Lithuanian Study on COL4A3 and COL4A4 Genetic Variants in Alport Syndrome: Clinical Characterization of 52 Individuals from 38 Families
Abstract
1. Introduction
2. Results
2.1. General Genetic Findings
2.2. Autosomal Dominant Alport Syndrome
2.3. Autosomal Recessive Alport Syndrome
2.4. Digenic Alport Syndrome
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Genetic Analysis
4.3. Study-Based Interpretation of Pathogenicity of Genetic Variants
4.4. Clinical Evaluation
4.5. Statistical Analysis
4.6. Data Availability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACMG | The American College of Medical Genetics and Genomics |
ADAS | autosomal dominant Alport syndrome |
AMP | Association for Molecular Pathology |
ARAS | autosomal recessive Alport syndrome |
AS | Alport syndrome |
CKD | chronic kidney disease |
CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration |
eGFR | estimated glomerular filtration rate |
FSGS | focal segmental glomerulosclerosis |
KB | kidney biopsy |
KF | kidney failure |
NGS | next-generation sequencing |
VUS | variant of uncertain significance |
XLAS | X-linked Alport syndrome |
References
- Kashtan, C.E.; Michael, A.F. Alport Syndrome. Kidney Int. 1996, 50, 1445–1463. [Google Scholar] [CrossRef]
- Gretz, N.; Broyer, M.; Brunner, F.P.; Brynger, H.; Donckerwolcke, R.A.; Jacobs, C.; Kramer, P.; Selwood, N.H.; Wing, A.J. Alport’s syndrome as a cause of renal failure in Europe. Pediatr. Nephrol. 1987, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Wing, A.J.; Brunner, F.P. Twenty-Three Years of Dialysis and Transplantation in Europe: Experiences of the EDTA Registry. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 1989, 14, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Kashtan, C.E. Alport Syndrome. An Inherited Disorder of Renal, Ocular, and Cochlear Basement Membranes. Medicine 1999, 78, 338–360. [Google Scholar] [CrossRef]
- Rheault, M.N.; Kashtan, C.E. Inherited Glomerular Diseases. In Pediatric Nephrology, 7th ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 777–803. ISBN 978-3-662-43595-3. [Google Scholar]
- Suh, J.H.; Miner, J.H. The Glomerular Basement Membrane as a Barrier to Albumin. Nat. Rev. Nephrol. 2013, 9, 470–477. [Google Scholar] [CrossRef]
- Kashtan, C.E.; Ding, J.; Garosi, G.; Heidet, L.; Massella, L.; Nakanishi, K.; Nozu, K.; Renieri, A.; Rheault, M.; Wang, F.; et al. Alport Syndrome: A Unified Classification of Genetic Disorders of Collagen IV A345: A Position Paper of the Alport Syndrome Classification Working Group. Kidney Int. 2018, 93, 1045–1051. [Google Scholar] [CrossRef]
- Fallerini, C.; Dosa, L.; Tita, R.; Del Prete, D.; Feriozzi, S.; Gai, G.; Clementi, M.; La Manna, A.; Miglietti, N.; Mancini, R.; et al. Unbiased next Generation Sequencing Analysis Confirms the Existence of Autosomal Dominant Alport Syndrome in a Relevant Fraction of Cases. Clin. Genet. 2014, 86, 252–257. [Google Scholar] [CrossRef]
- Mencarelli, M.A.; Heidet, L.; Storey, H.; van Geel, M.; Knebelmann, B.; Fallerini, C.; Miglietti, N.; Antonucci, M.F.; Cetta, F.; Sayer, J.A.; et al. Evidence of digenic inheritance in Alport syndrome. J. Med. Genet. 2015, 52, 163–174. [Google Scholar] [CrossRef]
- Habib, R.; Gubler, M.C.; Hinglais, N.; Noël, L.H.; Droz, D.; Levy, M.; Mahieu, P.; Foidart, J.M.; Perrin, D.; Bois, E.; et al. Alport’s Syndrome: Experience at Hôpital Necker. Kidney Int. Suppl. 1982, 11, S20–S28. [Google Scholar]
- Gubler, M.; Levy, M.; Broyer, M.; Naizot, C.; Gonzales, G.; Perrin, D.; Habib, R. Alport’s Syndrome. A Report of 58 Cases and a Review of the Literature. Am. J. Med. 1981, 70, 493–505. [Google Scholar] [CrossRef]
- Gibson, J.; Fieldhouse, R.; Chan, M.M.Y.; Sadeghi-Alavijeh, O.; Burnett, L.; Izzi, V.; Persikov, A.V.; Gale, D.P.; Storey, H.; Savige, J.; et al. Prevalence Estimates of Predicted Pathogenic COL4A3-COL4A5 Variants in a Population Sequencing Database and Their Implications for Alport Syndrome. J. Am. Soc. Nephrol. 2021, 32, 2273–2290. [Google Scholar] [CrossRef] [PubMed]
- Torra, R.; Lipska-Zietkiewicz, B.; Acke, F.; Antignac, C.; Becker, J.U.; Cornec-Le Gall, E.; van Eerde, A.M.; Feltgen, N.; Ferrari, R.; Gale, D.P.; et al. Diagnosis, management and treatment of the Alport syndrome—2024 guideline on behalf of ERKNet, ERA and ESPN. Nephrol. Dial. Transplant. 2025, 40, 1091–1106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Storey, H.; Savige, J.; Sivakumar, V.; Abbs, S.; Flinter, F.A. COL4A3/COL4A4 Mutations and Features in Individuals with Autosomal Recessive Alport Syndrome. J. Am. Soc. Nephrol. 2013, 24, 1945–1954. [Google Scholar] [CrossRef] [PubMed]
- Jais, J.P.; Knebelmann, B.; Giatras, I.; De Marchi, M.; Rizzoni, G.; Renieri, A.; Weber, M.; Gross, O.; Netzer, K.-O.; Flinter, F.; et al. X-Linked Alport Syndrome: Natural History and Genotype-Phenotype Correlations in Girls and Women Belonging to 195 Families: A “European Community Alport Syndrome Concerted Action” Study. J. Am. Soc. Nephrol. 2003, 14, 2603–2610. [Google Scholar] [CrossRef]
- Jais, J.P.; Knebelmann, B.; Giatras, I.; Marchi, M.D.; Rizzoni, G.; Renieri, A.; Weber, M.; Gross, O.; Netzer, K.-O.; Flinter, F.; et al. X-Linked Alport Syndrome: Natural History in 195 Families and Genotype- Phenotype Correlations in Males. J. Am. Soc. Nephrol. 2000, 11, 649–657. [Google Scholar] [CrossRef]
- Gross, O.; Netzer, K.-O.; Lambrecht, R.; Seibold, S.; Weber, M. Meta-Analysis of Genotype-Phenotype Correlation in X-Linked Alport Syndrome: Impact on Clinical Counselling. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2002, 17, 1218–1227. [Google Scholar] [CrossRef]
- Sabljar-Matovinoviæ, M.; Radiæ-Krišto, D.; Putarek, K.; Šèukanec-Špoljar, M.; Moroviæ-Verglas, J.; Galešiæ, K. Alport’s Syndrome in Adult Age. Lijeè Vjesn 1996, 118, 11–13. [Google Scholar]
- Savige, J.; Sheth, S.; Leys, A.; Nicholson, A.; Mack, H.G.; Colville, D. Ocular Features in Alport Syndrome: Pathogenesis and Clinical Significance. Clin. J. Am. Soc. Nephrol. 2015, 10, 703–709. [Google Scholar] [CrossRef]
- Cerkauskaite, A.; Savige, J.; Janonyte, K.; Jeremiciute, I.; Miglinas, M.; Kazenaite, E.; Laurinavicius, A.; Strupaite-Sileikiene, R.; Vainutiene, V.; Burnyte, B.; et al. Identification of 27 Novel Variants in Genes COL4A3, COL4A4, and COL4A5 in Lithuanian Families with Alport Syndrome. Front. Med. 2022, 9, 859521. [Google Scholar] [CrossRef]
- Savige, J.; Huang, M.; Croos Dabrera, M.S.; Shukla, K.; Gibson, J. Genotype-Phenotype Correlations for Pathogenic COL4A3-COL4A5 Variants in X-Linked, Autosomal Recessive, and Autosomal Dominant Alport Syndrome. Front. Med. 2022, 9, 865034. [Google Scholar] [CrossRef]
- Weber, S.; Strasser, K.; Rath, S.; Kittke, A.; Beicht, S.; Alberer, M.; Lange-Sperandio, B.; Hoyer, P.F.; Benz, M.R.; Ponsel, S.; et al. Identification of 47 Novel Mutations in Patients with Alport Syndrome and Thin Basement Membrane Nephropathy. Pediatr. Nephrol. Berl. Ger. 2016, 31, 941–955. [Google Scholar] [CrossRef] [PubMed]
- Żurowska, A.M.; Bielska, O.; Daca-Roszak, P.; Jankowski, M.; Szczepańska, M.; Roszkowska-Bjanid, D.; Kuźma-Mroczkowska, E.; Pańczyk-Tomaszewska, M.; Moczulska, A.; Drożdż, D.; et al. Mild X-Linked Alport Syndrome Due to the COL4A5 G624D Variant Originating in the Middle Ages Is Predominant in Central/East Europe and Causes Kidney Failure in Midlife. Kidney Int. 2021, 99, 1451–1458. [Google Scholar] [CrossRef]
- Kashtan, C.E.; Segal, Y.; Flinter, F.; Makanjuola, D.; Gan, J.-S.; Watnick, T. Aortic Abnormalities in Males with Alport Syndrome. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2010, 25, 3554–3560. [Google Scholar] [CrossRef]
- Savige, J.; Gregory, M.; Gross, O.; Kashtan, C.; Ding, J.; Flinter, F. Expert Guidelines for the Management of Alport Syndrome and Thin Basement Membrane Nephropathy. J. Am. Soc. Nephrol. 2013, 24, 364–375. [Google Scholar] [CrossRef]
- Kashtan, C. Alport Syndrome: Facts and Opinions. F1000Research 2017, 6, 50. [Google Scholar] [CrossRef]
- Temme, J.; Peters, F.; Lange, K.; Pirson, Y.; Heidet, L.; Torra, R.; Grunfeld, J.-P.; Weber, M.; Licht, C.; Müller, G.-A.; et al. Incidence of Renal Failure and Nephroprotection by RAAS Inhibition in Heterozygous Carriers of X-Chromosomal and Autosomal Recessive Alport Mutations. Kidney Int. 2012, 81, 779–783. [Google Scholar] [CrossRef]
- Groopman, E.E.; Marasa, M.; Cameron-Christie, S.; Petrovski, S.; Aggarwal, V.S.; Milo-Rasouly, H.; Li, Y.; Zhang, J.; Nestor, J.; Krithivasan, P.; et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N. Engl. J. Med. 2019, 380, 142–151. [Google Scholar] [CrossRef]
- Pierides, A.; Voskarides, K.; Athanasiou, I.; Ioannou, K.; Damianou, L.; Arsali, M.; Zavros, M.; Pierides, M.; Vargemezis, V.; Patsias, C.; et al. Clinico-Pathological Correlations in 127 Patients in 11 Large Pedigrees, Segregating One of Three Heterozygous Mutations in the COL4A3/COL4A4 Genes Associated with Familial Haematuria and Significant Late Progression to Proteinuria and Chronic Kidney Disease from Focal Segmental Glomerulosclerosis. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2009, 24, 2721–2729. [Google Scholar] [CrossRef]
- Voskarides, K.; Damianou, L.; Neocleous, V.; Zouvani, I.; Christodoulidou, S.; Hadjiconstantinou, V.; Ioannou, K.; Athanasiou, Y.; Patsias, C.; Alexopoulos, E.; et al. COL4A3/COL4A4 Mutations Producing Focal Segmental Glomerulosclerosis and Renal Failure in Thin Basement Membrane Nephropathy. J. Am. Soc. Nephrol. 2007, 18, 3004–3016. [Google Scholar] [CrossRef]
- Torra, R.; Furlano, M. New Therapeutic Options for Alport Syndrome. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2019, 34, 1272–1279. [Google Scholar] [CrossRef]
- Nozu, K.; Nakanishi, K.; Abe, Y.; Udagawa, T.; Okada, S.; Okamoto, T.; Kaito, H.; Kanemoto, K.; Kobayashi, A.; Tanaka, E.; et al. A Review of Clinical Characteristics and Genetic Backgrounds in Alport Syndrome. Clin. Exp. Nephrol. 2019, 23, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Furlano, M.; Martínez, V.; Pybus, M.; Arce, Y.; Crespí, J.; Venegas, M.D.P.; Bullich, G.; Domingo, A.; Ayasreh, N.; Benito, S.; et al. Clinical and Genetic Features of Autosomal Dominant Alport Syndrome: A Cohort Study. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2021, 78, 560–570.e1. [Google Scholar] [CrossRef] [PubMed]
- Matthaiou, A.; Poulli, T.; Deltas, C. Prevalence of Clinical, Pathological and Molecular Features of Glomerular Basement Membrane Nephropathy Caused by COL4A3 or COL4A4 Mutations: A Systematic Review. Clin. Kidney J. 2020, 13, 1025–1036. [Google Scholar] [CrossRef]
- Zhang, Y.; Böckhaus, J.; Wang, F.; Wang, S.; Rubel, D.; Gross, O.; Ding, J. Genotype-Phenotype Correlations and Nephroprotective Effects of RAAS Inhibition in Patients with Autosomal Recessive Alport Syndrome. Pediatr. Nephrol. Berl. Ger. 2021, 36, 2719–2730. [Google Scholar] [CrossRef]
- Oka, M.; Nozu, K.; Kaito, H.; Fu, X.J.; Nakanishi, K.; Hashimura, Y.; Morisada, N.; Yan, K.; Matsuo, M.; Yoshikawa, N.; et al. Natural History of Genetically Proven Autosomal Recessive Alport Syndrome. Pediatr. Nephrol. Berl. Ger. 2014, 29, 1535–1544. [Google Scholar] [CrossRef]
- Savige, J.; Rana, K.; Tonna, S.; Buzza, M.; Dagher, H.; Wang, Y.Y. Thin Basement Membrane Nephropathy. Kidney Int. 2003, 64, 1169–1178. [Google Scholar] [CrossRef]
- Mochizuki, T.; Lemmink, H.H.; Mariyama, M.; Antignac, C.; Gubler, M.C.; Pirson, Y.; Verellen-Dumoulin, C.; Chan, B.; Schröder, C.H.; Smeets, H.J. Identification of Mutations in the Alpha 3(IV) and Alpha 4(IV) Collagen Genes in Autosomal Recessive Alport Syndrome. Nat. Genet. 1994, 8, 77–81. [Google Scholar] [CrossRef]
GV in COL4A3 | Type (GV Identification Number) | M/F with GV | No. of Diff. Fam. | ACMG Criteria | Our Study Interpretation |
---|---|---|---|---|---|
c.520G>A (p.Gly174Arg) b | Gly subs. ▲ (19) | 1M/1F | 1 | LP (PM1, PM2, PM5, PP3) | LP |
c.898G>A (p.Gly300Arg) a | Gly subs. ▲ (22) | 2M/2F | 2 | LP (PM1, PM2, PP3, PP5) | VUS |
c.4702C>T (p.Pro1568Ser) b | Non-Gly subs. (23) | 2F * | 1 | VUS (PM2, PP3) | P * |
c.3247G>C (p.Gly1083Arg) b | Gly subs. ▲ (24) | 2F * | 1 | LP (PM1, PM2, PM5, PP3) | P * |
c.3499G>A (p.Gly1167Arg) a | Gly subs. ▲ (29) | 2F | 1 | P (PM1, PM1, PM2, PM5, PP3, PP5) | LP |
c.2711G>T (p.Gly904Val) b | Gly subs. ▲ (31) | 1M | 1 | LP (PM1, PM2, PM5, PP3) | LB |
c.4717G>A (p.Gly1573Ser) b | Gly subs. (35) | 1M/1F | 1 | LP VUS (PM2, PP3) | LB |
c.416G>A (p.Gly139Glu) b | Gly subs. ▲ (37) | 1F | 1 | LP (PM1, PM2, PM5, PP3) | LP |
c.1021C>T (p.Arg341Cys) b | Non-Gly subs. ▲ (38) | 1M * | 1 | VUS (PM1, PM2) | LP * |
c.593G>T (p.Gly198Val) b | Gly subs. ▲ (39) | 1M | 1 | LP (PM1, PM2, PP3) | LP |
c.2188G>C (p.Gly730Arg) b | Gly subs. ▲ (43) | 1F | 1 | LP (PM1, PM2, PP3) | LB |
c.4421T>C (p.Leu1474Pro) a | Non-Gly subs. (44) | 2M | 1 | LB (BS1, BS2, BP6, PP5, PP3) | Hypomorphic |
GV in COL4A4 | Type (GV Identification Number) | M/F with GV | No. of Diff. Fam. | ACMG Criteria | Our Study Interpretation |
---|---|---|---|---|---|
c.657+2dup b | Splice site (5) | 1F | 1 | LP (PVS1, PM2, PP5) | LB |
c.4151C>T (p.Ala1384Val) a | Non-Gly subs. ▲ (7) | 2F * | 2 | VUS (PM1, PM2, BP4) | LP * |
c.594+1G>A b | Splice site (9) | 3M */3F | 2 | LP (PVS1, PM2, PP5) | LP * |
c.1579G>T (p.Gly527Cys) a | Gly subs. ▲ (10) | 2M | 1 | P (PM1, PM2, PM5, PP3) | LP |
c.1987G>C (p.Gly663Arg) b | Gly subs. ▲ (16) | 2M | 1 | LP (PM1, PM2, PP3) | LB |
c.-101-4A>G a | Splice site (20) | 1F | 1 | VUS (PM2, PP3) | LB |
c.1389del (p.Asn464Thrfs*7) a | Frame shift (25) | 3M/1F | 2 | P (PVS1, PM1, PM2, PP5) | LP |
c.4910G>A (p.Arg1637Gln) b | Non-Gly subs. (27) | 1F * | 1 | VUS (PM2, BP4) | LP * |
c.1820C>T (p.Ala607Val) b | Non-Gly subs. ▲ (28) | 2F | 2 | VUS (PM1, PM2) | LP |
c.2756A>G (p.Glu919Gly) b | Non-Gly subs. ▲ (32) | 1M/1F | 1 | VUS (PM1, PM2, BP4) | LB |
c.4315G>A (p.Gly1439Ser) b | Gly subs. ▲ (36) | 2M/1F | 1 | LP (PM1, PM2, PM5) | LB |
c.3044G>A (p.Gly1015Glu) b | Gly subs. ▲ (40) | 3M | 1 | LP (PM1, PM2, PP3) | LB |
c.3451G>A a (p.Gly1151Arg) | Gly subs. ▲ (42) | 1F | 1 | LP (PM1, PM2, PP3) | LP |
c.5045G>A a (p.Arg1682Gln) | Non-Gly subs. (15) | 2F | 2 | VUS (PM2, PP3) | LP |
c.2347G>A b (p.Gly783Arg) | Gly subs. ▲ (41) | 1F/2M | 1 | LP (PM1, PM2, PP3) | LP |
c.2996G>A a (p.(Gly999Glu) | Gly subs. ▲ (11) | 1F | 1 | B (PM1, BP4, BP6, BS1, BS2) | LB |
Demographic and Clinical Features | Total No. of Ind. | COL4A3het | COL4A4het | p-Value |
---|---|---|---|---|
Number of subjects, %, | 48 (100.0) | 16 (33.3) | 32 (66.7) | 0.06 |
Females, %, | 24 (50.0) | 8 (50.0) | 16 (50.0) | 1.00 |
Age at genetic diagnosis | 33.2 ± 19.8 | 33.3 ± 18.9 | 33.2 ± 21.0 | 0.98 |
Probands, % | 26 (54.2) | 10 (62.5) | 16 (50.0) | 0.41 |
Dgn. of AS by CF & KB, % | 18 (37.5) | 7 (43.8) | 11 (34.4) | 0.53 |
Dgn. of AS by CF only, % | 6 (12.5) | 2 (12.5) | 4 (12.5) | 1.00 |
Dgn. of AS by FS, % | 22 (45.8) | 6 (37.5) | 16 (50.0) | 0.41 |
Hematuria, % | 48 (100.0) | 16 (100.0) | 32 (100.0) | 0.06 |
Age at dgn. of hematuria | 27.0 ± 18.3 | 23.4 ± 16.3 | 28.8 ± 19.2 | 0.34 |
Proteinuria, % | 25 (52.1) | 10 (62.5) | 15 (46.9) | 0.31 |
Age at dgn. of Pro, % | 23.0 ± 17.3 | 25.1 ± 14.2 | 37.9 ± 17.8 | 0.70 |
Nephrotic range Pro, % | 1 (2.1) | 0 (0.0) | 1 (3.1) | 0.24 |
CKD I, % | 35 (72.9) | 11 (68.8) | 24 (75.0) | 0.44 |
CKD II, % | 7 (14.6) | 4 (25.0) | 3 (9.4) | |
CKD III *, % | 3 (6.3) | 0 (0.0) | 3 (9.4) | |
CKD IV, % | 1 (2.1) | 0 (0.0) | 1 (3.1) | |
CKD V (KF), % | 2 (4.2) | 1 (6.3) | 1 (3.1) | |
Mean age at KF | 49.5 ± 7.8 | 44.0 ± 0 | 55.0 ± 0 | 1.00 |
Arterial hypertension, % | 18 (37.5) | 6 (37.5) | 12 (37.5) | 1.00 |
RAAS inhibition, % | 19 (40.4) | 8 (50.0) | 11 (35.5) | 0.34 |
Kidney biopsy, % | 21 (43.8) | 9 (56.3) | 12 (37.5) | 0.22 |
Age at kidney biopsy | 43.0 ± 15.1 | 38.0 ± 11.6 | 46.7 ± 16.9 | 0.12 |
Hearing abnormalities, % | 8 (16.7) | 4 (9.1) | 4 (13.8) | 0.41 |
Ocular lesions, % | 8 (16.7) | 1 (7.7) | 7 (25.9) | 0.24 |
Features | Total (%) | Missense Gly (%) | Non-Gly (%) | Frameshift (%) | Splice Site (%) |
---|---|---|---|---|---|
Hematuria | 48 (100) | 27 (100.0) | 10 (100.0) | 4 (100.0) | 7 (100.0) |
Pro | 25 (52.1) | 11 (40.0) | 7 (70.0) | 2 (50.0) | 5 (71.4) |
Nephrotic range Pro | 1 (2.1) | 0 (0.0) | 1 (10.0) | 0 (0.0) | 0 (0.0) |
CKD I | 35 (72.9) | 20 (74.1) | 6 (60.0) | 4 (100.0) | 5 (71.4) |
CKD II | 7 (14.6) | 5 (18.5) | 2 (20.0) | 0 (0.0) | 0 (0.0) |
CKD III * | 3 (6.3) | 2 (7.4) | 1 (10.0) | 0 (0.0) | 0 (0.0) |
CKD IV | 1 (2.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (14.3) |
CKD V | 2 (4.2) | 0 (0.0) | 1 (10.0) | 0 (0.0) | 1 (14.3) |
KB | 21 (43.8) | 7 (25.9) | 8 (80.0) | 2 (50.0) | 4 (57.1) |
TBM | 18 (37.5) | 7 (25.9) | 7 (70.0) | 2 (50.0) | 3 (42.9) |
TcGBM | 6 (12.5) | 2 (7.4) | 3 (30.0) | 0 (0.0) | 1 (14.3) |
FSGS | 8 (16.7) | 3 (11.1) | 3 (30.0) | 0 (0.0) | 2 (28.6) |
Hearing a. | 8 (16.7) | 4 (14.8) | 2 (20.0) | 0 (0.0) | 2 (28.6) |
Ocular a. | 8 (16.7) | 5 (18.5) | 0 (0.0) | 0 (0.0) | 3 (42.9) |
Total | 48 (100.0) | 27 (56.3) | 10 (20.8) | 4 (8.3) | 7 (14.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerkauskaite-Kerpauskiene, A.; Navickaite, M.; Savige, J.; Mazur, G.; Brazdziunaite, D.; Azukaitis, K.; Slazaite, G.; Laurinavicius, A.; Miglinas, M.; Vainutiene, V.; et al. Lithuanian Study on COL4A3 and COL4A4 Genetic Variants in Alport Syndrome: Clinical Characterization of 52 Individuals from 38 Families. Int. J. Mol. Sci. 2025, 26, 7639. https://doi.org/10.3390/ijms26157639
Cerkauskaite-Kerpauskiene A, Navickaite M, Savige J, Mazur G, Brazdziunaite D, Azukaitis K, Slazaite G, Laurinavicius A, Miglinas M, Vainutiene V, et al. Lithuanian Study on COL4A3 and COL4A4 Genetic Variants in Alport Syndrome: Clinical Characterization of 52 Individuals from 38 Families. International Journal of Molecular Sciences. 2025; 26(15):7639. https://doi.org/10.3390/ijms26157639
Chicago/Turabian StyleCerkauskaite-Kerpauskiene, Agne, Milda Navickaite, Judy Savige, Gabija Mazur, Deimante Brazdziunaite, Karolis Azukaitis, Gerda Slazaite, Arvydas Laurinavicius, Marius Miglinas, Vija Vainutiene, and et al. 2025. "Lithuanian Study on COL4A3 and COL4A4 Genetic Variants in Alport Syndrome: Clinical Characterization of 52 Individuals from 38 Families" International Journal of Molecular Sciences 26, no. 15: 7639. https://doi.org/10.3390/ijms26157639
APA StyleCerkauskaite-Kerpauskiene, A., Navickaite, M., Savige, J., Mazur, G., Brazdziunaite, D., Azukaitis, K., Slazaite, G., Laurinavicius, A., Miglinas, M., Vainutiene, V., Strupaite-Sileikiene, R., Misevice, A., Mickeviciene, V., & Cerkauskiene, R. (2025). Lithuanian Study on COL4A3 and COL4A4 Genetic Variants in Alport Syndrome: Clinical Characterization of 52 Individuals from 38 Families. International Journal of Molecular Sciences, 26(15), 7639. https://doi.org/10.3390/ijms26157639