Scoping Review: The Role of Tocotrienol-Rich Fraction as a Potent Neuroprotective Agent
Abstract
1. Introduction
2. Results
Ameliorative Effects of TRF on Brain Health: Insights from In Vitro and In Vivo Studies
No | Paper | Types of Studies | Model | Effects of TRF |
---|---|---|---|---|
1 | [21] | In vitro | Astrocytes induced by glutamate | TRF treatment ↑ cell viability and GSH levels compared to the untreated group. Additionally, TRF pre-treatment ↓ MDA levels compared to the control and tocopherol groups. |
2 | [23] | In vitro | Oxidative stress in human neuroblastoma SH-SY5Y cells induced by 6-hydroxydopamine (6-OHDA) | TRF pre-treatment in 6-OHDA-induced neuroblastoma cells ↑ cell viability, ↓ ROS generation and CAT activity, ↑ SOD activity, and ↑ dopamine receptor D2 gene expression compared to the untreated groups (treated with 6-OHDA without TRF supplementation). |
3 | [22] | In vitro | RAW264.7 macrophages culture | TRF treatment ↓ IL-6 levels, NO generation, prostaglandin E2 release, and cyclooxygenase-2 gene expression in LPS-stimulated macrophages when compared to the control group, which consisted LPS-stimulated macrophages that did not receive TRF supplementation. |
4 | [24] | In vitro | The transgenic mouse ES cell line, 46C | TRF significantly ↓ ROS levels, as well as the expression of glutamate receptor N-methyl-D-aspartate-1 (NMDA-1), Kainate-1, and neurone-specific enolase in the transgenic cell line compared to the untreated group (ethanol + cells). |
5 | [33] | In vivo | T2DM/vascular dementia in rats | TRF supplementation in diabetic rats ↓ blood insulin, fasting blood glucose, brain GSH, and SOD levels compared to the T2DM group. TRF dose-dependent therapy ↓ structural abnormalities of hippocampal histopathology in T2DM-induced vascular dementia (VaD) rats, while preserving the compactness of the stratum pyramidale and preventing neuronal cell loss. |
6 | [25] | In vivo | Healthy rats | Administration of TRF ↑ vitamin E levels, SOD activity, GSH-Px activity, and ↓ protein carbonyl levels (a biomarker of oxidative stress) in the brain compared to the untreated group. Supplementation with TRF did not cause any changes in the modulation of CAT activity in the brain. |
7 | [28] | In vivo | Fenitrothion-treated rats | Pre-treatment with TRF ↓ MDA levels, SOD activity, and ↑ GSH levels compared to the fenitrothion group. TRF pre-treatment also did not result in a significant increase in acetylcholinesterase activity in the brains of rats treated with fenitrothion compared to the untreated group. |
8 | [31] | In vivo | Transgenic mice | Supplementation with TRF ↓ SOD activity, but did not significantly affect in GSH-Px activity when compared to the untreated group. The non-supplemented mice showed ↑ in DNA damage. |
9 | [20] | In vitro | Human SH-SY5Y neuroblastoma cells | TRF supplementation affected 81 differentially expressed proteins (53 ↑, 28 ↓), while levodopa modulated 57 proteins (32 ↑, 25 ↑). A core set of 32 proteins were commonly regulated by both TRF and levodopa. |
10 | [34] | In vitro | Neuroblastoma cell line, SK-N-SH | TRF supplementation ↑ p-AKT, ↓ glycogen synthase kinase-3β (GSK3β), ROS, and tubuline-associated unit (TAU) expression, but did not affect the expression levels of insulin signalling proteins when compared to the untreated cells. |
11 | [33] | In vivo | Vascular dementia/aluminum chloride-induced rats | Administration of TRF ↑ memory performance (elevated plus maze test) and PDGF-C protein levels compared to the untreated ones, suggesting improved neuronal health. TRF supplementation ↓ plasma myeloperoxidase, and brain-thiobarbituric acid reactive substance levels compared to the untreated group (aluminum chloride-induced rats without TRF supplementation). |
12 | [27] | In vivo | Young and old rats | TRF administration ↓ levels of L-ornithine, glutamine, glutamate/GABA ratio, and L-citrulline/L-arginine ratio, primarily in the entorhinal cortex and cerebellum of the elderly group compared to the untreated group. These reductions led to ↓ NO production, which may decrease neurotoxicity. TRF also ↑ the cognitive performance in aged rats, as measured by OFT and MWM, when compared to the younger group. |
13 | [35] | In vivo | Alzheimer’s disease mice model | Treatment with TRF ↓ gene expression in the mRNA processing, epidermal growth factor receptor (EGFR1), p53, the PI3K-Akt-mTOR, NF-kB, T cell receptor, TNF-alpha, and mitogen-activated protein kinase (MAPK) signalling pathways in the APPswe/PS1dE9 transgenic AD mice model group compared to the untreated ones. |
14 | [17] | In vivo | Alzheimer’s disease/APPswe/PS1dE9 double transgenic mice | TRF treatment ↑ overlapping expression of APP and PTPRA in the hippocampus of transgenic mice than in the untreated group. TRF treatment also altered the expression of metabolic system proteins related to AD, PD, Huntington’s disease, and oxidative phosphorylation in APPswe/PS1dE9 double transgenic mice compared to the untreated group. |
15 | [36] | In Vitro | Mice hippocampal HT22 neuronal cell line | TRF treatment ↑ cell proliferation at the S phase (undifferentiated stage) and activated the BDNF/TrkB signalling pathway in a time-dependent manner in the HT22-neuronal cell line compared to the untreated cells. It ↑ memory through neural plasticity by ↑ the phosphorylation of AMPA receptor component GluA1, promoting LTP. |
16 | [19] | In vitro and In vivo studies | Human neuroblastoma cell line SH-SY5Y; double transgenic Alzheimer’s disease mice (AβPP/PS1) | TRF interfered with the aggregation of Aβ42 in human neuroblastoma cells without reducing cell viability. Compared to the untreated group, AβPP/PS1 mice ↑ cognitive performance following TRF supplementation. TRF treatment ↓ amyloid beta deposition in the brains of APP/PS1 mice. However, TRF had no significant effect on microglial activation. |
17 | [37] | In vivo | Healthy/F0 (female) and F1 (male) rats | TRF supplementation ↑ the levels of α-tocotrienol and cognitive abilities (MWM test) compared to the untreated ones. Supplementing the mothers of the animal model with TRF ↑ cognitive function and behavioural performance in offspring, as assessed by the MWM test. |
18 | [38] | In vivo | Multiple Sclerosis rat model | TRF-treated rats with multiple sclerosis ↑ the overall distance travelled, although there were no alterations observed in exploratory behaviour during the OFT, including the average duration of time spent in the centre, as compared to the untreated group. The TRF group preserved callosum morphology, ↓ MDA levels in the isocortex compared to the control group (no cuprizone and TRF). |
19 | [14] | In vivo | Young and old rats | TRF-treated aged rats ↑ exploratory behaviour, memory, spatial learning, SOD, CAT, GSH-Px levels and ↓ DNA damage, ↓ MDA levels compared to untreated rats. |
20 | [18] | In vivo | AβPP/PS1 double transgenic mice | TRF supplementation ↑ rearing duration, indicating enhanced exploration in transgenic mice compared to the untreated mice using OFT. TRF treatment ↑ spatial learning, memory, acetylcholine, L-aspartic acid, L-tyrosine, and L-glutamic acid levels in transgenic mice compared to the untreated group. |
21 | [32] | In vitro | SH-SY5Y neuroblastoma cell culture treated with Aß | TRF-treated neuroblastoma cells supplemented with Aß peptide ↓ DNA damage, the number of apoptotic cells, and ↑ cell survival compared to untreated ones (Aß peptide-induced without TRF supplementation). |
22 | [26] | In vivo | Healthy/male young and adult rats | Middle-aged rats showed ↓ hippocampal mitochondrial mass integrity compared to the younger rats. The results indicated that age had an impact on mitochondrial function. TRF supplementation ↑ mitochondrial complex I activity in the hippocampus of adult rats compared to PKO-treated rats. |
23 | [39] | In vivo | Stress-induced rats/Sprague Dawley rats | The plasma corticosterone levels, the rates of cell division and the survival of granule cells in the dentate gyrus were not affected by the addition of TRF 200 mg/kg BB for 21 days compared to the untreated group. |
24 | [29] | In vivo | Lead (Pb) poisoning on rats | Supplementation with TRF in rats with lead poisoning ↓ the occurrence of apoptotic-like features in the cornusammonis subregion of the hippocampus compared to the control group. The concentration of total TRF in the brain ↑ in rats with lead poisoning than in the untreated group (rats with lead poisoning but without TRF supplementation). In addition, supplementation with TRF in lead-poisoned rats also ↑ SOD activity and had no effect on MDA levels compared to the untreated group. |
3. Discussion
Limitation of the Review and Future Directions
4. Materials and Methods
4.1. Identifying the Research Question
4.2. Searching the Relevant Studies and the Literature
4.3. Study Selection
4.4. Organizing and Recording All the Data
4.5. Summarizing the Key Points and Reporting the Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meganathan, P.; Fu, J.Y. Biological properties of tocotrienols: Evidence in human studies. Int. J. Mol. Sci. 2016, 17, 1682. [Google Scholar] [CrossRef]
- Yoshida, Y.; Niki, E.; Noguchi, N. Comparative study on the action of tocopherols and tocotrienols as antioxidant: Chemical and physical effects. Chem. Phys. Lipids 2003, 123, 63–75. [Google Scholar] [CrossRef]
- Selvaraju, T.R.; Khaza’ai, H.; Vidyadaran, S.; Mutalib, M.S.A.; Vasudevan, R. The neuroprotective effects of tocotrienol rich fraction and alpha tocopherol against glutamate injury in astrocytes. Bosn. J. Basic. Med. Sci. 2014, 14, 195–204. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, J. Antioxidant and antiproliferative properties of a tocotrienol-rich fraction from grape seeds. Food Chem. 2009, 114, 1386–1390. [Google Scholar] [CrossRef]
- Azman, N.H.E.N.; Goon, J.A.; Ghani, S.M.A.; Hamid, Z.; Ngah, W.Z.W. Comparing palm oil, tocotrienol-rich fraction and α-tocopherol supplementation on the antioxidant levels of older adults. Antioxidants 2018, 7, 74. [Google Scholar] [CrossRef]
- Sen, C.K.; Khanna, S.; Roy, S. Tocotrienol: The natural vitamin E to defend the nervous system? Ann. NY Acad. Sci. 2004, 1031, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.A.; Bradlow, B.A.; Salser, W.A.; Brace, L.D. Novel tocotrienols of rice bran modulate cardiovascular disease risk parameters of hypercholesterolomic humans. J. Nutr. Biochem. 1997, 8, 290–298. [Google Scholar] [CrossRef]
- Qureshi, A.A.; Dewitt, G.; Kramer, G.; Gapor, A. Lowering humans of serum cholesterol in hypercholesterolemic by tocotrienols. Clin. Chem. 1991, 53, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.A.; Sami, S.A.; Salser, W.A.; Khan, F.A. Synergistic effect of tocotrienol-rich fraction (TRF25) of rice bran and lovastatin on lipid parameters in hypercholesterolemic humans. J. Nutr. Biochem. 2001, 12, 318–329. [Google Scholar] [CrossRef]
- Baliarsingh, S.; Beg, Z.H.; Ahmad, J. The therapeutic impacts of tocotrienols in type 2 diabetic patients with hyperlipidemia. Atherosclerosis 2005, 182, 367–374. [Google Scholar] [CrossRef]
- Ramanathan, N.; Tan, E.; Loh, L.J.; Soh, B.S.; Yap, W.N. Tocotrienol is a cardioprotective agent against ageing-associated cardiovascular disease and its associated morbidities. Nutr. Metab. 2018, 15, 6. [Google Scholar] [CrossRef]
- Saud Gany, S.L.; Tan, J.K.; Chin, K.Y.; Hakimi, N.H.; Ab Rani, N.; Ihsan, N.; Makpol, S. Untargeted muscle tissue metabolites profiling in young, adult, and old rats supplemented with tocotrienol-rich fraction. Front. Mol. Biosci. 2022, 9, 1008908. [Google Scholar] [CrossRef]
- Khor, S.C.; Wan Ngah, W.Z.; Mohd Yusof, Y.A.; Abdul Karim, N.; Makpol, S. Tocotrienol-Rich Fraction Ameliorates Antioxidant Defense Mechanisms and Improves Replicative Senescence-Associated Oxidative Stress in Human Myoblasts. Oxid. Med. Cell Longev. 2017, 2017, 3868305. [Google Scholar] [CrossRef]
- Taridi, N.M.; Abd Rani, N.; Abd Latiff, A.; Wan Ngah, W.Z.; Mazlan, M. Tocotrienol rich fraction reverses age-related deficits in spatial learning and memory in aged rats. Lipids 2014, 49, 855–869. [Google Scholar] [CrossRef]
- Looi, A.D.; Palanisamy, U.D.; Moorthy, M.; Radhakrishnan, A.K. Health Benefits of Palm Tocotrienol-Rich Fraction: A Systematic Review of Randomized Controlled Trials. Nutr. Rev. 2025, 83, 307–328. [Google Scholar] [CrossRef]
- Ibrahim, N.F.; Hamezah, H.S.; Yanagisawa, D.; Tsuji, M.; Kiuchi, Y.; Ono, K.; Tooyama, I. The effect of α-tocopherol, α- and γ-tocotrienols on amyloid-β aggregation and disaggregation in vitro. Biochem. Biophys. Rep. 2021, 28, 101131. [Google Scholar] [CrossRef] [PubMed]
- Hamezah, H.S.; Durani, L.W.; Yanagisawa, D.; Ibrahim, N.F.; Aizat, W.M.; Makpol, S.; Wan Ngah, W.Z.; Damanhuri, H.A.; Tooyama, I. Modulation of Proteome Profile in AβPP/PS1 Mice Hippocampus, Medial Prefrontal Cortex, and Striatum by Palm Oil Derived Tocotrienol-Rich Fraction. J. Alzheimer’s Dis. 2019, 72, 229–246. [Google Scholar] [CrossRef]
- Durani, L.W.; Hamezah, H.S.; Ibrahim, N.F.; Yanagisawa, D.; Nasaruddin, M.L.; Mori, M.; Azizan, K.A.; Damanhuri, H.A.; Makpol, S.; Wan Ngah, W.Z.; et al. Tocotrienol-Rich Fraction of Palm Oil Improves Behavioral Impairments and Regulates Metabolic Pathways in AβPP/PS1 Mice. J. Alzheimer’s Dis. 2018, 64, 249–267. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.F.; Yanagisawa, D.; Durani, L.W.; Hamezah, H.S.; Damanhuri, H.A.; Wan Ngah, W.Z.; Tsuji, M.; Kiuchi, Y.; Ono, K.; Tooyama, I. Tocotrienol-Rich Fraction Modulates Amyloid Pathology and Improves Cognitive Function in AβPP/PS1 Mice. J. Alzheimer’s Dis. 2017, 55, 597–612. [Google Scholar] [CrossRef]
- Magalingam, K.B.; Ramdas, P.; Somanath, S.D.; Selvaduray, K.R.; Bhuvanendran, S.; Radhakrishnan, A.K. Tocotrienol-Rich Fraction and Levodopa Regulate Proteins Involved in Parkinson’s Disease-Associated Pathways in Differentiated Neuroblastoma Cells: Insights from Quantitative Proteomic Analysis. Nutrients 2022, 14, 4632. [Google Scholar] [CrossRef] [PubMed]
- Musa, I.; Khaza’ai, H.; Abdul Mutalib, M.S.; Yusuf, F.; Sanusi, J.; Chang, S.K. Effects of oil palm tocotrienol rich fraction on the viability and morphology of astrocytes injured with glutamate. Food Biosci. 2017, 20, 168–177. [Google Scholar] [CrossRef]
- Yam, M.L.; Abdul Hafid, S.R.; Cheng, H.M.; Nesaretnam, K. Tocotrienols suppress proinflammatory markers and cyclooxygenase-2 expression in RAW264.7 macrophages. Lipids 2009, 44, 787–797. [Google Scholar] [CrossRef]
- Magalingam, K.B.; Somanath, S.D.; Md, S.; Haleagrahara, N.; Fu, J.Y.; Selvaduray, K.R.; Radhakrishnan, A.K. Tocotrienols protect differentiated SH-SY5Y human neuroblastoma cells against 6-hydroxydopamine-induced cytotoxicity by ameliorating dopamine biosynthesis and dopamine receptor D2 gene expression. Nutr. Res. 2022, 98, 27–40. [Google Scholar] [CrossRef]
- Abd Jalil, A.; Khaza’ai, H.; Nordin, N.; Mansor, N.; Zaulkffali, A.S. Vitamin E-Mediated Modulation of Glutamate Receptor Expression in an Oxidative Stress Model of Neural Cells Derived from Embryonic Stem Cell Cultures. Evid. Based Complement. Altern. Med. 2017, 2017, 6048936. [Google Scholar] [CrossRef]
- Musalmah, M.; Leow, K.S.; Nursiati, M.T.; Raja Najmi Hanis Raja, I.; Fadly Syah, F.; Renuka, S.; Siti Norsyamimi, S.M.; Mohamad Fairuz, Y.; Azian, A.L. Selective uptake of alpha-tocotrienol and improvement in oxidative status in rat brains following short- and long-term intake of tocotrienol rich fraction. Malays. J. Nutr. 2013, 19, 251–259. [Google Scholar]
- Tan, J.K.; Razak, S.H.A.; Rani, N.A.; Hakimi, N.H.; Damanhuri, H.A.; Makpol, S.; Ngah, W.Z.W. Effects of Age and Tocotrienol-Rich Fraction on Mitochondrial Respiratory Complexes in the Hippocampus of Rats. Sains Malays. 2022, 51, 249–259. [Google Scholar] [CrossRef]
- Mazlan, M.; Hamezah, H.S.; Taridi, N.M.; Jing, Y.; Liu, P.; Zhang, H.; Wan Ngah, W.Z.; Damanhuri, H.A. Effects of Aging and Tocotrienol-Rich Fraction Supplementation on Brain Arginine Metabolism in Rats. Oxid. Med. Cell. Longev. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Budin, S.B.; Taib, I.S.; Jayusman, P.A.; Chiang, H.H.; Ramalingam, A.; Ghazali, A.R.; Mohamed, J. Ameliorative effect of palm oil tocotrienol rich fraction on brain oxidative stress in fenitrothion-administered rats. Sains Malays. 2014, 43, 1031–1036. [Google Scholar]
- Abd Latiff, A. Oral Administration of Tocotrienol Ameliorates Lead-Induced Toxicity in the Rat Brain. Med. Health 2016, 11, 232–244. [Google Scholar] [CrossRef]
- Shaikh, S.A.; Varatharajan, R.; Muthuraman, A. Palm Oil Derived Tocotrienol-Rich Fraction Attenuates Vascular Dementia in Type 2 Diabetic Rats. Int. J. Mol. Sci. 2022, 23, 13531. [Google Scholar] [CrossRef]
- Damanhuri, H.A.; Rahim, N.I.A.; Nasri, W.N.W.; Tan, J.K.; Makpol, S.; Mazlan, M.; Tooyama, I.; Ngah, W.Z.W. Tocotrienol-Rich Fraction Supplementation Modulates Antioxidant Enzymes Activity and Reduces DNA Damage in APPswe/PS1dE9 Alzheimer’s Disease Mouse Model (Suplementasi Fraksi Kaya Tokotrienol Memodulasi Aktiviti Enzim Antioksidan dan Mengurangkan Kerosakan DNA pada APPswe/PS1dE9 Model Mencit Penyakit Alzheimer). Sains Malays. 2016, 45, 1363–1370. [Google Scholar]
- Musalmah, M.; Rj, R.; Ah, N.A. Induction of DNA Damage and Cell Death by Beta Amyloid Peptide and Its Modification by Tocotrienol Rich Fraction (TRF). Med. Health 2009, 4, 8–15. [Google Scholar]
- Shaikh, S.A.; Muthuraman, A. Tocotrienol-Rich Fraction Ameliorates the Aluminium Chloride-Induced Neurovascular Dysfunction-Associated Vascular Dementia in Rats. Pharmaceuticals 2023, 16, 828. [Google Scholar] [CrossRef]
- Zaulkffali, A.S.; Md Razip, N.N.; Syed Alwi, S.S.; Abd Jalil, A.; Abd Mutalib, M.S.; Gopalsamy, B.; Chang, S.K.; Zainal, Z.; Ibrahim, N.N.; Zakaria, Z.A.; et al. Vitamins D and E Stimulate the PI3K-AKT Signalling Pathway in Insulin-Resistant SK-N-SH Neuronal Cells. Nutrients 2019, 11, 2525. [Google Scholar] [CrossRef] [PubMed]
- Nasri, W.N.W.; Makpol, S.; Mazlan, M.; Tooyama, I.; Ngah, W.Z.W.; Damanhuri, H.A. Tocotrienol Rich Fraction Supplementation Modulate Brain Hippocampal Gene Expression in APPswe/PS1dE9 Alzheimer’s Disease Mouse Model. J. Alzheimer’s Dis. 2019, 70, S239–S254. [Google Scholar] [CrossRef]
- Neo, J.R.E.; Wang, C.J.; Chai, N.C.L.; Lieo, E.G.B.; Yeo, M.; Loong, H.Y.; Ung, Y.W.; Yap, W.N. Tocotrienol-rich fraction enhances cell proliferation and memory formation in hippocampal HT22 neuronal cells through BDNF/TrkB pathway. J. Funct. Foods 2024, 116, 106178. [Google Scholar] [CrossRef]
- Nagapan, G.; Meng Goh, Y.; Shameha Abdul Razak, I.; Nesaretnam, K.; Ebrahimi, M. The effects of prenatal and early postnatal tocotrienol-rich fraction supplementation on cognitive function development in male offspring rats. BMC Neurosci. 2013, 14, 77. [Google Scholar] [CrossRef]
- Mitra, N.K.; Chan, Y.; Chellian, J.; Gnanou, J.V. Comparing palm oil-derived tocotrienol-rich fraction with alpha-tocopherol in changes in locomotion and histological appearance in a cuprizone-induced animal model of multiple sclerosis. Int. J. Nutr. Pharmacol. Neurol. Dis. 2023, 13, 219–228. [Google Scholar] [CrossRef]
- Talip, S.B.; Asari, M.A.; Khan, A.A.; Sirajudeen, K.N.S. Evaluation of the protective effects of tocotrienol-rich fraction from palm oil on the dentate gyrus following chronic restraint stress in rats. Braz. J. Pharm. Sci. 2013, 49, 373–380. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Akbari, M.; Kirkwood, T.B.L.; Bohr, V.A. Mitochondria in the signaling pathways that control longevity and health span. Ageing Res. Rev. 2019, 54, 100940. [Google Scholar] [CrossRef]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Aging Hallmarks and the Role of Oxidative Stress. Antioxidants 2023, 12, 651. [Google Scholar] [CrossRef]
- Guo, Y.; Guan, T.; Shafiq, K.; Yu, Q.; Jiao, X.; Na, D.; Li, M.; Zhang, G.; Kong, J. Mitochondrial dysfunction in aging. Ageing Res. Rev. 2023, 88, 101955. [Google Scholar] [CrossRef]
- Brandt, T.; Mourier, A.; Tain, L.S.; Partridge, L.; Larsson, N.G.; Kühlbrandt, W. Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila. eLife 2017, 6, e24662. [Google Scholar] [CrossRef]
- Smith, A.L.M.; Whitehall, J.C.; Bradshaw, C.; Gay, D.; Robertson, F.; Blain, A.P.; Hudson, G.; Pyle, A.; Houghton, D.; Hunt, M.; et al. Age-associated mitochondrial DNA mutations cause metabolic remodeling that contributes to accelerated intestinal tumorigenesis. Nat. Cancer 2020, 1, 976–989. [Google Scholar] [CrossRef]
- Nakamura, Y.; Nakano, M.; Hisaoka-Nakashima, K.; Morioka, N. Aging-related dysregulation of energy metabolism and mitochondrial dynamics in microglia. J. Clin. Biochem. Nutr. 2025, 76, 239–244. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.S.; Chung, J.H. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp. Mol. Med. 2023, 55, 510–519. [Google Scholar] [CrossRef]
- Gulen, M.F.; Samson, N.; Keller, A.; Schwabenland, M.; Liu, C.; Glück, S.; Thacker, V.V.; Favre, L.; Mangeat, B.; Kroese, L.J.; et al. cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature 2023, 620, 374–380. [Google Scholar] [CrossRef]
- Hayashi, Y.; Yoshida, M.; Yamato, M.; Ide, T.; Wu, Z.; Ochi-Shindou, M.; Kanki, T.; Kang, D.; Sunagawa, K.; Tsutsui, H.; et al. Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice. J. Neurosci. 2008, 28, 8624–8634. [Google Scholar] [CrossRef]
- Nakanishi, H.; Wu, Z. Microglia-aging: Roles of microglial lysosome- and mitochondria-derived reactive oxygen species in brain aging. Behav. Brain Res. 2009, 201, 1–7. [Google Scholar] [CrossRef]
- von Bernhardi, R.; Eugenín-von Bernhardi, L.; Eugenín, J. Microglial cell dysregulation in brain aging and neurodegeneration. Front. Aging Neurosci. 2015, 7, 124. [Google Scholar] [CrossRef]
- Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N.; Chen, S.; Ramanujan, V.K.; Wolf, A.J.; Vergnes, L.; Ojcius, D.M.; et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012, 36, 401–414. [Google Scholar] [CrossRef]
- Gaidt, M.M.; Ebert, T.S.; Chauhan, D.; Ramshorn, K.; Pinci, F.; Zuber, S.; O’Duill, F.; Schmid-Burgk, J.L.; Hoss, F.; Buhmann, R.; et al. The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. Cell 2017, 171, 1110–1124.e1118. [Google Scholar] [CrossRef]
- Nakahira, K.; Haspel, J.A.; Rathinam, V.A.K.; Lee, S.-J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 2011, 12, 222–230. [Google Scholar] [CrossRef]
- Billingham, L.K.; Stoolman, J.S.; Vasan, K.; Rodriguez, A.E.; Poor, T.A.; Szibor, M.; Jacobs, H.T.; Reczek, C.R.; Rashidi, A.; Zhang, P.; et al. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat. Immunol. 2022, 23, 692–704. [Google Scholar] [CrossRef]
- Xian, H.; Liu, Y.; Rundberg Nilsson, A.; Gatchalian, R.; Crother, T.R.; Tourtellotte, W.G.; Zhang, Y.; Aleman-Muench, G.R.; Lewis, G.; Chen, W.; et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 2021, 54, 1463–1477.e1411. [Google Scholar] [CrossRef]
- Lim, S.H.Y.; Hansen, M.; Kumsta, C. Molecular Mechanisms of Autophagy Decline during Aging. Cells 2024, 13, 1364. [Google Scholar] [CrossRef]
- Ding, H.; Li, Y.; Chen, S.; Wen, Y.; Zhang, S.; Luo, E.; Li, X.; Zhong, W.; Zeng, H. Fisetin ameliorates cognitive impairment by activating mitophagy and suppressing neuroinflammation in rats with sepsis-associated encephalopathy. CNS Neurosci. Ther. 2022, 28, 247–258. [Google Scholar] [CrossRef]
- Qiu, J.; Chen, Y.; Zhuo, J.; Zhang, L.; Liu, J.; Wang, B.; Sun, D.; Yu, S.; Lou, H. Urolithin A promotes mitophagy and suppresses NLRP3 inflammasome activation in lipopolysaccharide-induced BV2 microglial cells and MPTP-induced Parkinson’s disease model. Neuropharmacology 2022, 207, 108963. [Google Scholar] [CrossRef]
- Qiu, W.Q.; Ai, W.; Zhu, F.D.; Zhang, Y.; Guo, M.S.; Law, B.Y.; Wu, J.M.; Wong, V.K.; Tang, Y.; Yu, L.; et al. Polygala saponins inhibit NLRP3 inflammasome-mediated neuroinflammation via SHP-2-Mediated mitophagy. Free Radic. Biol. Med. 2022, 179, 76–94. [Google Scholar] [CrossRef]
- Rappe, A.; Vihinen, H.A.; Suomi, F.; Hassinen, A.J.; Ehsan, H.; Jokitalo, E.S.; McWilliams, T.G. Longitudinal autophagy profiling of the mammalian brain reveals sustained mitophagy throughout healthy aging. Embo J. 2024, 43, 6199–6231. [Google Scholar] [CrossRef] [PubMed]
- Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019, 22, 401–412. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Li, Y.; Hou, Y.; Huang, S.; Pei, G. Alzheimer’s Amyloid-β Accelerates Cell Senescence and Suppresses the SIRT1/NRF2 Pathway in Human Microglial Cells. Oxid. Med. Cell. Longev. 2022, 2022, 3086010. [Google Scholar] [CrossRef]
- Vaillant-Beuchot, L.; Mary, A.; Pardossi-Piquard, R.; Bourgeois, A.; Lauritzen, I.; Eysert, F.; Kinoshita, P.F.; Cazareth, J.; Badot, C.; Fragaki, K.; et al. Accumulation of amyloid precursor protein C-terminal fragments triggers mitochondrial structure, function, and mitophagy defects in Alzheimer’s disease models and human brains. Acta Neuropathol. 2021, 141, 39–65. [Google Scholar] [CrossRef]
- Ye, X.; Sun, X.; Starovoytov, V.; Cai, Q. Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer’s disease patient brains. Hum. Mol. Genet. 2015, 24, 2938–2951. [Google Scholar] [CrossRef] [PubMed]
- Sliter, D.A.; Martinez, J.; Hao, L.; Chen, X.; Sun, N.; Fischer, T.D.; Burman, J.L.; Li, Y.; Zhang, Z.; Narendra, D.P.; et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 2018, 561, 258–262. [Google Scholar] [CrossRef]
- Khandelwal, P.J.; Herman, A.M.; Hoe, H.S.; Rebeck, G.W.; Moussa, C.E. Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum. Mol. Genet. 2011, 20, 2091–2102. [Google Scholar] [CrossRef]
- Joshi, A.U.; Minhas, P.S.; Liddelow, S.A.; Haileselassie, B.; Andreasson, K.I.; Dorn, G.W.; Mochly-Rosen, D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci. 2019, 22, 1635–1648. [Google Scholar] [CrossRef]
- Ma, S.; Chen, J.; Feng, J.; Zhang, R.; Fan, M.; Han, D.; Li, X.; Li, C.; Ren, J.; Wang, Y.; et al. Melatonin Ameliorates the Progression of Atherosclerosis via Mitophagy Activation and NLRP3 Inflammasome Inhibition. Oxid. Med. Cell. Longev. 2018, 2018, 9286458. [Google Scholar] [CrossRef]
- Yu, X.; Hao, M.; Liu, Y.; Ma, X.; Lin, W.; Xu, Q.; Zhou, H.; Shao, N.; Kuang, H. Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activation via mitophagy. Eur. J. Pharmacol. 2019, 864, 172715. [Google Scholar] [CrossRef]
- Rodenburg, R.J. Mitochondrial complex I-linked disease. Biochim. Biophys. Acta (BBA)-Bioenerg. 2016, 1857, 938–945. [Google Scholar] [CrossRef]
- Wu, S.J.; Liu, P.L.; Ng, L.T. Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells. Mol. Nutr. Food Res. 2008, 52, 921–929. [Google Scholar] [CrossRef]
- Kuhad, A.; Bishnoi, M.; Tiwari, V.; Chopra, K. Suppression of NF-κβ signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharmacol. Biochem. Behav. 2009, 92, 251–259. [Google Scholar] [CrossRef]
- Tan, S.W.; Israf Ali, D.A.b.; Khaza’ai, H.; Wong, J.W.; Vidyadaran, S. Cellular uptake and anti-inflammatory effects of palm oil-derived delta (δ)-tocotrienol in microglia. Cell. Immunol. 2020, 357, 104200. [Google Scholar] [CrossRef]
- Chen, W.; Guo, C.; Huang, S.; Jia, Z.; Wang, J.; Zhong, J.; Ge, H.; Yuan, J.; Chen, T.; Liu, X.; et al. MitoQ attenuates brain damage by polarizing microglia towards the M2 phenotype through inhibition of the NLRP3 inflammasome after ICH. Pharmacol. Res. 2020, 161, 105122. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Gao, L.; Yang, Y.; Shi, D.; Zhang, Z.; Wang, X.; Huang, Y.; Wu, J.; Meng, J.; Li, H.; et al. Protective role of mitophagy on microglia-mediated neuroinflammatory injury through mtDNA-STING signaling in manganese-induced parkinsonism. J. Neuroinflamm. 2025, 22, 55. [Google Scholar] [CrossRef]
- Dysken, M.W.; Sano, M.; Asthana, S.; Vertrees, J.E.; Pallaki, M.; Llorente, M.; Love, S.; Schellenberg, G.D.; McCarten, J.R.; Malphurs, J.; et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: The TEAM-AD VA cooperative randomized trial. JAMA 2014, 311, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Bennett, D.A.; Aggarwal, N.; Wilson, R.S.; Scherr, P.A. Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA 2002, 287, 3230–3237. [Google Scholar] [CrossRef]
- Liu, P.; Wu, L.; Peng, G.; Han, Y.; Tang, R.; Ge, J.; Zhang, L.; Jia, L.; Yue, S.; Zhou, K.; et al. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav. Immun. 2019, 80, 633–643. [Google Scholar] [CrossRef]
- Gothandapani, D.; Makpol, S. Effects of Vitamin E on the Gut Microbiome in Ageing and Its Relationship with Age-Related Diseases: A Review of the Current Literature. Int. J. Mol. Sci. 2023, 24, 14667. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. Theory Pract. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist SECTION. Ann. Intern. Med. 2018, 169, 11–12. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yunita, E.; Nasaruddin, M.L.; Ramli, N.Z.; Yahaya, M.F.; Ahmad Damanhuri, H. Scoping Review: The Role of Tocotrienol-Rich Fraction as a Potent Neuroprotective Agent. Int. J. Mol. Sci. 2025, 26, 7691. https://doi.org/10.3390/ijms26167691
Yunita E, Nasaruddin ML, Ramli NZ, Yahaya MF, Ahmad Damanhuri H. Scoping Review: The Role of Tocotrienol-Rich Fraction as a Potent Neuroprotective Agent. International Journal of Molecular Sciences. 2025; 26(16):7691. https://doi.org/10.3390/ijms26167691
Chicago/Turabian StyleYunita, Elvira, Muhammad Luqman Nasaruddin, Nur Zuliani Ramli, Mohamad Fairuz Yahaya, and Hanafi Ahmad Damanhuri. 2025. "Scoping Review: The Role of Tocotrienol-Rich Fraction as a Potent Neuroprotective Agent" International Journal of Molecular Sciences 26, no. 16: 7691. https://doi.org/10.3390/ijms26167691
APA StyleYunita, E., Nasaruddin, M. L., Ramli, N. Z., Yahaya, M. F., & Ahmad Damanhuri, H. (2025). Scoping Review: The Role of Tocotrienol-Rich Fraction as a Potent Neuroprotective Agent. International Journal of Molecular Sciences, 26(16), 7691. https://doi.org/10.3390/ijms26167691