Micro/Nano-Motors for Enhanced Tumor Diagnosis and Therapy
Abstract
1. Introduction
2. Motion Mechanisms of MNMs
2.1. Chemically Driven MNMs
2.1.1. H2O2-Dependent MNMs
2.1.2. Glucose-Dependent MNMs
2.1.3. Arginine-Dependent MNMs
2.1.4. Urea-Dependent MNMs
2.1.5. Other Chemically Driven MNMs
2.2. Physically Driven MNMs
2.2.1. Light-Driven MNMs
2.2.2. Magnetic-Driven MNMs
2.2.3. Ultrasound-Driven MNMs
2.3. Biohybrid MNMs
3. Targeting and Tumor Penetration of MNMs in Cancer Treatment
3.1. The Targeting of MNMs
3.1.1. Responsive Targeting of the Tumor Microenvironment
3.1.2. Physical Field Targeting
3.1.3. Biomimetic Targeting Strategy
3.2. Tumor Penetration of MNMs
4. Synergistic Treatment of MNMs with Other Therapies
4.1. Chemodynamic Therapyc (CDT)
4.2. Photothermal Therapy (PTT)
4.3. Photodynamic Therapy (PDT)
4.4. Sonodynamic Therapy (SDT)
4.5. Gas Therapy (GT)
4.6. Immunotherapy (IT)
4.7. Multiple Modality Therapy
5. Application of MNMs in Tumor Diagnostics
6. Conclusions and Outlook
- (1)
- Biocompatibility and toxicity issues. Most of the reported nanomaterials are composed of inorganic materials. Although most of these materials are considered biocompatible and biodegradable, they may still exhibit strong immunogenicity and have limitations regarding the maximum tolerated dose. In addition, the degradation rates of these materials and their in vivo metabolic pathways remain unclear and require further investigation to confirm their long-term biological safety.
- (2)
- Mechanical energy conversion efficiency. In complex physiological environments (e.g., bloodstream dynamics), MNMs must overcome fluid viscosity and flow velocity. Higher propulsion power translates to greater obstacle-surmounting capacity and task efficiency. However, fuel molecule concentrations in blood or the TME are often limited, necessitating MNMs with enhanced energy conversion efficiency and power output.
- (3)
- Targeting precision and biological barrier penetration. Overcoming barriers like the blood–brain barrier, intestinal mucus, and tumor stroma remains formidable. Future strategies should emphasize: (i) molecular targeting (e.g., engineered antibodies, specific peptides) and (ii) physical field guidance (e.g., magnetic fields, near-infrared light, ultrasound) to improve accuracy and penetration.
- (4)
- Image-guided therapy limitations. Current MNMs imaging techniques (FLI/MRI/PAI) enable localized tumor imaging but lack real-time monitoring depth. Integrating multimodal imaging and enabling real-time tracking are essential for treatment progress assessment, precise localization, and safety.
- (5)
- Clinical translation hurdles. Current MNM-based cancer research remains confined to cellular and animal studies. Clinical data are scarce, and standardized human efficacy/toxicity evaluation frameworks are lacking. Batch-to-batch variations during preparation further impede clinical translation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Mahvi, D.A.; Liu, R.; Grinstaff, M.W.; Colson, Y.L.; Raut, C.P. Local Cancer Recurrence: The Realities, Challenges, and Opportunities for New Therapies. CA: A Cancer J. Clin. 2018, 68, 488–505. [Google Scholar] [CrossRef] [PubMed]
- Pei, P.; Liu, T.; Shen, W.; Liu, Z.; Yang, K. Biomaterial-mediated internal radioisotope therapy. Mater. Horizons 2020, 8, 1348–1366. [Google Scholar] [CrossRef] [PubMed]
- Pich, O.; Muiños, F.; Lolkema, M.P.; Steeghs, N.; Gonzalez-Perez, A.; Lopez-Bigas, N. The mutational footprints of cancer therapies. Nat. Genet. 2019, 51, 1732–1740. [Google Scholar] [CrossRef]
- Wang, F.; Li, K.; Wang, W.; Jiang, H.; He, J.; Cai, J.; Ren, W.; Zhao, Y.; Song, Q.; He, Y.; et al. Sensing of endogenous retroviruses-derived RNA by ZBP1 triggers PANoptosis in DNA damage and contributes to toxic side effects of chemotherapy. Cell Death Dis. 2024, 15, 1–14. [Google Scholar] [CrossRef]
- Manzari, M.T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D.A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021, 6, 351–370. [Google Scholar] [CrossRef]
- Sun, B.J.; Lee, B. Review of Regional Therapies for Gastric Cancer with Peritoneal Metastases. Cancers 2022, 14, 570. [Google Scholar] [CrossRef]
- Guo, Q.; Jiang, C. Delivery strategies for macromolecular drugs in cancer therapy. Acta Pharm. Sin. B 2020, 10, 979–986. [Google Scholar] [CrossRef]
- Wang, K.; Tepper, J.E. Radiation therapy-associated toxicity: Etiology, management, and prevention. CA: A Cancer J. Clin. 2021, 71, 437–454. [Google Scholar] [CrossRef]
- Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P.; et al. Early detection of cancer. Science 2022, 375, eaay9040. [Google Scholar] [CrossRef]
- Kwak, S.-B.; Kim, S.J.; Kim, J.; Kang, Y.-L.; Ko, C.W.; Kim, I.; Park, J.-W. Tumor regionalization after surgery: Roles of the tumor microenvironment and neutrophil extracellular traps. Exp. Mol. Med. 2022, 54, 720–729. [Google Scholar] [CrossRef]
- Alieva, M.; van Rheenen, J.; Broekman, M.L.D. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clin. Exp. Metastasis 2018, 35, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Hiller, J.G.; Perry, N.J.; Poulogiannis, G.; Riedel, B.; Sloan, E.K. Perioperative events influence cancer recurrence risk after surgery. Nat. Rev. Clin. Oncol. 2018, 15, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastasis 2018, 35, 309–318. [Google Scholar] [CrossRef]
- Davodabadi, F.; Sajjadi, S.F.; Sarhadi, M.; Mirghasemi, S.; Hezaveh, M.N.; Khosravi, S.; Andani, M.K.; Cordani, M.; Basiri, M.; Ghavami, S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur. J. Pharmacol. 2023, 958, 176013. [Google Scholar] [CrossRef] [PubMed]
- Min, H.-Y.; Lee, H.-Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 2022, 54, 1670–1694. [Google Scholar] [CrossRef]
- Li, Y.; Xu, R.; Wu, Y.; Guo, J.; Quan, F.; Pei, Y.; Huang, D.; Zhao, X.; Gao, H.; Liu, J.; et al. Genotype-specific precision tumor therapy using mitochondrial DNA mutation-induced drug release system. Sci. Adv. 2023, 9, eadi1965. [Google Scholar] [CrossRef]
- Bentzen, S.M. Preventing or reducing late side effects of radiation therapy: Radiobiology meets molecular pathology. Nat. Rev. Cancer 2006, 6, 702–713. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Sahu, T.; Ratre, Y.K.; Chauhan, S.; Bhaskar, L.; Nair, M.P.; Verma, H.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J. Drug Deliv. Sci. Technol. 2021, 63. [Google Scholar] [CrossRef]
- Xing, Y.; Li, J.; Wang, L.; Zhu, Z.; Yan, J.; Liu, Y.; Liu, Q. A Bifunctional Lysosome-Targeting Chimera Nanoplatform for Tumor-Selective Protein Degradation and Enhanced Cancer Immunotherapy. Adv. Mater. 2025, 37, e2417942. [Google Scholar] [CrossRef]
- Song, W.; Anselmo, A.C.; Huang, L. Nanotechnology intervention of the microbiome for cancer therapy. Nat. Nanotechnol. 2019, 14, 1093–1103. [Google Scholar] [CrossRef]
- de Lázaro, I.; Mooney, D.J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 2021, 20, 1469–1479. [Google Scholar] [CrossRef]
- Huo, M.; Wang, L.; Wang, Y.; Chen, Y.; Shi, J. Nanocatalytic Tumor Therapy by Single-Atom Catalysts. ACS Nano 2019, 13, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yan, A.; Xu, Z.; Tian, R.; Hou, C.; Luo, Q.; Sun, H.; Xu, J.; Yu, S.; Wang, T.; et al. Engineering biomimetic ATP-responsive Se-containing core-shell cascade nanozyme for efficient tumor combination therapy. Chem. Eng. J. 2022, 454. [Google Scholar] [CrossRef]
- Liang, J.; Huang, Q.; Chen, Q.; Jin, X.; Han, Z.; Ji, P.; Cheng, S.; Chen, W.; Zhang, X. Perturbing Organelle-Level K+/Ca2+ Homeostasis by Nanotherapeutics for Enhancing Ion-Mediated Cancer Immunotherapy. Adv. Mater. 2025, 37, e2416574. [Google Scholar] [CrossRef] [PubMed]
- Nia, H.T.; Munn, L.L.; Jain, R.K. Physical traits of cancer. Science 2020, 370, eaaz0868. [Google Scholar] [CrossRef]
- Stylianopoulos, T.; Martin, J.D.; Chauhan, V.P.; Jain, S.R.; Diop-Frimpong, B.; Bardeesy, N.; Smith, B.L.; Ferrone, C.R.; Hornicek, F.J.; Boucher, Y.; et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl. Acad. Sci. USA 2012, 109, 15101–15108. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; et al. The role of microenvironment in tumor angiogenesis. J. Exp. Clin. Cancer Res. 2020, 39, 1–19. [Google Scholar] [CrossRef]
- Chen, Y.; Song, W.; Shen, L.; Qiu, N.; Hu, M.; Liu, Y.; Liu, Q.; Huang, L. Vasodilator Hydralazine Promotes Nanoparticle Penetration in Advanced Desmoplastic Tumors. ACS Nano 2019, 13, 1751–1763. [Google Scholar] [CrossRef]
- Fukumura, D.; Jain, R.K. Tumor microvasculature and microenvironment: Targets for anti-angiogenesis and normalization. Microvasc. Res. 2007, 74, 72–84. [Google Scholar] [CrossRef]
- Ye, J.; Fan, Y.; Niu, G.; Zhou, B.; Kang, Y.; Ji, X. Intelligent micro/nanomotors: Fabrication, propulsion, and biomedical applications. Nano Today 2024, 55. [Google Scholar] [CrossRef]
- Li, J.; de Ávila, B.E.-F.; Gao, W.; Zhang, L.; Wang, J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci. Robot. 2017, 2. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Ji, Y.; Yang, M.; Li, C.; Li, M.; Yang, J.; Tang, H.; Luo, X.; Hao, H.; et al. Magnetically driven bionic nanorobots enhance chemotherapeutic efficacy and the tumor immune response via precise targeting. Innov. 2025, 6, 100777. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, J.; Jia, Y.; Liu, X.; Chen, X.; Zhao, W.; Mao, C. Theranostic nanomotors for tumor multimode imaging and photothermal/photodynamic synergistic therapy. Chem. Eng. J. 2022, 442. [Google Scholar] [CrossRef]
- Kong, X.; Gao, P.; Wang, J.; Fang, Y.; Hwang, K.C. Advances of medical nanorobots for future cancer treatments. J. Hematol. Oncol. 2023, 16, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Tu, Y.; Wilson, D.A. Micro/nanomotors towards in vivo application: Cell, tissue and biofluid. Chem. Soc. Rev. 2017, 46, 5289–5310. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Jannasch, A.; Albrecht, U.-R.; Hahn, K.; Miguel-López, A.; Schäffer, E.; Sánchez, S. Enzyme-Powered Hollow Mesoporous Janus Nanomotors. Nano Lett. 2015, 15, 7043–7050. [Google Scholar] [CrossRef]
- Ji, Y.; Pan, Y.; Ma, X.; Ma, Y.; Zhao, Z.; He, Q. pH-Sensitive Glucose-Powered Nanomotors for Enhanced Intracellular Drug Delivery and Ferroptosis Efficiency. Chem.—Asian J. 2023, 19, e202300879. [Google Scholar] [CrossRef]
- de Ávila, B.E.-F.; Angsantikul, P.; Li, J.; Lopez-Ramirez, M.A.; Ramírez-Herrera, D.E.; Thamphiwatana, S.; Chen, C.; Delezuk, J.; Samakapiruk, R.; Ramez, V.; et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Li, Q.; Liu, L.; Huo, H.; Su, L.; Wu, Y.; Lin, H.; Ge, X.; Mu, J.; Zhang, X.; Zheng, L.; et al. Nanosized Janus AuNR-Pt Motor for Enhancing NIR-II Photoacoustic Imaging of Deep Tumor and Pt2+ Ion-Based Chemotherapy. ACS Nano 2022, 16, 7947–7960. [Google Scholar] [CrossRef]
- Liu, M.; Chen, L.; Zhao, Z.; Liu, M.; Zhao, T.; Ma, Y.; Zhou, Q.; Ibrahim, Y.S.; Elzatahry, A.A.; Li, X.; et al. Enzyme-Based Mesoporous Nanomotors with Near-Infrared Optical Brakes. J. Am. Chem. Soc. 2022, 144, 3892–3901. [Google Scholar] [CrossRef]
- Wu, Z.; Si, T.; Gao, W.; Lin, X.; Wang, J.; He, Q. Superfast Near-Infrared Light-Driven Polymer Multilayer Rockets. Small 2015, 12, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Zhang, Q.; Gao, W.; Pei, A.; Ren, B. Highly Efficient Light-Driven TiO2–Au Janus Micromotors. ACS Nano 2015, 10, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Su, Y.; Xu, M.; Gong, D.; Cai, J.; Akhter, M.; Chen, K.; Li, S.; Pan, J.; Gao, C.; et al. Magnetic Micro/nanorobots for biological detection and targeted delivery. Biosens. Bioelectron. 2022, 222, 114960. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Ju, Y.; Xu, J.; Yang, Z.; Gao, S.; Hou, Y. Magnetic Nanomaterials: Chemical Design, Synthesis, and Potential Applications. Accounts Chem. Res. 2018, 51, 404–413. [Google Scholar] [CrossRef]
- Hansen-Bruhn, M.; de Ávila, B.E.; Beltrán-Gastélum, M.; Zhao, J.; Ramírez-Herrera, D.E.; Angsantikul, P.; Gothelf, K.V.; Zhang, L.; Wang, J. Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasound-Propelled Nanomotors. Angew. Chem. Int. Ed. Engl. 2018, 57, 2657–2661. [Google Scholar] [CrossRef]
- Xu, T.; Soto, F.; Gao, W.; Garcia-Gradilla, V.; Li, J.; Zhang, X.; Wang, J. Ultrasound-Modulated Bubble Propulsion of Chemically Powered Microengines. J. Am. Chem. Soc. 2014, 136, 8552–8555. [Google Scholar] [CrossRef]
- de Ávila, B.E.-F.; Ramírez-Herrera, D.E.; Campuzano, S.; Angsantikul, P.; Zhang, L.; Wang, J. Nanomotor-Enabled pH-Responsive Intracellular Delivery of Caspase-3: Toward Rapid Cell Apoptosis. ACS Nano 2017, 11, 5367–5374. [Google Scholar] [CrossRef]
- Wan, M.; Wang, Q.; Li, X.; Xu, B.; Fang, D.; Li, T.; Yu, Y.; Fang, L.; Wang, Y.; Wang, M.; et al. Systematic Research and Evaluation Models of Nanomotors for Cancer Combined Therapy. Angew. Chem. Int. Ed. Engl. 2020, 59, 14458–14465. [Google Scholar] [CrossRef]
- Rebeck, O.N.; Wallace, M.J.; Prusa, J.; Ning, J.; Evbuomwan, E.M.; Rengarajan, S.; Habimana-Griffin, L.; Kwak, S.; Zahrah, D.; Tung, J.; et al. A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden. Cell Chem. Biol. 2024, 32, 98–110.e7. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, F.; Gong, H.; Wei, F.; Zhuang, J.; Karshalev, E.; de Ávila, B.E.-F.; Huang, C.; Zhou, Z.; Li, Z.; et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zang, Z.; Chen, Z.; Cui, L.; Chang, Z.; Ma, A.; Yin, T.; Liang, R.; Han, Y.; Wu, Z.; et al. Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials 2019, 214, 119226. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, H.; Zong, X.; Li, X.; Yuan, P.; Yang, C.; Chen, X.; Yan, X.; Wen, Y.; Zhu, T.; et al. Oncolytic Virus-Like Nanoparticles for Tumor-Specific Gene Delivery. Adv. Funct. Mater. 2024, 34. [Google Scholar] [CrossRef]
- Lin, D.; Feng, X.; Mai, B.; Wang, F.; Liu, J.; Liu, X.; Zhang, K.; Wang, X. Bacterial-based cancer therapy: An emerging toolbox for targeted drug/gene delivery. Biomaterials 2021, 277, 121124. [Google Scholar] [CrossRef]
- Holay, M.; Guo, Z.; Pihl, J.; Heo, J.; Park, J.H.; Fang, R.H.; Zhang, L. Bacteria-Inspired Nanomedicine. ACS Appl. Bio Mater. 2020, 4, 3830–3848. [Google Scholar] [CrossRef]
- Xiao, Y.; Pan, T.; Da, W.; Liu, Y.; Chen, S.; Chen, D.; Liu, K.; Zheng, Y.; Xie, D.; Gao, Y.; et al. Aptamer-drug conjugates-loaded bacteria for pancreatic cancer synergistic therapy. Signal Transduct. Target. Ther. 2024, 9, 1–17. [Google Scholar] [CrossRef]
- Swofford, C.A.; Van Dessel, N.; Forbes, N.S. Quorum-sensing Salmonella selectively trigger protein expression within tumors. Proc. Natl. Acad. Sci. 2015, 112, 3457–3462. [Google Scholar] [CrossRef]
- Kwon, S.-Y.; Ngo, H.T.-T.; Son, J.; Hong, Y.; Min, J.-J. Exploiting bacteria for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2024, 21, 569–589. [Google Scholar] [CrossRef]
- Wu, W.; Pu, Y.; Gao, S.; Shen, Y.; Zhou, M.; Yao, H.; Shi, J. Bacterial Metabolism-Initiated Nanocatalytic Tumor Immunotherapy. Nano-Micro Lett. 2022, 14, 1–21. [Google Scholar] [CrossRef]
- Pierigè, F.; Serafini, S.; Rossi, L.; Magnani, M. Cell-based drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Burnouf, T.; Burnouf, P.-A.; Wu, Y.-W.; Chuang, E.-Y.; Lu, L.-S.; Goubran, H. Circulatory-cell-mediated nanotherapeutic approaches in disease targeting. Drug Discov. Today 2018, 23, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Alam, M.A.; Shaw, J.; Dasgupta, A.K. Drug Delivery Using Platelet Cancer Cell Interaction. Pharm. Res. 2013, 30, 2785–2794. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hu, S.; Cheng, K. Platelets and their biomimetics for regenerative medicine and cancer therapies. J. Mater. Chem. B 2018, 6, 7354–7365. [Google Scholar] [CrossRef]
- Shi, Q.; Montgomery, R.R. Platelets as delivery systems for disease treatments. Adv. Drug Deliv. Rev. 2010, 62, 1196–1203. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, J.; Guo, J.; Wu, Q.; Li, S.; Wang, H.; Sun, Y.; Liu, H. Biomedical Micro/nanomotors: Driven mechanism, preparation and physiological barriers breakthrough. Co-ord. Chem. Rev. 2025, 530. [Google Scholar] [CrossRef]
- Ding, Q.; Huang, S.; Zhang, Z.; Yu, D.; Li, M.; He, Q.; Mei, L. Integration of Photodiagnosis and Therapy Guided by Micro/Nanorobots. Adv. Mater. 2025, 37, e2420359. [Google Scholar] [CrossRef]
- Liu, T.; Xie, L.; Price, C.-A.H.; Liu, J.; He, Q.; Kong, B. Controlled propulsion of micro/nanomotors: Operational mechanisms, motion manipulation and potential biomedical applications. Chem. Soc. Rev. 2022, 51, 10083–10119. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, H.; Zhao, Q.; Qin, J. Novel micro/nanomotors for tumor diagnosis and therapy: Motion mechanisms, advantages and applications. J. Sci. Adv. Mater. Devices 2024, 9. [Google Scholar] [CrossRef]
- Mei, Y.; Solovev, A.A.; Sanchez, S.; Schmidt, O.G. Rolled-up nanotech on polymers: From basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 2011, 40, 2109–2119. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, L.; Lin, J.; Zhang, P.; Hu, K.; Meng, S.; Zhou, P.; Duan, X.; Sun, H.; Wang, S. Confined Tri-Functional FeOx@MnO2@SiO2 Flask Micromotors for Long-Lasting Motion and Catalytic Reactions. Small 2023, 19, e2207666. [Google Scholar] [CrossRef]
- Liu, T.; Yan, M.; Zhou, S.; Liang, Q.; He, Y.; Zhang, X.; Zeng, H.; Liu, J.; Kong, B. Site-Selective Superassembly of a Multilevel Asymmetric Nanomotor with Wavelength-Modulated Propulsion Mechanisms. ACS Nano 2023, 17, 14871–14882. [Google Scholar] [CrossRef]
- Lyu, X.; Chen, J.; Liu, J.; Peng, Y.; Duan, S.; Ma, X.; Wang, W. Reversing a Platinum Micromotor by Introducing Platinum Oxide. Angew. Chem. Int. Ed. Engl. 2022, 61, e202201018. [Google Scholar] [CrossRef]
- Wong, F.; Sen, A. Progress toward Light-Harvesting Self-Electrophoretic Motors: Highly Efficient Bimetallic Nanomotors and Micropumps in Halogen Media. ACS Nano 2016, 10, 7172–7179. [Google Scholar] [CrossRef]
- Xing, Y.; Zhou, M.; Liu, X.; Qiao, M.; Zhou, L.; Xu, T.; Zhang, X.; Du, X. Bioinspired Jellyfish-like Carbon/Manganese nanomotors with H2O2 and NIR light Dual-propulsion for enhanced tumor penetration and chemodynamic therapy. Chem. Eng. J. 2023, 461. [Google Scholar] [CrossRef]
- Gao, C.; Feng, Y.; Liu, S.; Chen, B.; Ding, M.; Du, D.; Zhang, W.; Wilson, D.A.; Tu, Y.; Peng, F. Light-Driven Artificial Cell Micromotors for Degenerative Knee Osteoarthritis. Adv. Mater. 2025, 37, e2416349. [Google Scholar] [CrossRef]
- Liu, T.; Xie, L.; Zeng, J.; Yan, M.; Qiu, B.; Wang, X.; Zhou, S.; Zhang, X.; Zeng, H.; Liang, Q.; et al. Interfacial Superassembly of Light-Responsive Mechanism-Switchable Nanomotors with Tunable Mobility and Directionality. ACS Appl. Mater. Interfaces 2022, 14, 15517–15528. [Google Scholar] [CrossRef]
- Wan, M.; Chen, H.; Wang, Q.; Niu, Q.; Xu, P.; Yu, Y.; Zhu, T.; Mao, C.; Shen, J. Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Yang, K.; Li, J.; Cheng, Q.; Wang, R. Self-Propelled Asymmetrical Nanomotor for Self-Reported Gas Therapy. Small 2021, 17, 2102286. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Gao, W.; Xu, L.; Zhang, X.; Wang, S. Fuel-Free Synthetic Micro-/Nanomachines. Adv. Mater. 2016, 29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Mundaca-Uribe, R.; Askarinam, N.; Li, Z.; Gao, W.; Zhang, L.; Wang, J. Biomembrane-Functionalized Micromotors: Biocompatible Active Devices for Diverse Biomedical Applications. Adv. Mater. 2021, 34, 2107177. [Google Scholar] [CrossRef]
- Ye, J.; Fan, Y.; She, Y.; Shi, J.; Yang, Y.; Yuan, X.; Li, R.; Han, J.; Liu, L.; Kang, Y.; et al. Biomimetic Self-Propelled Asymmetric Nanomotors for Cascade-Targeted Treatment of Neurological Inflammation. Adv. Sci. 2024, 11, e2310211. [Google Scholar] [CrossRef]
- Xu, H.; Medina-Sánchez, M.; Maitz, M.F.; Werner, C.; Schmidt, O.G. Sperm Micromotors for Cargo Delivery through Flowing Blood. ACS Nano 2020, 14, 2982–2993. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Zhang, Y.; Bao, M.; Xin, C.; Wei, Z.; Lin, G.; Wang, Z. A Multifunctional Magnetic Red Blood Cell-Mimetic Micromotor for Drug Delivery and Image-Guided Therapy. ACS Appl. Mater. Interfaces 2022, 14, 3825–3837. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Ismagilov, R.F.; Schwartz, A.; Bowden, N.; Whitesides, G.M. Autonomous Movement and Self-Assembly. Angew. Chem. Int. Ed. 2002, 41, 652–654. [Google Scholar] [CrossRef]
- Gao, W.; Sattayasamitsathit, S.; Orozco, J.; Wang, J. Highly Efficient Catalytic Microengines: Template Electrosynthesis of Polyaniline/Platinum Microtubes. J. Am. Chem. Soc. 2011, 133, 11862–11864. [Google Scholar] [CrossRef]
- Khezri, B.; Mousavi, S.M.B.; Krejčová, L.; Heger, Z.; Sofer, Z.; Pumera, M. Ultrafast Electrochemical Trigger Drug Delivery Mechanism for Nanographene Micromachines. Adv. Funct. Mater. 2018, 29. [Google Scholar] [CrossRef]
- Tu, Y.; Peng, F.; White, P.B.; Wilson, D.A. Redox-Sensitive Stomatocyte Nanomotors: Destruction and Drug Release in the Presence of Glutathione. Angew. Chem. Int. Ed. Engl. 2017, 56, 7620–7624. [Google Scholar] [CrossRef]
- Gao, S.; Hou, J.; Zeng, J.; Richardson, J.J.; Gu, Z.; Gao, X.; Li, D.; Gao, M.; Wang, D.; Chen, P.; et al. Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pH-Speed Regulation at Ultralow Physiological H2O2 Concentration. Adv. Funct. Mater. 2019, 29. [Google Scholar] [CrossRef]
- Lv, K.; Hou, M.; Kou, Y.; Yu, H.; Liu, M.; Zhao, T.; Shen, J.; Huang, X.; Zhang, J.; Mady, M.F.; et al. Black Titania Janus Mesoporous Nanomotor for Enhanced Tumor Penetration and Near-Infrared Light-Triggered Photodynamic Therapy. ACS Nano 2024, 18, 13910–13923. [Google Scholar] [CrossRef]
- Yan, M.; Xie, L.; Qiu, B.; Zhou, S.; Liu, T.; Zeng, J.; Liang, Q.; Tang, J.; Liang, K.; Zhao, D.; et al. Ligand-Mediated Spatially Controllable Superassembly of Asymmetric Hollow Nanotadpoles with Fine-Tunable Cavity as Smart H2O2-Sensitive Nanoswimmers. ACS Nano 2021, 15, 11451–11460. [Google Scholar] [CrossRef]
- Llopis-Lorente, A.; García-Fernández, A.; Murillo-Cremaes, N.; Hortelão, A.C.; Patiño, T.; Villalonga, R.; Sancenón, F.; Martínez-Máñez, R.; Sánchez, S. Enzyme-Powered Gated Mesoporous Silica Nanomotors for On-Command Intracellular Payload Delivery. ACS Nano 2019, 13, 12171–12183. [Google Scholar] [CrossRef]
- Appelboom, J.W.T.; Brodsky, W.A.; Rehm, W.S. The Concentration of Glucose in Mammalian Liver. J. Gen. Physiol. 1959, 43, 467–479. [Google Scholar] [CrossRef]
- Mano, N.; Heller, A. Bioelectrochemical Propulsion. J. Am. Chem. Soc. 2005, 127, 11574–11575. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Lin, R.; He, X.; Yang, X.; Zhang, H.; Hu, C.; Liu, R.; Huang, Y.; Qin, Y.; Gao, H. Self-propelled nanomotor reconstructs tumor microenvironment through synergistic hypoxia alleviation and glycolysis inhibition for promoted anti-metastasis. Acta Pharm. Sin. B 2021, 11, 2924–2936. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, Y.; Yan, A.; Gao, Y.; Xiao, F.; Xu, Z.; Xu, J.; Yu, S.; Liu, J.; Sun, H. Self-Propelled Enzymatic Nanomotors from Prodrug-Skeletal Zeolitic Imidazolate Frameworks for Boosting Multimodel Cancer Therapy Efficiency. Adv. Sci. 2023, 10, e2301919. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Tian, H.; Song, Y.; Qin, H.; Gao, J.; Chen, Y.; Huang, W.; Lin, L.; Tan, H.; Ye, Y.; et al. Self-propelled ferroptosis nanoinducer for enhanced cancer therapy. Int. J. Extreme Manuf. 2025, 7, 035501. [Google Scholar] [CrossRef]
- Hou, P.; Xie, L.; Zhang, L.; Du, X.; Zhao, D.; Wang, Y.; Yang, N.; Wang, D. Anisotropic Hollow Structure with Chemotaxis Enabling Intratumoral Autonomic Therapy. Angew. Chem. Int. Ed. Engl. 2024, 64, e202414370. [Google Scholar] [CrossRef]
- Gao, C.; Zhou, C.; Lin, Z.; Yang, M.; He, Q. Surface Wettability-Directed Propulsion of Glucose-Powered Nanoflask Motors. ACS Nano 2019, 13, 12758–12766. [Google Scholar] [CrossRef]
- Xu, W.; Liu, L.Z.; Loizidou, M.; Ahmed, M.; Charles, I.G. The role of nitric oxide in cancer. Cell Res. 2002, 12, 311–320. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, M.; Cheng, J.; Yin, J.; Huang, C.; Cui, H.; Zhang, X.; Zhao, G. Acidity-Triggered Tumor-Targeted Nanosystem for Synergistic Therapy via a Cascade of ROS Generation and NO Release. ACS Appl. Mater. Interfaces 2020, 12, 28975–28984. [Google Scholar] [CrossRef]
- Overall, C.M.; Kleifeld, O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 2006, 6, 227–239. [Google Scholar] [CrossRef]
- Coussens, L.M.; Fingleton, B.; Matrisian, L.M. Matrix Metalloproteinase Inhibitors and Cancer—Trials and Tribulations. Science 2002, 295, 2387–2392. [Google Scholar] [CrossRef]
- Wan, M.M.; Chen, H.; Da Wang, Z.; Liu, Z.Y.; Yu, Y.Q.; Li, L.; Miao, Z.Y.; Wang, X.W.; Wang, Q.; Mao, C.; et al. Nitric Oxide-Driven Nanomotor for Deep Tissue Penetration and Multidrug Resistance Reversal in Cancer Therapy. Adv. Sci. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Liu, H.-J.; Feng, H.-Y.; Yang, S.-C.; Liu, X.-L.; Lai, X.; Lu, Q.; Lovell, J.F.; Chen, H.-Z.; Fang, C. Enhanced Drug Delivery by Nanoscale Integration of a Nitric Oxide Donor To Induce Tumor Collagen Depletion. Nano Lett. 2019, 19, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.-C.; Jin, P.-R.; Chu, L.-A.; Hsu, F.-F.; Wang, M.-R.; Chang, C.-C.; Chiou, S.-J.; Qiu, J.T.; Gao, D.-Y.; Lin, C.-C.; et al. Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat. Nanotechnol. 2019, 14, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, T.; Liu, Z.; Tang, S.; Tong, J.; Tao, Y.; Zhao, Z.; Li, N.; Mao, C.; Shen, J.; et al. A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma. Nat. Commun. 2023, 14, 1–21. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Sümbelli, Y.; Shao, J.; Shi, X.; van Hest, J.C. Nanogel-based nitric oxide-driven nanomotor for deep tissue penetration and enhanced tumor therapy. J. Control. Release 2024, 372, 59–68. [Google Scholar] [CrossRef]
- Chen, H.; Shi, T.; Wang, Y.; Liu, Z.; Liu, F.; Zhang, H.; Wang, X.; Miao, Z.; Liu, B.; Wan, M.; et al. Deep Penetration of Nanolevel Drugs and Micrometer-Level T Cells Promoted by Nanomotors for Cancer Immunochemotherapy. J. Am. Chem. Soc. 2021, 143, 12025–12037. [Google Scholar] [CrossRef]
- Lu, Y. Folate receptor-targeted immunotherapy of cancer: Mechanism and therapeutic potential. Adv. Drug Deliv. Rev. 2004, 56, 1161–1176. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wang, W.; Gao, X.; Zhao, S.; Chen, W.; Li, J.; Liu, Y. Cascade Catalytically Released Nitric Oxide-Driven Nanomotor with Enhanced Penetration for Antibiofilm. Small 2022, 18, e2205252. [Google Scholar] [CrossRef]
- Cheng, J.; Fu, Y.; Guo, J.; Guo, J. A low-cost paper-based blood urea nitrogen optical biosensor for renal surveillance in fingertip blood. Sensors Actuators B: Chem. 2023, 387. [Google Scholar] [CrossRef]
- Deignan, J.L.; Cederbaum, S.D.; Grody, W.W. Contrasting features of urea cycle disorders in human patients and knockout mouse models. Mol. Genet. Metab. 2008, 93, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Bankir, L. Urea and urine concentrating ability: New insights from studies in mice. Am. J. Physiol. Physiol. 2005, 288, F881–F896. [Google Scholar] [CrossRef]
- Luo, M.; Li, S.; Wan, J.; Yang, C.; Chen, B.; Guan, J. Enhanced Propulsion of Urease-Powered Micromotors by Multilayered Assembly of Ureases on Janus Magnetic Microparticles. Langmuir 2020, 36, 7005–7013. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yuan, Y.; Wan, J.; Yang, C.; Hao, X.; Gao, Z.; Luo, M.; Guan, J. Self-adaptive enzyme-powered micromotors with switchable propulsion mechanism and motion directionality. Appl. Phys. Rev. 2021, 8, 011406. [Google Scholar] [CrossRef]
- Ma, X.; Wang, X.; Hahn, K.; Sánchez, S. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules. ACS Nano 2016, 10, 3597–3605. [Google Scholar] [CrossRef]
- Hortelao, A.C.; Simó, C.; Guix, M.; Guallar-Garrido, S.; Julián, E.; Vilela, D.; Rejc, L.; Ramos-Cabrer, P.; Cossío, U.; Gómez-Vallejo, V.; et al. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot. 2021, 6. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Chem. Int. Ed. 2014, 53, 12320–12364. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Gao, Z.; Hao, X.; Luo, M.; Yu, Z.; Guan, J. Ultrasmall Enzyme-Powered Janus Nanomotor Working in Blood Circulation System. ACS Nano 2023, 17, 6023–6035. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Jeong, S.-H.; Simó, C.; Bakenecker, A.; Liop, J.; Lee, H.S.; Kim, T.Y.; Kwak, C.; Koh, G.Y.; Sánchez, S.; et al. Urease-powered nanomotor containing STING agonist for bladder cancer immunotherapy. Nat. Commun. 2024, 15, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Tang, D.; Zhou, H.; Li, Y.; Zhou, D.; Peng, X.; Ren, C.; Su, Y.; Zhang, S.; Zheng, H.; et al. Bacterial outer membrane vesicle nanorobot. Proc. Natl. Acad. Sci. 2024, 121. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hortelão, A.C.; Huang, X.; Sánchez, S. Lipase-Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angew. Chem. Int. Ed. Engl. 2019, 58, 7992–7996. [Google Scholar] [CrossRef]
- Patel, R.S.; Pasea, L.; Soran, H.; Downie, P.; Jones, R.; Hingorani, A.D.; Neely, D.; Denaxas, S.; Hemingway, H. Elevated plasma triglyceride concentration and risk of adverse clinical outcomes in 1.5 million people: A CALIBER linked electronic health record study. Cardiovasc. Diabetol. 2022, 21, 1–12. [Google Scholar] [CrossRef]
- Gao, W.; Uygun, A.; Wang, J. Hydrogen-Bubble-Propelled Zinc-Based Microrockets in Strongly Acidic Media. J. Am. Chem. Soc. 2011, 134, 897–900. [Google Scholar] [CrossRef]
- Saad, S.; Kaur, H.; Natale, G. Scalable Chemical Synthesis Route to Manufacture pH-Responsive Janus CaCO3 Micromotors. Langmuir 2020, 36, 12590–12600. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, S.; Liang, J.; Wang, Z.; Hou, Y. Self-Propelled Nanomotor for Cancer Precision Combination Therapy. Adv. Heal. Mater. 2024, 13, e2304212. [Google Scholar] [CrossRef]
- Li, J.; Angsantikul, P.; Liu, W.; de Ávila, B.E.; Thamphiwatana, S.; Xu, M.; Sandraz, E.; Wang, X.; Delezuk, J.; Gao, W.; et al. Micromotors Spontaneously Neutralize Gastric Acid for pH-Responsive Payload Release. Angew. Chem. Int. Ed. Engl. 2017, 56, 2156–2161. [Google Scholar] [CrossRef]
- Gao, W.; Feng, X.; Pei, A.; Gu, Y.; Li, J.; Wang, J. Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 2013, 5, 4696–4700. [Google Scholar] [CrossRef]
- Yoo, H.W.; Hong, S.J.; Kim, S.H. Helicobacter pylori Treatment and Gastric Cancer Risk After Endoscopic Resection of Dysplasia: A Nationwide Cohort Study. Gastroenterology 2023, 166, 313–322.e3. [Google Scholar] [CrossRef]
- Tomioka, D.; Fujita, S.; Groll, J.; Matsusaki, M. Hydroxyapatite Nanocoating on Calcium Peroxide Microparticles for Sustained Oxygen Release. Chem. Mater. 2023, 35, 5378–5391. [Google Scholar] [CrossRef]
- Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317. [Google Scholar] [CrossRef]
- Xuan, M.; Wu, Z.; Shao, J.; Dai, L.; Si, T.; He, Q. Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. J. Am. Chem. Soc. 2016, 138, 6492–6497. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, C.; Dai, J.; Liu, B.; Cheng, X.; Li, X.; Cao, Y.; Chen, J.; Li, Z.; Tang, J. Tunable Self-Thermophoretic Nanomotors with Polymeric Coating. J. Am. Chem. Soc. 2023, 145, 19945–19952. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pu, K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem. Soc. Rev. 2018, 48, 38–71. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fan, X.; Li, L.; Yang, Y.; Nuernisha, A.; Xue, D.; He, C.; Qian, J.; Hu, Q.; Chen, H.; et al. Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence. ACS Nano 2020, 14, 2509–2521. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Cui, D.; Sun, H.; Miao, Y.; Duan, H.; Pu, K. Dendronized Semiconducting Polymer as Photothermal Nanocarrier for Remote Activation of Gene Expression. Angew. Chem. Int. Ed. Engl. 2017, 56, 9155–9159. [Google Scholar] [CrossRef]
- Feng, A.; Cheng, X.; Huang, X.; Liu, Y.; He, Z.; Zhao, J.; Duan, H.; Shi, Z.; Guo, J.; Wang, S.; et al. Engineered Organic Nanorockets with Light-Driven Ultrafast Transportability for Antitumor Therapy. Small 2023, 19, e2206426. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Wang, J.; Yang, H.; Zhou, J.; Zhao, W. Doxorubicin-Loaded Walnut-Shaped Polydopamine Nanomotor for Photothermal-Chemotherapy of Cancer. Bioconjugate Chem. 2022, 33, 726–735. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Hao, Y.; Yang, H.; Wang, J.; Zhang, Y.; Zhao, W.; Ma, S.; Mao, C. Polydopamine nanomotors loaded indocyanine green and ferric ion for photothermal and photodynamic synergistic therapy of tumor. J. Colloid Interface Sci. 2022, 633, 679–690. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, H.; Cao, W.; Xie, S.; Ran, P.; Wei, K.; Li, X. Ultrasound-Chargeable Persistent Luminescence Nanoparticles to Generate Self-Propelled Motion and Photothermal/NO Therapy for Synergistic Tumor Treatment. ACS Nano 2023, 17, 16089–16106. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, W.; Tian, H.; Gao, J.; Ye, Y.; Qin, H.; Wang, H.; Song, Y.; Shao, C.; Peng, F.; et al. NIR-II Light-Actuated Nanomotors for Enhanced Photoimmunotherapy Toward Hepatocellular Carcinoma. ACS Appl. Mater. Interfaces 2024, 16, 39051–39063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, C.; Li, J.; Chu, R.; Lyu, Y.; Lan, Z. Dual source-powered multifunctional Pt/FePc@Mn-MOF spindle-like Janus nanomotors for active CT imaging-guided synergistic photothermal/chemodynamic therapy. J. Colloid Interface Sci. 2023, 657, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sun, X.; Fu, M.; Pang, S.; You, Y.; Liu, X.; Wang, Y.; Yan, X.; Ma, X. Dual-source powered nanomotor with integrated functions for cancer photo-theranostics. Biomaterials 2022, 288, 121744. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, Y.; Yan, X.; Zhu, Y.; Xu, Z.; Xu, Y.; Yu, S.; Wan, J.; Liu, J.; Sun, H. NIR-II light-powered core-shell prodrug nanomotors enhance cancer therapy through synergistic oxidative stress-photothermo modulation. Acta Biomater. 2024, 185, 396–409. [Google Scholar] [CrossRef]
- Jiang, J.; Hu, J.; Li, M.; Luo, M.; Dong, B.; Sitti, M.; Yan, X. NIR-II Fluorescent Thermophoretic Nanomotors for Superficial Tumor Photothermal Therapy. Adv. Mater. 2025, 37, e2417440. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Zeng, X.; Huang, W.; Yang, Y.; Zhang, S.; Yang, M.; Liu, H.; Zhao, F.; Li, A.; Zhang, Z.; et al. Bioactive nanomotor enabling efficient intestinal barrier penetration for colorectal cancer therapy. Nat. Commun. 2025, 16, 1–19. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Zhu, X.; Zwolsman, R.; Hofstraat, S.R.J.; Li, Y.; Luo, Y.; Joosten, R.R.M.; Friedrich, H.; Cao, S.; et al. Ultrafast light-activated polymeric nanomotors. Nat. Commun. 2024, 15, 1–11. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, C. A Journey of Nanomotors for Targeted Cancer Therapy: Principles, Challenges, and a Critical Review of the State-of-the-Art. Adv. Heal. Mater. 2020, 10, e2001236. [Google Scholar] [CrossRef]
- Qiu, F.; Mhanna, R.; Zhang, L.; Ding, Y.; Fujita, S.; Nelson, B.J. Artificial bacterial flagella functionalized with temperature-sensitive liposomes for controlled release. Sensors Actuators B: Chem. 2014, 196, 676–681. [Google Scholar] [CrossRef]
- Jang, B.; Gutman, E.; Stucki, N.; Seitz, B.F.; Wendel-García, P.D.; Newton, T.; Pokki, J.; Ergeneman, O.; Pané, S.; Or, Y.; et al. Undulatory Locomotion of Magnetic Multilink Nanoswimmers. Nano Lett. 2015, 15, 4829–4833. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Sattayasamitsathit, S.; Manesh, K.M.; Weihs, D.; Wang, J. Magnetically Powered Flexible Metal Nanowire Motors. J. Am. Chem. Soc. 2010, 132, 14403–14405. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, J.; Zhang, H.; Chang, X.; Song, W.; Hu, Y.; Shao, G.; Sandraz, E.; Zhang, G.; Li, L.; et al. Magnetically Propelled Fish-Like Nanoswimmers. Small 2016, 12, 6098–6105. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Medina-Sánchez, M.; Magdanz, V.; Schwarz, L.; Hebenstreit, F.; Schmidt, O.G. Sperm-Hybrid Micromotor for Targeted Drug Delivery. ACS Nano 2017, 12, 327–337. [Google Scholar] [CrossRef]
- Song, X.; Qian, R.; Li, T.; Fu, W.; Fang, L.; Cai, Y.; Guo, H.; Xi, L.; Cheang, U.K. Imaging-Guided Biomimetic M1 Macrophage Membrane-Camouflaged Magnetic Nanorobots for Photothermal Immunotargeting Cancer Therapy. ACS Appl. Mater. Interfaces 2022, 14, 56548–56559. [Google Scholar] [CrossRef]
- Gong, D.; Celi, N.; Zhang, D.; Cai, J. Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2022, 14, 6320–6330. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Z.; Zhu, B.; Zhang, Y.; Lin, J.; Wu, Y.; Wu, D. Design, fabrication and application of magnetically actuated micro/nanorobots: A review. Nanotechnology 2022, 33, 152001. [Google Scholar] [CrossRef]
- Zhong, D.; Li, W.; Qi, Y.; He, J.; Zhou, M. Photosynthetic Biohybrid Nanoswimmers System to Alleviate Tumor Hypoxia for FL/PA/MR Imaging-Guided Enhanced Radio-Photodynamic Synergetic Therapy. Adv. Funct. Mater. 2020, 30. [Google Scholar] [CrossRef]
- Yu, X.; Li, X.; Chen, Q.; Wang, S.; Xu, R.; He, Y.; Qin, X.; Zhang, J.; Yang, W.; Shi, L.; et al. High Intensity Focused Ultrasound-Driven Nanomotor for Effective Ferroptosis-Immunotherapy of TNBC. Adv. Sci. 2024, 11, e2305546. [Google Scholar] [CrossRef]
- Kagan, D.; Benchimol, M.J.; Claussen, J.C.; Chuluun-Erdene, E.; Esener, S.; Wang, J. Acoustic Droplet Vaporization and Propulsion of Perfluorocarbon-Loaded Microbullets for Targeted Tissue Penetration and Deformation. Angew. Chem. Int. Ed. Engl. 2012, 51, 7519–7522. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, X.; Wang, X.; Xu, C.; Chang, S.; Wu, H.; Wang, T.; Liang, H.; Gao, H.; Zhou, Y.; et al. Structural basis of assembly and torque transmission of the bacterial flagellar motor. Cell 2021, 184, 2665–2679.e19. [Google Scholar] [CrossRef] [PubMed]
- Cronin, M.; Morrissey, D.; Rajendran, S.; El Mashad, S.M.; van Sinderen, D.; O’Sullivan, G.C.; Tangney, M. Orally Administered Bifidobacteria as Vehicles for Delivery of Agents to Systemic Tumors. Mol. Ther. 2010, 18, 1397–1407. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Soto, F.; Liu, S.; Yin, Q.; Purcell, E.; Zeng, Y.; Hsu, E.; Akin, D.; Sinclair, B.; Stoyanova, T.; et al. Volbots: Volvox Microalgae-Based Robots for Multimode Precision Imaging and Therapy. Adv. Funct. Mater. 2022, 32. [Google Scholar] [CrossRef]
- Li, J.; Dai, J.; Zhao, L.; Lin, S.; Wen, Q.; Wen, Q.; Lu, Y.; Fan, Y.; Zeng, F.; Qian, Z.; et al. Bioactive Bacteria/MOF Hybrids Can Achieve Targeted Synergistic Chemotherapy and Chemodynamic Therapy against Breast Tumors. Adv. Funct. Mater. 2023, 33. [Google Scholar] [CrossRef]
- Zhu, L.; Song, G.; Zhang, W.; Wu, Y.; Chen, Y.; Song, J.; Wang, D.; Li, G.; Tang, B.Z.; Li, Y. Aggregation induced emission luminogen bacteria hybrid bionic robot for multimodal phototheranostics and immunotherapy. Nat. Commun. 2025, 16, 1–18. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Li, S.; Kwong, C.H.; Zhang, D.; Wei, J.; Gao, C.; Zhang, Q.; Wang, R. Light-Directed Microalgae Micromotor with Supramolecular Backpacks for Photodynamic Therapy. Adv. Funct. Mater. 2024, 35. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Z.; Duan, Y.; Abbas, A.; Mundaca-Uribe, R.; Yin, L.; Luan, H.; Gao, W.; Fang, R.H.; Zhang, L.; et al. Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule. Sci. Robot. 2022, 7, eabo4160. [Google Scholar] [CrossRef]
- Ueki, N.; Ide, T.; Mochiji, S.; Kobayashi, Y.; Tokutsu, R.; Ohnishi, N.; Yamaguchi, K.; Shigenobu, S.; Tanaka, K.; Minagawa, J.; et al. Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. 2016, 113, 5299–5304. [Google Scholar] [CrossRef]
- Hua, S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract—Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front. Pharmacol. 2020, 11, 524. [Google Scholar] [CrossRef]
- Ensign, L.M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012, 64, 557–570. [Google Scholar] [CrossRef] [PubMed]
- de Lázaro, I.; Mooney, D.J. A nanoparticle’s pathway into tumours. Nat. Mater. 2020, 19, 486–487. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Shao, S.; Wang, J.; Xu, C.; Xiang, J.; Piao, Y.; Zhou, Z.; Yu, Q.; Tang, J.; Liu, X.; et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 2019, 14, 799–809. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, Q.; Dou, J.; Zhou, H.; Zeng, C.; Pan, H.; Shen, Y.; Li, Q.; Liu, Y.; Leong, D.T.; et al. Breaking through the basement membrane barrier to improve nanotherapeutic delivery to tumours. Nat. Nanotechnol. 2023, 19, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ji, J.; Zhang, L.; Luo, C.; Chen, T.; Zhang, Y.; Ma, C.; Ke, Y.; Wang, J. Nanoparticles Coated with Brain Microvascular Endothelial Cell Membranes can Target and Cross the Blood–Brain Barrier to Deliver Drugs to Brain Tumors. Small 2024, 20, e2306714. [Google Scholar] [CrossRef]
- Xiao, Y.; Yu, D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 2020, 221, 107753. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, X.; Lou, B.; Zheng, N.; Chen, J.; Yang, G. An FOF1-ATPase motor-embedded chromatophore as a nanorobot for overcoming biological barriers and targeting acidic tumor sites. Acta Biomater. 2024, 179, 207–219. [Google Scholar] [CrossRef]
- Murphy, B.J.; Klusch, N.; Langer, J.; Mills, D.J.; Yildiz, Ö.; Kühlbrandt, W. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-Fo coupling. Science 2019, 364, eaaw9128. [Google Scholar] [CrossRef]
- Hong, W.; Lou, B.; Gao, Y.; Zhao, H.; Ying, S.; Yang, S.; Li, H.; Yang, Q.; Yang, G. Tumor microenvironment responded naturally extracted FOF1-ATPase loaded chromatophores for antitumor therapy. Int. J. Biol. Macromol. 2023, 230, 123127. [Google Scholar] [CrossRef]
- Xu, H.-Z.; Li, T.-F.; Ma, Y.; Li, K.; Zhang, Q.; Xu, Y.-H.; Zhang, Y.-C.; Zhao, L.; Chen, X. Targeted photodynamic therapy of glioblastoma mediated by platelets with photo-controlled release property. Biomaterials 2022, 290, 121833. [Google Scholar] [CrossRef]
- Ye, J.; Fu, Q.; Liu, L.; Chen, L.; Zhang, X.; Li, Q.; Li, Z.; Su, L.; Zhu, R.; Song, J.; et al. Ultrasound-propelled Janus Au NR-mSiO2 nanomotor for NIR-II photoacoustic imaging guided sonodynamic-gas therapy of large tumors. Sci. China Chem. 2021, 64, 2218–2229. [Google Scholar] [CrossRef]
- Jung, E.; Kang, C.; Lee, J.; Yoo, D.; Hwang, D.W.; Kim, D.; Park, S.-C.; Lim, S.K.; Song, C.; Lee, D. Molecularly Engineered Theranostic Nanoparticles for Thrombosed Vessels: H2O2-Activatable Contrast-Enhanced Photoacoustic Imaging and Antithrombotic Therapy. ACS Nano 2017, 12, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Yang, Z.; Wang, S.; Wang, Z.; Song, J.; Yu, G.; Fan, W.; Dai, Y.; Wang, J.; Shan, L.; et al. Organic Semiconducting Photoacoustic Nanodroplets for Laser-Activatable Ultrasound Imaging and Combinational Cancer Therapy. ACS Nano 2018, 12, 2610–2622. [Google Scholar] [CrossRef] [PubMed]
- de Ávila, B.E.-F.; Angell, C.; Soto, F.; Lopez-Ramirez, M.A.; Báez, D.F.; Xie, S.; Wang, J.; Chen, Y. Acoustically Propelled Nanomotors for Intracellular siRNA Delivery. ACS Nano 2016, 10, 4997–5005. [Google Scholar] [CrossRef]
- Chen, Z.; Kankala, R.K.; Long, L.; Xie, S.; Chen, A.; Zou, L. Current understanding of passive and active targeting nanomedicines to enhance tumor accumulation. Co-ord. Chem. Rev. 2023, 481. [Google Scholar] [CrossRef]
- Dutta, B.; Barick, K.; Hassan, P. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv. Colloid Interface Sci. 2021, 296, 102509. [Google Scholar] [CrossRef]
- Chen, L.; Hong, W.; Ren, W.; Xu, T.; Qian, Z.; He, Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct. Target. Ther. 2021, 6, 1–25. [Google Scholar] [CrossRef]
- Tang, M.; Ni, J.; Yue, Z.; Sun, T.; Chen, C.; Ma, X.; Wang, L. Polyoxometalate-Nanozyme-Integrated Nanomotors (POMotors) for Self-Propulsion-Promoted Synergistic Photothermal-Catalytic Tumor Therapy. Angew. Chem. Int. Ed. Engl. 2024, 63, e202315031. [Google Scholar] [CrossRef]
- Zheng, J.; He, W.; Li, J.; Feng, X.; Li, Y.; Cheng, B.; Zhou, Y.; Li, M.; Liu, K.; Shao, X.; et al. Bifunctional Compounds as Molecular Degraders for Integrin-Facilitated Targeted Protein Degradation. J. Am. Chem. Soc. 2022, 144, 21831–21836. [Google Scholar] [CrossRef]
- Luo, R.; Liu, J.; Cheng, Q.; Shionoya, M.; Gao, C.; Wang, R. Oral microsphere formulation of M2 macrophage-mimetic Janus nanomotor for targeted therapy of ulcerative colitis. Sci. Adv. 2024, 10, eado6798. [Google Scholar] [CrossRef]
- Wang, H.; Gao, J.; Xu, C.; Jiang, Y.; Liu, M.; Qin, H.; Ye, Y.; Zhang, L.; Luo, W.; Chen, B.; et al. Light-Driven Biomimetic Nanomotors for Enhanced Photothermal Therapy. Small 2023, 20, e2306208. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Wang, Q.; Ding, Y.; Kwong, C.H.T.; Liu, J.; Xie, B.; Wei, J.; Lee, S.M.Y.; Mok, G.S.P.; Wang, R. Targeted therapies of inflammatory diseases with intracellularly gelated macrophages in mice and rats. Nat. Commun. 2024, 15, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Allavena, P.; Marchesi, F.; Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 2022, 21, 799–820. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Hu, X.; Li, Q.; Yin, M.; Song, H.; Hu, J.; Wang, L.; Fan, C.; Chen, N. Unraveling Cell-Type-Specific Targeted Delivery of Membrane-Camouflaged Nanoparticles with Plasmonic Imaging. Nano Lett. 2020, 20, 5228–5235. [Google Scholar] [CrossRef]
- Tomasetti, L.; Breunig, M. Preventing Obstructions of Nanosized Drug Delivery Systems by the Extracellular Matrix. Adv. Heal. Mater. 2017, 7. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, X.; Xu, C.; Jin, D.; Ma, X. Artificial Breakthrough of Cell Membrane Barrier for Transmembrane Substance Exchange: A Review of Recent Progress. Adv. Funct. Mater. 2023, 34. [Google Scholar] [CrossRef]
- Fraire, J.C.; Guix, M.; Hortelao, A.C.; Ruiz-González, N.; Bakenecker, A.C.; Ramezani, P.; Hinnekens, C.; Sauvage, F.; De Smedt, S.C.; Braeckmans, K.; et al. Light-Triggered Mechanical Disruption of Extracellular Barriers by Swarms of Enzyme-Powered Nanomotors for Enhanced Delivery. ACS Nano 2023, 17, 7180–7193. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Chu, M.; Yin, N.; Huang, W.; Liu, W.; Zhang, Z.; Liu, J.; Shi, J. Biological chemotaxis-guided self-thermophoretic nanoplatform augments colorectal cancer therapy through autonomous mucus penetration. Sci. Adv. 2022, 8, eabn3917. [Google Scholar] [CrossRef]
- Jia, C.; Guo, Y.; Wu, F. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. Small 2021, 18, 2103868. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, X.; Liu, Z.; Cheng, L. Recent progress of chemodynamic therapy-induced combination cancer therapy. Nano Today 2020, 35. [Google Scholar] [CrossRef]
- Hu, Z.; Tan, H.; Ye, Y.; Xu, W.; Gao, J.; Liu, L.; Zhang, L.; Jiang, J.; Tian, H.; Peng, F.; et al. NIR-Actuated Ferroptosis Nanomotor for Enhanced Tumor Penetration and Therapy. Adv. Mater. 2024, 36, e2412227. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, J.; Li, G.; Wang, Z.; Li, Y.; Sun, S.; van Hest, J.C.M.; Shen, M.; Shi, X. Oxygen and Heat Dual-Driven Stomatocyte Nanomotors for Highly Efficient Inflammation-Relieved Breast Tumor Photothermal Therapy. Adv. Funct. Mater. 2025. [Google Scholar] [CrossRef]
- Cao, S.; Shao, J.; Wu, H.; Song, S.; De Martino, M.T.; Pijpers, I.A.B.; Friedrich, H.; Abdelmohsen, L.K.E.A.; Williams, D.S.; van Hest, J.C.M. Photoactivated nanomotors via aggregation induced emission for enhanced phototherapy. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Lin, X.; Chen, S.; Su, Y.; Wu, Y.; Huang, L.; Ye, Q.; Song, J. Ultrasound Activated Nanobowls with Deep Penetration for Enhancing Sonodynamic Therapy of Orthotopic Liver Cancer. Adv. Sci. 2024, 11, e2306301. [Google Scholar] [CrossRef] [PubMed]
- Beik, J.; Abed, Z.; Ghoreishi, F.S.; Hosseini-Nami, S.; Mehrzadi, S.; Shakeri-Zadeh, A.; Kamrava, S.K. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J. Control. Release 2016, 235, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2018, 48, 2053–2108. [Google Scholar] [CrossRef]
- Wan, Y.; Fu, L.; Li, C.; Lin, J.; Huang, P. Conquering the Hypoxia Limitation for Photodynamic Therapy. Adv. Mater. 2021, 33, 2103978. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, M.; Liu, Z.; Wu, C.; Pan, X.; Huang, Z.; Lu, C.; Quan, G. Photodynamic therapy for cancer: Mechanisms, photosensitizers, nanocarriers, and clinical studies. Medcomm 2024, 5, e603. [Google Scholar] [CrossRef]
- Ouyang, J.; Tang, Z.; Farokhzad, N.; Kong, N.; Kim, N.Y.; Feng, C.; Blake, S.; Xiao, Y.; Liu, C.; Xie, T.; et al. Ultrasound mediated therapy: Recent progress and challenges in nanoscience. Nano Today 2020, 35. [Google Scholar] [CrossRef]
- Fan, W.; Yung, B.C.; Chen, X. Stimuli-Responsive NO Release for On-Demand Gas-Sensitized Synergistic Cancer Therapy. Angew. Chem. Int. Ed. Engl. 2018, 57, 8383–8394. [Google Scholar] [CrossRef]
- He, Q. Precision gas therapy using intelligent nanomedicine. Biomater. Sci. 2017, 5, 2226–2230. [Google Scholar] [CrossRef] [PubMed]
- Coletta, C.; Papapetropoulos, A.; Erdelyi, K.; Olah, G.; Modis, K.; Panopoulos, P.; Asimakopoulou, A.; Gero, D.; Sharina, I.; Martin, E.; et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl. Acad. Sci. USA 2012, 109, 9161–9166. [Google Scholar] [CrossRef] [PubMed]
- Szabo, C. Gasotransmitters in cancer: From pathophysiology to experimental therapy. Nat. Rev. Drug Discov. 2015, 15, 185–203. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Li, B.; Li, C.; Xu, L.; Fan, J.; Lei, Q.; Zhang, X. Photocatalyzing CO2 to CO for Enhanced Cancer Therapy. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef]
- Hu, C.; Cun, X.; Ruan, S.; Liu, R.; Xiao, W.; Yang, X.; Yang, Y.; Yang, C.; Gao, H. Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials 2018, 168, 64–75. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, D.-W.; Li, C.-X.; Zou, M.-Z.; Yu, W.-Y.; Liu, M.-D.; Peng, S.-Y.; Zhong, Z.-L.; Zhang, X.-Z. Hydrogen gas improves photothermal therapy of tumor and restrains the relapse of distant dormant tumor. Biomaterials 2019, 223, 119472. [Google Scholar] [CrossRef]
- Li, S.; Liu, R.; Jiang, X.; Qiu, Y.; Song, X.; Huang, G.; Fu, N.; Lin, L.; Song, J.; Chen, X.; et al. Near-Infrared Light-Triggered Sulfur Dioxide Gas Therapy of Cancer. ACS Nano 2019, 13, 2103–2113. [Google Scholar] [CrossRef]
- Zhang, J.; Jing, Q.; Yuan, L.; Zhou, X.; Di, D.; Li, J.; Pei, D.; Fan, Z.; Hai, J. NIR-triggered programmable nanomotor with H2S and NO generation for cascading oncotherapy by three-pronged reinforcing ICD. Mater. Today Bio 2025, 31, 101540. [Google Scholar] [CrossRef]
- Zhang, X.; Lyu, Y.; Li, J.; Yang, X.; Lan, Z.; Chen, Z. Bimetallic Nanozymes-Integrated Parachute-Like Au2Pt@PMO@ICG Janus Nanomotor with Dual Propulsion for Enhanced Tumor Penetration and Synergistic PTT/PDT/CDT Cancer Therapy. Adv. Funct. Mater. 2024, 34. [Google Scholar] [CrossRef]
- Li, L.; Zou, J.; Dai, Y.; Fan, W.; Niu, G.; Yang, Z.; Chen, X. Burst release of encapsulated annexin A5 in tumours boosts cytotoxic T-cell responses by blocking the phagocytosis of apoptotic cells. Nat. Biomed. Eng. 2020, 4, 1102–1116. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Wu, H.; Xu, R. Advancing to the era of cancer immunotherapy. Cancer Commun. 2021, 41, 803–829. [Google Scholar] [CrossRef]
- Han, J.; Sheng, T.; Zhang, Y.; Cheng, H.; Gao, J.; Yu, J.; Gu, Z. Bioresponsive Immunotherapeutic Materials. Adv. Mater. 2023, 36, e2209778. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.; Wang, T.; Li, Z. NK cell-based tumor immunotherapy. Bioact. Mater. 2024, 31, 63–86. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sun, Q.; Ren, X. Novel strategies for cancer immunotherapy: Counter-immunoediting therapy. J. Hematol. Oncol. 2023, 16, 38. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Liang, J.; Xue, L.; Qiao, X.; Xu, H.; Xiang, H.; Chen, Y.; Ding, H. On-Demand Peroxynitrite Overproduction Reprograms Systemic Immune Function for Augmented Sono-Immunotherapy against Tumor. Adv. Funct. Mater. 2024, 34. [Google Scholar] [CrossRef]
- Tian, H.; Li, Y.; Lin, J.; Zhu, F.; Hou, Z.; Wang, P.; Liu, X. Programmed Nanoreactors Boost Immune Response through ROS Cascade Amplification along with RNS Storm. ACS Mater. Lett. 2023, 5, 2542–2555. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Y.; Pan, S.; Ma, E.; Jin, S.; Jiao, M.; Wang, W.; Li, J.; Xu, K.; Wang, H. Biocompatible Nanomotors as Active Diagnostic Imaging Agents for Enhanced Magnetic Resonance Imaging of Tumor Tissues In Vivo. Adv. Funct. Mater. 2021, 31, 2100936. [Google Scholar] [CrossRef]
- Feng, J.; Yang, S.; Shao, Y.; Sun, Y.; He, Z.; Wang, Y.; Zhai, Y.; Dong, Y. Covalent Organic Framework-Based Nanomotor for Multimodal Cancer Photo-Theranostics. Adv. Heal. Mater. 2023, 12, e2301645. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, N.; Lv, J.; Zhou, Z.; Zhao, Q.; Ma, L.; Chen, Z.; Ren, L.; Nie, L. Deep Photoacoustic/Luminescence/Magnetic Resonance Multimodal Imaging in Living Subjects Using High-Efficiency Upconversion Nanocomposites. Adv. Mater. 2016, 28, 6411–6419. [Google Scholar] [CrossRef]
Substrate | Structure and Components | Propulsion Mechanisms | Speed (μm/s) or Diffusion Coefficient (De, μm2/s) | Ref. |
---|---|---|---|---|
H2O2 | Polydimethylsiloxane (PDMS) plate with Pt-plated porous glass. | O2 bubble propulsion 2H2O2 → O2 ↑ + 2H2O | 1–2 cm/s | [86] |
Bilayer polyaniline/Pt microtubes. | ~120 μm/s | [87] | ||
Reduced nanographene oxide (n-rGO)/Pt microtubes. | ~246 µm/s | [88] | ||
Poly(ethylene glycol)-b-polystyrene (PEG-b-PS) bowl-shaped stomatocytes/PtNPs. | ~35 μm/s | [89] | ||
Cruciate flower-like zeolitic imidazolate framework-L (ZIF-L) incorporating β-lactoglobulin and catalase. | 1.27~2.65 μm2/s in 0.3–3% H2O2 at pH 7.0, 0.65–0.81 μm2/s in 0.3–3% H2O2 at pH 5.0. | [90] | ||
Janus TiO2 core-mesoporous organosilica (PMO) rods modified with natural CATs. | Asymmetric ionic concentration gradient-based self-diffusiophoresis H2O2 → 2H+ + 2e−+ O2 2H+ + 2e− + H2O2 → 2H2O | 18.71 μm/s, 4.60 μm2/s in 200 μM H2O2 | [91] | |
Asymmetric and hollow-open Au-silica tadpole-shaped MNMs (AHOASTs). | Asymmetric O2 concentration gradient-based self-diffusiophoresis 2H2O2 → O2 + 2H2O | 3.1 μm2/s in 1.5% H2O2 | [92] | |
Janus Au nanorod-Pt nanomotor (JAuNR-Pt) | H+ and O2 gradient-based self-electrophoresis H2O2 → 2H+ + 2e− + O2 2H+ + 2e− + H2O2 → 2 H2O | 10.18 μm/s, 2.38 μm2/s | [41] | |
Glucose | Cationic Au nanoclusters adsorb GOx and CAT (CAuNCs@HA) | O2 bubble propulsion Glucose + O2 →H2O2 + Gluconic acid 2H2O2 → O2 ↑ + 2H2O | 25.25 ± 0.33 μm/s | [96] |
Cisplatin (cPt) prodrug forms ZIFs and encapsulates GOx and CAT. | 2 μm/s in 10 mM glucose solution and 1.4 μm/s in 5 mM glucose solution | [97] | ||
Nanoparticles formed the by cross-linking of GOx and ferritin. | Self-diffusiophoresis Glucose + O2 →H2O2 + Gluconic acid | 3.07 μm/s in 100 mM glucose solution | [98] | |
Carbonaceous nanoflask encapsulates GOx and CAT (CNF) | Hydrophilic L-CNF motor: 0.97 μm/s. Hydrophobic B-CNF motor: 0.82 μm/s | [100] | ||
Anisotropic hollow multishell structures incorporating Au/Pt nanoparticles. | 7.31 μm/s, 4.96 μm2/s | [99] | ||
Arginine | Arginine binds to HPAM via electrostatic interactions to form composite nanoparticles. | NO bubble propulsion Arginine + ROS → NO ↑ + Citrulline | 3~13 μm/s in 20% H2O2 solution | [78] |
Heparin/folic acid binds to arginine through electrostatic interactions to form composite nanoparticles. | N/A | [110] | ||
The poly(N-vinylcaprolactam) (PVCL)-based nanogel co-loads arginine through hydrophobic/electrostatic interactions. | 4–11 μm/s in 1–5% H2O2 solution | [89] | ||
Polymerization of an arginine derivative with a diselenide crosslinker (Arg-Me). | 5.2 ± 1.0 μm/s in the tumor cell environment | [108] | ||
Glucose and arginine | Janus dendritic mesoporous silica/Au nanoparticles encapsulating arginine. | Self-diffusiophoresis Glucose + O2 → H2O2 + Gluconic acid Arginine + H2O2 → NO ↑ + Citrulline | 10.9 μm/s in 1% glucose solution | [112] |
Urea | Asymmetrically immobilizing urease on natural platelets. | Self-diffusiophoresis Urea + H2O → CO2 + 2NH3 CO2 and NH3 + H2O → CO32− + NH4+ | ~7 μm/s in 200 mM urea and De 2~3 μm2/s in simulated urine | [52] |
Janus Au nanoparticles functionalized with urease (UPJNMs). | The diffusion coefficient (De) of UPJNMs increase as their size increases (1~3 μm2/s). | [121] | ||
Chitosan-heparin electrostatic complexes functionalized with urease. | N/A | [122] | ||
Triacetin | Lipase immobilized on the surface of mesoporous silica nanoparticles (MSNPs). | Self-diffusiophoresis Acetin → Acetin acid + glycerol | De: 1.08 μm2/s in 10 mM triacetin | [124] |
H+ | Polyaniline/zinc (PANI/Zn) bilayer microtubes. | H2 bubble propulsion Zn + 2H+ → Zn2+ + H2 ↑ | 500 μm/s in 1.0 M HCl | [126] |
The spherical magnesium core is asymmetrically coated with TiO2. | H2 bubble propulsion Mg + 2H+ → Mg2+ + H2 ↑ | 120 μm/s in simulated gastric fluid (pH ~1.3) | [40] | |
Janus CaCO3-SiO2 | Self-diffusiophoresis CaCO3 + 2H+ → Ca2+ + CO2 + H2O | 3.2 μm/s (pH 4.0) | [127] | |
Hollow polystyrene loaded with CaO2 NPs | O2 bubble propulsion CaO2 + 4H+ →Ca2+ + 2H2O+ O2 ↑ | N/A | [128] |
Physical Fields | Structure and Components | Propulsion Mechanisms | Speed (μm/s) or Diffusion Coefficient (De, μm2/s) | Ref. |
---|---|---|---|---|
Light-driven | Semiconductor polymer (SP) core encapsulated within a metal-phenolic network (MPN) shell. | NIR-II 1064 nm-triggered self-thermophoresis. | 4.4 μm/s with 1.0 W/cm2 | [146] |
Polystyrene (PS) core encapsulated within a polydopamine (PDA) shell, with indocyanine green (ICG) anchored on the surface. | NIR-I 808 nm-triggered self-thermophoresis. | N/A | [147] | |
Janus double-sphere structure of mesoporous silica (MSN) and polydopamine (PDA). | NIR-I 808 nm triggered self-thermophoresis and NO bubble propulsion. | 3.9 ± 0.6 μm/s with 1.5 W/cm2 | [148] | |
Bowl stomatocytes formed by block copolymerization of EG-PDLLA and deposited Au NPs on the surface. | 660 nm-triggered self-thermophoresis. | 124.7 ± 6.6 μm/s with 1.5 W | [149] | |
Mesoporous–macroporous silica/Pt nanomotor (MMS/Pt). | NIR-triggered self-thermophoresis. | N/A | [50] | |
Magnetic-driven | Superparamagnetic Fe3O4 nanoparticles (NPs) were immobilized on the surface of Spirulina platensis. | The magnetic field drives Spirulina platensis to rotate around its long axis, converting the magnetic field energy into mechanical energy. | 78.3 μm/s, 20 Hz, Ms 8.49 emu/g | [159] |
Ultra-small iron oxide nanoparticles (IONPs) functionalized with PEG. | Directional motion driven by a magnetic field. | 100 μm/s | [34] | |
Ultrasound-driven | Gambogic acid (GA) and perfluorobromooctane (PFOB) encapsulated in a polylactic acid-glycolic acid copolymer (PLGA) matrix. | Acoustic interaction forces. | N/A | [160] |
Core–shell structure: Mesoporous silica nanoparticles (MSNs) are coated with mechanoluminescent SrAl2O4:Eu2+ (SAOE) and NIR-emitting ZnGa2O4:Cr3+ (ZGC). | Ultrasound triggered self-thermophoresis and NO gas propulsion. | The self-thermophoresis speed is 5.5–7.4 μm/s | [142] |
Motor Type | Composition | Propulsion Mechanisms | Functionality | Ref. |
---|---|---|---|---|
Bacteria biohybrid-propelled MNMs | Bifidobacterium infantis/MOF hybrids. | Anaerobic nature of Bifidobacterium infantis. | N/A | [165] |
Escherichia coli Nissle 1917@ AIEgen (INX-2). | Facultative anaerobic nature of Escherichia coli Nissle 1917. | NIR-I imaging, NIR-II imaging, photothermal imaging and photoacoustic imaging | [166] | |
Algae biohybrid-propelled MNMs | Chlamydomonas reinhardtii load DEPE-PEG-ADA liposome. | Phototaxis of Chlamydomonas reinhardtii. | Producing O2 while simultaneously enabling PDT for tumor treatment. | [167] |
Chlamydomonas reinhardtii encapsulated with pH-responsive and degradable capsule. | Autonomous motion of Chlamydomonas reinhardtii. | Active drug delivery in the gastrointestinal. | [171] |
Composition | Motor Type | Tumor Model | Combined Therapeutic Means | Diagnostics | Ref. |
---|---|---|---|---|---|
HTiPC: Janus TiO2 core- mesoporous organosilica (PMO) rods modified with natural CAT. | H2O2-dependent MNMs | CT26 cells tumor bearing BALB/c mice. | PDT | N/A | [91] |
JAuNR-Pt: Janus Au nanorod-Pt nanomotor JAuNR-Pt. | MCF7 cells tumor bearing BALB/c nude mice. | Release of cytotoxic Pt2+ ions to cause DNA damage and cell apoptosis. | NIR-II PAI | [41] | |
Au@MnO2 nanomotor: Janus Au/MnO2 NPs. | B16 tumor-bearing C57BL6 mice | GT | N/A | [79] | |
NM-si: Cationic Au nanoclusters adsorb GOx and CAT (CAuNCs@HA). | Glucose-dependent MNMs | 4T1 cells tumor bearing BALB/c mice | Starvation therapy; CT | N/A | [96] |
GC6@cPt ZIFs: Cisplatin (cPt) prodrug forms ZIF and encapsulates GOx and CAT. | 4T1 cells tumor bearing BALB/c mice | CT; PDT; Starvation therapy | N/A | [97] | |
GOx@Fn proteomotors: Nanoparticles formed by cross-linking of GOx and ferritin. | 4T1 cells tumor bearing BALB/c mice | CDT | N/A | [98] | |
a-HoMS-Au/Pt: Anisotropic hollow multishell structures incorporating Au/Pt nanoparticles. | 4T1 cells tumor bearing BALB/c mice | CT | N/A | [99] | |
HFCA/DTX/aPD1: Heparin/folic acid binds to arginine by electrostatic interaction to form composite nanoparticles. | Arginine-dependent MNMs | B16F10 cells tumor bearing C57BL/6 mice model; MKN45 cells tumor bearing BALB/c nude mice | 100 μm/s | N/A | [110] |
LA-Ce6-NGs: The poly(N-vinylcaprolactam)-based nanogel co-loads arginine through hydrophobic/electrostatic interactions. | 4T1 cells tumor bearing BALB/c mice | N/A | N/A | [109] | |
Ang-PAMSe/TLND: Polymerization of an arginine derivative (Arg-Me) and a diselenide crosslinker, modified with angiopep-2 and lonidamine. | Glioblastoma model in C57BL/6J mice | IT; CT | N/A | [108] | |
STING@nanomotor: Chitosan-heparin electrostatic complexes functionalized with urease and modified by the electrostatic adsorption of a STING agonist. | Urea-dependent MNMs | MB49 cells tumor bearing C57BL/6J mice | IT | N/A | [122] |
CaO2/DOX NSs: Hollow polystyrene loaded with CaO2 NPs and modified AS1411 and IR-1061. | H+-dependent MNMs | 4T1 cells tumor bearing BALB/c mice | CT; Ion interference therapy | NIR-II FLI | [128] |
Chromatophore nanorobot: The FOF1-ATPase motor is embedded in lipid vesicles. | T-29 cells tumor bearing BALB/c nude mice | CT | N/A | [177] | |
SP@GFP nanomotors:Semiconductor polymer core encapsulated within a metal-phenolic network shell. | Light-driven MNMs | 4T1 cells tumor bearing BALB/c mice | CT; PTT | N/A | [146] |
PS@PDA-ICG: Polystyrene core encapsulated within a polydopamine shell, with indocyanine green anchored on the surface. | A875 cells tumor bearing BALB/c mice | PTT | NIR-II FLI | [147] | |
CMPCB: Janus double-sphere structure of mesoporous silica and PDA. | Light-driven MNMs | CT26 cells tumor bearing BALB/c mice | CT | N/A | [148] |
BNPD-Ce6@Plt: Chlorin e6 (Ce6) was loaded onto boron nitride nanoparticles (BNPD), resulting in the formation of BNPD-Ce6-loaded lipid vesicles. | GL261 cells tumor bearing BALB/c nude mice | PDT | N/A | [180] | |
MMS/Pt/DOX/HF: Mesoporous–macroporous/Pt nanomotor loaded with DOX and HF. | MCF-7 cells tumor bearing BALB/c mice | CT; PTT | N/A | [50] | |
POMotors: Conjugating peroxidase-like P2W18Fe4 POMs with PDA. | S180 tumor bearing Kunming mice | PTT; CDT | N/A | [188] | |
4T1-JPGSs-IND: Janus Pt-Au nanospheres with 4T1 cell membrane. | 4T1 cells tumor bearing BALB/c mice | PTT | PAI | [191] | |
ZnO2@PDA-Fe: ZnO2 modificated with PDA and Fe2+. | 4T1 cells tumor bearing BALB/c mice | CDT; PDT | N/A | [201] | |
Ce/Au-Stomatocytes: Integrating Au NPs and CeO2-x NPs into artificial stomatocytes. | 4T1 cells tumor bearing BALB/c mice | PTT | N/A | [202] | |
Janus AIE/Au nanomotors: Combining AIE polymersomes with asymmetric Au nanoshells. | HeLa cells | PDT; PTT | N/A | [203] | |
NOSH@PEG-HCuSNPs: Hollow mesoporous CuS nanoparticles loaded with a dual gas donor. | 4T1 cells tumor bearing BALB/c mice | IT; PTT; GT | PAI | [218] | |
APIJNS: Au2Pt@PMO@ICG. | HeLa tumor-bearing BALB/c mice | CDT; PTT; PDT | N/A | [219] | |
UMSTCA3: UCNPs@mSiO2-TAPP/Catalase@Au-3-MPBA | 4T1 cells tumor bearing BALB/c mice | PDT; PTT | PAI; FLI | [145] | |
JMS NPs: Asymmetrically depositing a Au layer onto Gd-doped mesoporous silica nanoparticles. | 4T1 cells tumor bearing BALB/c mice | Enhanced MRI of tumor tissues in vivo | MRI | [227] | |
MSP: Superparamagnetic Fe3O4 nanoparticles were immobilized on the surface of Spirulina platensis. | Magnetic-driven MNMs | 4T1 cells tumor bearing BALB/c mice | PDT | FLI and PAI; MRI | [159] |
DOX@PEG-IONPs: Ultra-small iron oxide nanoparticles functionalized with PEG and DOX. | 4T1 cells tumor bearing BALB/c mice. | CT | MRI | [34] | |
The spherical Chlorella pyrenoidosa cells modified with Fe3O4 nanoparticles. | HeLa cells | CT | N/A | [157] | |
NP-G/P: Gambogic acid and perfluorobromooctane encapsulated in a polylactic acid-glycolic acid copolymer matrix. | Ultrasound-driven MNMs | 4T1 cells tumor bearing BALB/c mice | CT; IT | N/A | [160] |
APNBs: AuPt Bowl | 97H cells tumor bearing BALB/c nude mice | SDT | PAI; US imaging | [204] | |
mSZ@PDA-NO: Core–shell structure: Mesoporous silica nanoparticles (MSNs) are coated with mechanoluminescent SrAl2O4:Eu2+ and NIR-emitting ZnGa2O4:Cr3+. | Ultrasound-driven MNMs; NO bubble propulsion. | H22 tumor-bearing Kunming mice | PTT; GT | N/A | [142] |
Au NR-mSiO2/AIPH: The Janus Au nanorod-mesoporous silica shell is loaded with AIPH. | Ultrasound-driven MNMs; N2 bubble propulsion. | MCF-7 cells tumor bearing BALB/c nude mice | SDT; GT | PAI; USI | [181] |
MCDP@Bif: Bifidobacterium infantis/MOF hybrids. | Bacteria biohybrid-propelled MNMs | 4T1 cells tumor bearing BALB/c mice | CDT; | N/A | [165] |
EcN@INX-2: Escherichia coli Nissle 1917@ AIEgen (INX-2). | CT26 cells tumor bearing BALB/c mice | PTT; PDT; IT | NIR-I FLI; NIR-II FLI; PAI; Photothermal imaging | [166] | |
R- Motor: Chlamydomonas reinhardtii load DEPE-PEG-ADA liposome. | Algae biohybrid-propelled MNMs | 4T1 cells tumor bearing BALB/c mice | PDT | N/A | [167] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Gao, B.; Tian, R.; Xu, J.; Wang, T.; Yan, T.; Liu, J. Micro/Nano-Motors for Enhanced Tumor Diagnosis and Therapy. Int. J. Mol. Sci. 2025, 26, 7684. https://doi.org/10.3390/ijms26167684
Zhang Z, Gao B, Tian R, Xu J, Wang T, Yan T, Liu J. Micro/Nano-Motors for Enhanced Tumor Diagnosis and Therapy. International Journal of Molecular Sciences. 2025; 26(16):7684. https://doi.org/10.3390/ijms26167684
Chicago/Turabian StyleZhang, Zherui, Bulong Gao, Ruizhen Tian, Jiayun Xu, Tingting Wang, Tengfei Yan, and Junqiu Liu. 2025. "Micro/Nano-Motors for Enhanced Tumor Diagnosis and Therapy" International Journal of Molecular Sciences 26, no. 16: 7684. https://doi.org/10.3390/ijms26167684
APA StyleZhang, Z., Gao, B., Tian, R., Xu, J., Wang, T., Yan, T., & Liu, J. (2025). Micro/Nano-Motors for Enhanced Tumor Diagnosis and Therapy. International Journal of Molecular Sciences, 26(16), 7684. https://doi.org/10.3390/ijms26167684