; Skye, A.; Papudeshi, B.; Inglis, L.K.; Mallawaarachchi, V.; Grigson, S.R.; Harker, C.; Edwards, R.A.; Giles, S.K. The human gut virome: Composition, colonization, interactions, and impacts on human health. Front. Microbiol. 2023, 14, 963173. [Google Scholar] [CrossRef] [PubMed]
- Honap, T.P.; Sankaranarayanan, K.; Schnorr, S.L.; Ozga, A.Y.T.; Warinner, C.; Lewis, C.M. Biogeographic study of human gut-associated crAssphage suggests impacts from industrialization and recent expansion. PLoS ONE 2020, 15, e0226930. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.A.; Vega, A.A.; Norman, H.M.; Ohaeri, M.; Levi, K.; Dinsdale, E.A.; Cinek, O.; Aziz, R.K.; McNair, K.; Barr, J.J.; et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat. Microbiol. 2019, 4, 1727–1736. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Paul, S.; Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 2017, 8, 1162. [Google Scholar] [CrossRef]
- Drobysheva, A.V.; Panafidina, S.A.; Kolesnik, M.V.; Klimuk, E.I.; Minakhin, L.; Yakunina, M.V.; Borukhov, S.; Nilsson, E.; Holmfeldt, K.; Yutin, N.; et al. Structure and function of virion RNA polymerase of a crAss-like phage. Nature 2020, 589, 306–309. [Google Scholar] [CrossRef]
- Koonin, E.V.; Yutin, N. The crAss-like Phage Group: How Metagenomics Reshaped the Human Virome. Trends Microbiol. 2020, 28, 349–359. [Google Scholar] [CrossRef]
- Babkin, I.V.; Tikunov, A.Y.; Baykov, I.K.; Morozova, V.V.; Tikunova, N.V. Genome analysis of Epsilon CrAss-like phages. Viruses 2024, 16, 513. [Google Scholar] [CrossRef]
- Borges, A.L.; Lou, Y.C.; Sachdeva, R.; Al-Shayeb, B.; Penev, P.I.; Jaffe, A.L.; Lei, S.; Santini, J.M.; Banfield, J.F. Widespread stop-codon recoding in bacteriophages may regulate translation of lytic genes. Nat. Microbiol. 2022, 7, 918–927. [Google Scholar] [CrossRef]
- Ivanova, N.N.; Schwientek, P.; Tripp, H.J.; Rinke, C.; Pati, A.; Huntemann, M.; Visel, A.; Woyke, T.; Kyrpides, N.C.; Rubin, E.M. Stop codon reassignments in the wild. Science 2014, 344, 909–913. [Google Scholar] [CrossRef]
- Bhunchoth, A.; Blanc-Mathieu, R.; Mihara, T.; Nishimura, Y.; Askora, A.; Phironrit, N.; Leksomboon, C.; Chatchawankanphanich, O.; Kawasaki, T.; Nakano, M.; et al. Two asian jumbo phages, ϕRSL2 and ϕRSF1, infect Ralstonia solanacearum and show common features of ϕKZ-related phages. Virology 2016, 494, 56–66. [Google Scholar] [CrossRef]
- Adriaenssens, E.M.; Brister, J.R. How to name and classify your phage: An informal guide. Viruses 2017, 9, 70. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Kropinski, A.M.; Adriaenssens, E.M. A Roadmap for genome-based phage taxonomy. Viruses 2021, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Torrents, E.; Buist, G.; Liu, A.; Eliasson, R.; Kok, J.; Gibert, I.; Gräslund, A.; Reichard, P. The anaerobic (class III) ribonucleotide reductase from Lactococcus lactis. Catalytic properties and allosteric regulation of the pure enzyme system. J. Biol. Chem. 2000, 275, 2463–2471. [Google Scholar] [CrossRef] [PubMed]
- Lundin, D.; Berggren, G.; Logan, D.T.; Sjöberg, B.M. The origin and evolution of ribonucleotide reduction. Life 2015, 5, 604–636. [Google Scholar] [CrossRef]
- Wu, L.; Gingery, M.; Abebe, M.; Arambula, D.; Czornyj, E.; Handa, S.; Khan, H.; Liu, M.; Pohlschroder, M.; Shaw, K.; et al. Diversity-generating retroelements: Natural variation, classification and evolution inferred from a large-scale genomic survey. Nucleic Acids Res. 2018, 46, 11–24. [Google Scholar] [CrossRef]
- Guo, H.; Arambula, D.; Ghosh, P.; Miller, J.F. Diversity-generating retroelements in phage and bacterial genomes. Microbiol. Spectr. 2014, 2, 1237–1252. [Google Scholar] [CrossRef]
- Roux, S.; Paul, B.G.; Bagby, S.C.; Nayfach, S.; Allen, M.A.; Attwood, G.; Cavicchioli, R.; Chistoserdova, L.; Gruninger, R.J.; Hallam, S.J.; et al. Ecology and molecular targets of hypermutation in the global microbiome. Nat. Commun. 2021, 12, 3076. [Google Scholar] [CrossRef]
- Sharifi, F.; Ye, Y. MyDGR: A Server for Identification and Characterization of Diversity-Generating Retroelements. Nucleic Acids Res. 2019, 47, W289–W294. [Google Scholar] [CrossRef] [PubMed]
- Handa, S.; Biswas, T.; Chakraborty, J.; Ghosh, G.; Paul, B.G.; Ghosh, P. RNA control of reverse transcription in a diversi-ty-generating retroelement. Nature 2025, 638, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Niemann, H.H.; Schubert, W.D.; Heinz, D.W. Adhesins and invasins of pathogenic bacteria: A structural view. Microbes Infect. 2004, 6, 101–112. [Google Scholar] [CrossRef]
- Santiago-Rodriguez, T.M.; Hollister, E.B. Unraveling the viral dark matter through viral metagenomics. Front. Immunol. 2022, 13, 1005107. [Google Scholar] [CrossRef] [PubMed]
- Łusiak-Szelachowska, M.; Weber-Dąbrowska, B.; Żaczek, M.; Borysowski, J.; Górski, A. The presence of bacteriophages in the human body: Good, Bad or Neutral? Microorganisms 2020, 8, 2012. [Google Scholar] [CrossRef]
- Shin, J.H.; Tillotson, G.; MacKenzie, T.N.; Warren, C.A.; Wexler, H.M.; Goldstein, E.J.C. Bacteroides and related species: The keystone taxa of the human gut microbiota. Anaerobe 2024, 85, 102819. [Google Scholar] [CrossRef]
- McMillan, A.S.; Foley, M.H.; Perkins, C.E.; Theriot, C.M. Loss of Bacteroides thetaiotaomicron bile acid-altering enzymes impacts bacterial fitness and the global metabolic transcriptome. Microbiol. Spectr. 2024, 12, e0357623. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, R.; Zhang, D.; Qi, S.; Liu, Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed. Pharmacother. 2023, 160, 114295. [Google Scholar] [CrossRef]
- Hoffmanns, L.; Svedberg, D.; Mateus, A. Protein O-glycosylation in the Bacteroidota phylum. FEBS Open Bio 2025. Advance online publication. [Google Scholar] [CrossRef]
- Saba, J.; Flores, K.; Marshall, B.; Engstrom, M.D.; Peng, Y.; Garje, A.S.; Comstock, L.E.; Landick, R. Bacteroides expand the functional versatility of a conserved transcription factor and transcribed DNA to program capsule diversity. Nat. Commun. 2024, 15, 10862. [Google Scholar] [CrossRef]
- Babkin, I.; Tikunov, A.; Morozova, V.; Matveev, A.; Morozov, V.V.; Tikunova, N. Genomes of a novel group of phages that use alternative genetic code found in human gut viromes. Int. J. Mol. Sci. 2023, 24, 15302. [Google Scholar] [CrossRef]
- Devoto, A.E.; Santini, J.M.; Olm, M.R.; Anantharaman, K.; Munk, P.; Tung, J.; Archie, E.A.; Turnbaugh, P.J.; Seed, K.D.; Blekhman, B.; et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat. Microbiol. 2019, 4, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Al-Shayeb, B.; Sachdeva, R.; Chen, L.X.; Ward, F.; Munk, P.; Devoto, A.; Castelle, C.J.; Olm, M.R.; Bouma-Gregson, K.; Amano, Y.; et al. Clades of huge phages from across Earth’s ecosystems. Nature 2020, 578, 425–431. [Google Scholar] [CrossRef]
- Crisci, M.A.; Chen, L.X.; Devoto, A.E.; Borges, A.L.; Bordin, N.; Sachdeva, R.; Tett, A.; Sharrar, A.M.; Segata, N.; Debenedetti, F.; et al. Closely related Lak megaphages replicate in the microbiomes of diverse animals. iScience 2021, 24, 102875. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.L.; Borges, A.L.; Giannone, R.J.; Morowitz, M.J.; Banfield, J.F.; Hettich, R.L. Experimental validation that human microbiome phages use alternative genetic coding. Nat. Commun. 2022, 13, 5710. [Google Scholar] [CrossRef] [PubMed]
- Nayfach, S.; Páez-Espino, D.; Call, L.; Low, S.J.; Sberro, H.; Ivanova, N.N.; Proal, A.D.; Fischbach, M.A.; Bhatt, A.S.; Hugenholtz, P.; et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 2021, 6, 960–970. [Google Scholar] [CrossRef]
- Cook, R.; Telatin, A.; Bouras, G.; Camargo, A.P.; Larralde, M.; Edwards, R.A.; Adriaenssens, E.M. Driving through stop signs: Predicting stop codon reassignment improves functional annotation of bacteriophages. ISME Commun. 2024, 4, ycae079. [Google Scholar] [CrossRef]
- Liu, J.; Jaffe, A.L.; Chen, L.; Bor, B.; Banfield, J.F. Host translation machinery is not a barrier to phages that interact with both CPR and non-CPR bacteria. mBio 2023, 14, e01766-23. [Google Scholar] [CrossRef]
- Herring, C.D.; Blattner, F.R. Global transcriptional effects of a suppressor tRNA and the inactivation of the regulator frmR. J. Bacteriol. 2004, 186, 6714–6720. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, T.; Xu, J.; Shen, Z.; Briggs, S.P.; Zhou, D.; Wang, L. Response and adaptation of Escherichia coli to suppression of the amber stop codon. Chembiochem 2014, 15, 1744–1749. [Google Scholar] [CrossRef]
- Lyu, Z.; Wilson, C.; Paul, P.; Ling, J. Suppression of amber stop codons impairs pathogenicity in Salmonella. FEBS Lett. 2025, 599, 476–487. [Google Scholar] [CrossRef]
- Ling, J.; O’Donoghue, P.; Söll, D. Genetic code flexibility in microorganisms: Novel mechanisms and impact on physiology. Nat. Rev. Microbiol. 2015, 13, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Deng, D.; Huang, J.; Yao, D.; Xu, X.; Gao, X. Screening system for orthogonal suppressor tRNAs based on the species-specific toxicity of suppressor tRNAs. Biochimie 2013, 95, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, I.U.; Rovner, A.J.; Aerni, H.R.; Rogulina, S.; Cheng, L.; Olds, W.; Fischer, J.T.; Söll, D.; Isaacs, F.J.; Rinehart, J. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion. FEBS Lett. 2012, 586, 3716–3722. [Google Scholar] [CrossRef] [PubMed]
- Yutin, N.; Tolstoy, I.; Mutz, P.; Wolf, Y.I.; Krupovic, M.; Koonin, E.V. DNA polymerase swapping in Caudoviricetes bacteriophages. Virol. J. 2024, 21, 200. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Kieft, K.; Zhou, Z.; Anantharaman, K. VIBRANT: Automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 2020, 8, 90. [Google Scholar] [CrossRef]
- Roux, S.; Camargo, A.P.; Coutinho, F.H.; Dabdoub, S.M.; Dutilh, B.E.; Nayfach, S.; Tritt, A. iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 2023, 21, e3002083. [Google Scholar] [CrossRef]
- Garneau, J.R.; Depardieu, F.; Fortier, L.C.; Bikard, D.; Monot, M. PhageTerm: A tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci. Rep. 2017, 7, 8292. [Google Scholar] [CrossRef]
- Dong, M.J.; Luo, H.; Gao, F. Ori-Finder 2022: A Comprehensive Web Server for Prediction and Analysis of Bacterial Replication Origins. Genom. Proteom. Bioinform. 2022, 20, 1207–1213. [Google Scholar] [CrossRef]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Search and Contextual Analysis of Transfer RNA Genes. Nucl. Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations Using Subsystems Technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Yoshida, T.; Kuronishi, M.; Uehara, H.; Ogata, H.; Goto, S. Viptree: The viral proteomic tree server. Bioinformatics 2017, 33, 2379–2380. [Google Scholar] [CrossRef]
- Moraru, C.; Varsani, A.; Kropinski, A.M. VIRIDIC—A novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 2020, 12, 1268. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with alphafold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visu-alization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Holm, L.; Laiho, A.; Törönen, P.; Salgado, M. DALI Shines a Light on Remote Homologs: One Hundred Discoveries. Protein Sci. 2022, 32, e4519. [Google Scholar] [CrossRef]
## | Name of Phage | Genome Length | # of tRNA | Putative Host | DNA Polymerase | GC Content, % | SG * | Anticodon(s) Suppressor tRNA ** | Suppression | DGR |
---|---|---|---|---|---|---|---|---|---|---|
1. | ctI6w6 | 166,853 | 6 | Prevotella | polA | 37.61 | 0.0671 | - | - | - |
2. | S22M_St_77 | 155,709 | 17 | - | polB | 35.72 | 0.0648 | CTA | amber | - |
3. | c815351 | 173,322 | 23 | - | polB | 33.17 | 0.0860 | TCA | opal | - |
4. | 3075_90106 | 176,686 | 25 | Holdemanella | polB | 30.50 | 0.0845 | - | opal | - |
5. | ctddo16 | 173,378 | 23 | - | polB | 32.33 | 0.0781 | - | opal | - |
6. | ctvkg4 | 176,526 | 25 | Faecalibacillus/Holdemanella | polA | 33.16 | 0.0849 | - | opal | - |
7. | ctPTU4 | 176,247 | 18 | Faecalibacillus | polA | 32.42 | 0.0867 | - | opal | - |
8. | ctvXz2 | 159,920 | 6 | - | polB | 28.04 | 0.1011 | - | - | - |
9. | ctSlg4 | 175,907 | 28 | Butyricimonas | polA | 29.31 | 0.1206 | - | - | + |
10. | ctyZw10 | 161,768 | 6 | Bacteroides/Gabonibacter | polA | 33.56 | 0.1027 | - | - | - |
11. | ctPwF6 | 157,177 | 4 | - | polA | 30.45 | 0.0915 | - | - | - |
12. | ctIv631 | 162,892 | 21 | - | polB | 32.73 | 0.1240 | CTA | amber | - |
13. | ctHMy13 | 176,458 | 23 | Prevotella | polA | 35.10 | 0.1194 | CTA | amber | + |
14. | ctoVY1 | 183,062 | 27 | Phocaeicola/Lachnospira | polA | 34.75 | 0.1259 | CTA | amber | + |
15. | cthgQ11 | 188,977 | 27 | Prevotella/Lachnospira | polA | 34.65 | 0.1375 | CTA | amber | + |
16. | 3717_85572 | 182,023 | 24 | Lachnospira/Prevotella | polA | 34.46 | 0.1383 | CTA | amber | + |
17. | ctE7s22 | 176,024 | 31 | - | polA | 31.87 | 0.2762 | CTA | - | + |
18. | ct1yV3 | 177,566 | 25 | Parabacteroides | polA | 32.36 | 0.9323 | TCA, CTA | opal | + |
19. | Lera | 179,624 | 26 | Parabacteroides | polA | 32.36 | 1 | TCA, CTA | opal | + |
20. | ctPYl2 | 177,284 | 21 | Phocaeicola/Bacteroides | polA | 33.41 | 0.1916 | - | - | + |
21. | ct9TY3 | 177,702 | 19 | Bacteroides | polA | 33.49 | 0.1821 | - | - | - |
22. | ctH0b1 | 184,176 | 26 | - | polA | 34.30 | 0.1822 | - | - | + |
23. | ctZYC69 | 185,164 | 25 | Bacteroides | polA | 34.32 | 0.1841 | - | - | + |
24. | ctbKl9 | 185,587 | 23 | Bacteroides | polA | 34.57 | 0.1849 | - | - | + |
25. | ctkor1 | 187,612 | 32 | Bacteroides/Lachnospira | polA | 31.36 | 0.1578 | CTA, TCA | amber | - |
26. | ctZY71 | 186,754 | 34 | Lachnospira | polA | 36.46 | 0.1677 | - | - | + |
27. | ct5Hm1 | 189,255 | 32 | Lachnospira | polA | 36.54 | 0.1774 | - | - | + |
28. | ct1MR12 | 189,162 | 29 | Bacteroides/Phocaeicola | polA | 36.40 | 0.1733 | - | - | + |
29. | 4258_58093 | 182,539 | 31 | Lachnospira | polA | 36.56 | 0.1696 | - | - | + |
30. | C017_43 | 186,899 | 34 | Bacteroides/Lachnospira | polA | 36.50 | 0.1714 | - | - | + |
31. | 3486_26535 | 185,780 | 31 | Bacteroides/Phocaeicola | polA | 36.49 | 0.1724 | - | - | + |
32. | 3181_23131 | 174,278 | 25 | Bacteroides | polA | 35.35 | 0.1825 | CTA | - | - |
33. | ctT3W1 | 184,663 | 26 | Bacteroides | polA | 35.41 | 0.1914 | CTA | - | - |
34. | 3142_110364 | 185,251 | 23 | Bacteroides | polA | 35.42 | 0.1917 | CTA | - | - |
35. | 2258_11302 | 178,974 | 20 | Bacteroides | polA | 35.38 | 0.1893 | CTA | - | - |
36. | C040_19 | 171,941 | 23 | Bacteroides | polA | 36.50 | 0.1812 | CTA | - | - |
37. | 3248_44277 | 178,073 | 29 | Bacteroides/Phocaeicola | polA | 36.78 | 0.1776 | CTA | - | - |
38. | 1760_57601 | 163,848 | 27 | Bacteroides | polA | 36.88 | 0.1880 | CTA | - | - |
39. | ct3H02 | 188,037 | 29 | Bacteroides | polA | 36.78 | 0.1838 | CTA | - | - |
40. | 3190_52781 | 182,226 | 28 | Bacteroides | polA | 36.74 | 0.1740 | CTA | - | - |
41. | 3468_61007 | 184,522 | 29 | Bacteroides | polA | 36.81 | 0.1762 | CTA | - | - |
42. | k141_42634 | 156,118 | 17 | Bacteroides/Lachnospira | polA | 36.89 | 0.2029 | - | - | - |
43. | 3531_11008 | 178,762 | 28 | Bacteroides | polA | 36.84 | 0.1776 | CTA | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babkin, I.V.; Fedorets, V.A.; Tikunov, A.Y.; Baykov, I.K.; Panina, E.A.; Tikunova, N.V. Zeta CrAss-like Phages, a Separate Phage Family Using a Variety of Adaptive Mechanisms to Persist in Their Hosts. Int. J. Mol. Sci. 2025, 26, 7694. https://doi.org/10.3390/ijms26167694
Babkin IV, Fedorets VA, Tikunov AY, Baykov IK, Panina EA, Tikunova NV. Zeta CrAss-like Phages, a Separate Phage Family Using a Variety of Adaptive Mechanisms to Persist in Their Hosts. International Journal of Molecular Sciences. 2025; 26(16):7694. https://doi.org/10.3390/ijms26167694
Chicago/Turabian StyleBabkin, Igor V., Valeria A. Fedorets, Artem Y. Tikunov, Ivan K. Baykov, Elizaveta A. Panina, and Nina V. Tikunova. 2025. "Zeta CrAss-like Phages, a Separate Phage Family Using a Variety of Adaptive Mechanisms to Persist in Their Hosts" International Journal of Molecular Sciences 26, no. 16: 7694. https://doi.org/10.3390/ijms26167694
APA StyleBabkin, I. V., Fedorets, V. A., Tikunov, A. Y., Baykov, I. K., Panina, E. A., & Tikunova, N. V. (2025). Zeta CrAss-like Phages, a Separate Phage Family Using a Variety of Adaptive Mechanisms to Persist in Their Hosts. International Journal of Molecular Sciences, 26(16), 7694. https://doi.org/10.3390/ijms26167694