Association of miRNA-17-92 Cluster with Muscle Invasion in Bladder Cancer
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. miRNAs Expression Analysis and Omnibus Dataset Analysis
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BC | Bladder cancer |
NMIBC | Non-muscle-invasive bladder cancer |
TURBT | Transurethral resection of bladder tumor |
MIBC | Muscle-invasive bladder cancer |
EAU NMIBC | European Association of Urology Non-Muscle-Invasive Bladder Cancer |
miRNAs | MicroRNAs |
References
- Qin, C.; Tian, Q.; Zhou, H.; Qin, Y.; Zhou, S.; Wu, Y.; Tianjiao, E.; Duan, S.; Li, Y.; Wang, X.; et al. Detecting Muscle Invasion of Bladder Cancer: An Application of Diffusion Kurtosis Imaging Ratio and Vesical Imaging-Reporting and Data System. J. Magn. Reson. Imaging 2024, 60, 54–64. [Google Scholar] [CrossRef]
- Bray Bsc, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- GLOBOCAN 2022: Bladder Cancer 9th Most Common Worldwide—World Bladder Cancer Patient Coalition. Available online: https://worldbladdercancer.org/news_events/globocan-2022-bladder-cancer-is-the-9th-most-commonly-diagnosed-worldwide/ (accessed on 17 July 2025).
- Lobo, N.; Hensley, P.J.; Bree, K.K.; Nogueras-Gonzalez, G.M.; Navai, N.; Dinney, C.P.; Sylvester, R.J.; Kamat, A.M. Updated European Association of Urology (EAU) Prognostic Factor Risk Groups Overestimate the Risk of Progression in Patients with Non-Muscle-Invasive Bladder Cancer Treated with Bacillus Calmette-Guérin. Eur. Urol. Oncol. 2022, 5, 84–91. [Google Scholar] [CrossRef]
- Grabe-Heyne, K.; Henne, C.; Mariappan, P.; Geiges, G.; Pöhlmann, J.; Pollock, R.F. Intermediate and High-Risk Non-Muscle-Invasive Bladder Cancer: An Overview of Epidemiology, Burden, and Unmet Needs. Front. Oncol. 2023, 13, 1170124. [Google Scholar] [CrossRef]
- Dziewit, A.; Sinha, A.C. Bladder Cancer. In Essence of Anesthesia Practice; WB Saunders: Philadelphia, PA, USA, 2024; p. 62. [Google Scholar] [CrossRef]
- Gontero, P.; Sylvester, R.; Pisano, F.; Joniau, S.; Vander Eeckt, K.; Serretta, V.; Larré, S.; Di Stasi, S.; Van Rhijn, B.; Witjes, A.J.; et al. Prognostic Factors and Risk Groups in T1G3 Non–Muscle-Invasive Bladder Cancer Patients Initially Treated with Bacillus Calmette-Guérin: Results of a Retrospective Multicenter Study of 2451 Patients. Eur. Urol. 2015, 67, 74–82. [Google Scholar] [CrossRef]
- Sylvester, R.J.; Van Der Meijden, A.P.; Oosterlinck, W.; Witjes, J.A.; Bouffioux, C.; Denis, L.; Newling, D.W.W.; Kurth, K. Predicting Recurrence and Progression in Individual Patients with Stage Ta T1 Bladder Cancer Using EORTC Risk Tables: A Combined Analysis of 2596 Patients from Seven EORTC Trials. Eur. Urol. 2006, 49, 466–477. [Google Scholar] [CrossRef]
- Fernandez-Gomez, J.; Madero, R.; Solsona, E.; Unda, M.; Martinez-Piñeiro, L.; Gonzalez, M.; Portillo, J.; Ojea, A.; Pertusa, C.; Rodriguez-Molina, J.; et al. Predicting Nonmuscle Invasive Bladder Cancer Recurrence and Progression in Patients Treated with Bacillus Calmette-Guerin: The CUETO Scoring Model. J. Urol. 2009, 182, 2195–2203. [Google Scholar] [CrossRef]
- Babjuk, M.; Burger, M.; Capoun, O.; Cohen, D.; Compérat, E.M.; Dominguez Escrig, J.L.; Gontero, P.; Liedberg, F.; Masson-Lecomte, A.; Mostafid, A.H.; et al. European Association of Urology Guidelines on Non–Muscle-Invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ). Eur. Urol. 2022, 81, 75–94. [Google Scholar] [CrossRef]
- Burger, M.; Catto, J.W.F.; Dalbagni, G.; Grossman, H.B.; Herr, H.; Karakiewicz, P.; Kassouf, W.; Kiemeney, L.A.; La Vecchia, C.; Shariat, S.; et al. Epidemiology and Risk Factors of Urothelial Bladder Cancer. Eur. Urol. 2013, 63, 234–241. [Google Scholar] [CrossRef]
- Ramirez, D.; Gupta, A.; Canter, D.; Harrow, B.; Dobbs, R.W.; Kucherov, V.; Mueller, E.; Streeper, N.; Uhlman, M.A.; Svatek, R.S.; et al. Microscopic Haematuria at Time of Diagnosis Is Associated with Lower Disease Stage in Patients with Newly Diagnosed Bladder Cancer. BJU Int. 2016, 117, 783–786. [Google Scholar] [CrossRef]
- Gilligan, T.D.; Steele, G.S.; Zietman, A.L.; Kantoff, P.W. Superficial Bladder Carcinoma. In Holland-Frei Cancer Medicine, 6th ed.; Kufe, D.W., Pollock, R.E., Weichselbaum, R.R., Eds.; BC Decker: Hamilton, ON, USA, 2003. Available online: https://www.ncbi.nlm.nih.gov/books/NBK12969/ (accessed on 17 July 2025).
- Xie, Y.; Ma, X.; Chen, L.; Li, H.; Gu, L.; Gao, Y.; Zhang, Y.; Li, X.; Fan, Y.; Chen, J.; et al. MicroRNAs with Prognostic Significance in Bladder Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2017, 7, 5619. [Google Scholar] [CrossRef]
- Peng, Y.; Croce, C.M. The Role of MicroRNAs in Human Cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef]
- Braicu, C.; Buiga, R.; Cojocneanu, R.; Buse, M.; Raduly, L.; Pop, L.A.; Chira, S.; Budisan, L.; Jurj, A.; Ciocan, C.; et al. Connecting the Dots between Different Networks: MiRNAs Associated with Bladder Cancer Risk and Progression. J. Exp. Clin. Cancer Res. 2019, 38, 433. [Google Scholar] [CrossRef]
- Hui, A.; How, C.; Ito, E.; Liu, F.F. Micro-RNAs as Diagnostic or Prognostic Markers in Human Epithelial Malignancies. BMC Cancer 2011, 11, 500. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Yerukala Sathipati, S.; Tsai, M.J.; Shukla, S.K.; Ho, S.Y.; Liu, Y.; Behesthi, A. MicroRNA Signature for Estimating the Survival Time in Patients with Bladder Urothelial Carcinoma. Sci. Rep. 2022, 12, 4141. [Google Scholar] [CrossRef]
- Hecker, N.; Stephan, C.; Mollenkopf, H.J.; Jung, K.; Preissner, R.; Meyer, H.A. A New Algorithm for Integrated Analysis of MiRNA-MRNA Interactions Based on Individual Classification Reveals Insights into Bladder Cancer. PLoS ONE 2013, 8, e64543. [Google Scholar] [CrossRef]
- Dobruch, J.; Oszczudłowski, M. Bladder Cancer: Current Challenges and Future Directions. Medicina 2021, 57, 749. [Google Scholar] [CrossRef]
- Homami, A.; Ghazi, F. MicroRNAs as Biomarkers Associated with Bladder Cancer. Med. J. Islam. Repub. Iran. 2016, 30, 475. [Google Scholar]
- Taheri, M.; Shirvani-Farsani, Z.; Ghafouri-Fard, S.; Omrani, M.D. Expression Profile of MicroRNAs in Bladder Cancer and Their Application as Biomarkers. Biomed. Pharmacother. 2020, 131, 110703. [Google Scholar] [CrossRef]
- Avgeris, M.; Mavridis, K.; Tokas, T.; Stravodimos, K.; Fragoulis, E.G.; Scorilas, A. Uncovering the Clinical Utility of MiR-143, MiR-145 and MiR-224 for Predicting the Survival of Bladder Cancer Patients Following Treatment. Carcinogenesis 2015, 36, 528–537. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Mao, S.; Liu, M.; Zhang, W.; Zhang, Z.; Guo, Y.; Huang, B.; Yan, Y.; Huang, Y.; et al. MiR-1-3p Contributes to Cell Proliferation and Invasion by Targeting Glutaminase in Bladder Cancer Cells. Cell. Physiol. Biochem. 2018, 51, 513–527. [Google Scholar] [CrossRef]
- Zaravinos, A.; Radojicic, J.; Lambrou, G.I.; Volanis, D.; Delakas, D.; Stathopoulos, E.N.; Spandidos, D.A. Expression of MiRNAs Involved in Angiogenesis, Tumor Cell Proliferation, Tumor Suppressor Inhibition, Epithelial-Mesenchymal Transition and Activation of Metastasis in Bladder Cancer. J. Urol. 2012, 188, 615–623. [Google Scholar] [CrossRef]
- Nagata, M.; Muto, S.; Horie, S. Molecular Biomarkers in Bladder Cancer: Novel Potential Indicators of Prognosis and Treatment Outcomes. Dis. Markers 2016, 2016, 8205836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, W.; Gupta, A.; Krawczyk, J.; Gupta, S. The MiR-17-92 Cluster: Yin and Yang in Human Cancers. Cancer Treat. Res. Commun. 2022, 33, 100647. [Google Scholar] [CrossRef]
- Wang, J.; Peng, X.; Li, R.; Liu, K.; Zhang, C.; Chen, X.; Huang, G.; Zhao, L.; Chen, Z.; Lai, Y. Evaluation of Serum MiR-17-92 Cluster as Noninvasive Biomarkers for Bladder Cancer Diagnosis. Front. Oncol. 2021, 11, 795837. [Google Scholar] [CrossRef]
- Fang, L.L.; Wang, X.H.; Sun, B.F.; Zhang, X.D.; Zhu, X.H.; Yu, Z.J.; Luo, H. Expression, Regulation and Mechanism of Action of the MiR-17-92 Cluster in Tumor Cells (Review). Int. J. Mol. Med. 2017, 40, 1624–1630. [Google Scholar] [CrossRef]
- Mogilyansky, E.; Rigoutsos, I. The MiR-17/92 Cluster: A Comprehensive Update on Its Genomics, Genetics, Functions and Increasingly Important and Numerous Roles in Health and Disease. Cell Death Differ. 2013, 20, 1603–1614. [Google Scholar] [CrossRef]
- Kurozumi, A.; Goto, Y.; Okato, A.; Ichikawa, T.; Seki, N. Aberrantly Expressed MicroRNAs in Bladder Cancer and Renal Cell Carcinoma. J. Hum. Genet. 2016, 62, 49–56. [Google Scholar] [CrossRef]
- Song, J.; Liu, Y.; Wang, T.; Li, B.; Zhang, S. MiR-17-5p Promotes Cellular Proliferation and Invasiveness by Targeting RUNX3 in Gastric Cancer. Biomed. Pharmacother. 2020, 128, 110246. [Google Scholar] [CrossRef]
- Selven, H.; Andersen, S.; Pedersen, M.I.; Lombardi, A.P.G.; Busund, L.T.R.; Kilvær, T.K. High Expression of MiR-17-5p and MiR-20a-5p Predicts Favorable Disease-Specific Survival in Stage I-III Colon Cancer. Sci. Rep. 2022, 12, 7080. [Google Scholar] [CrossRef]
- Chen, C.; Lu, Z.; Yang, J.; Hao, W.; Qin, Y.; Wang, H.; Xie, C.; Xie, R. MiR-17-5p Promotes Cancer Cell Proliferation and Tumorigenesis in Nasopharyngeal Carcinoma by Targeting P21. Cancer Med. 2016, 5, 3489–3499. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, T.; Peng, P.; Xu, Z.; Feng, F.; Cui, Y.; Ma, J.; Wu, J. Urinary Exosomal MiR-17-5p Accelerates Bladder Cancer Invasion by Repressing Its Target Gene ARID4B and Regulating the Immune Microenvironment. Clin. Genitourin. Cancer 2024, 22, 569–579.e1. [Google Scholar] [CrossRef]
- Stoen, M.J.; Andersen, S.; Rakaee, M.; Pedersen, M.I.; Ingebriktsen, L.M.; Bremnes, R.M.; Donnem, T.; Lombardi, A.P.G.; Kilvaer, T.K.; Busund, L.T.; et al. High Expression of MiR-17-5p in Tumor Epithelium Is a Predictor for Poor Prognosis for Prostate Cancer Patients. Sci. Rep. 2021, 11, 13864. [Google Scholar] [CrossRef]
- Huang, Q.; Shen, Y.J.; Hsueh, C.Y.; Guo, Y.; Zhang, Y.F.; Li, J.Y.; Zhou, L. MiR-17-5p Drives G2/M-Phase Accumulation by Directly Targeting CCNG2 and Is Related to Recurrence of Head and Neck Squamous Cell Carcinoma. BMC Cancer 2021, 21, 1074. [Google Scholar] [CrossRef]
- Kolenda, T.; Guglas, K.; Kopczyńska, M.; Sobocińska, J.; Teresiak, A.; Bliźniak, R.; Lamperska, K. Good or Not Good: Role of MiR-18a in Cancer Biology. Rep. Pract. Oncol. Radiother. 2020, 25, 808. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, T.; Cheng, C.; Wang, J.; Wang, C.; Huang, H.; Li, Y. LncRNA GAS5 Regulates the Wnt/β-Catenin Pathway through the MiR-18a-5p/AXIN2/GSK3β Axis to Inhibit the Proliferation and Migration of Bladder Cancer Cells. Carcinogenesis 2022, 43, 1176–1189. [Google Scholar] [CrossRef]
- Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. StarBase v2.0: Decoding MiRNA-CeRNA, MiRNA-NcRNA and Protein–RNA Interaction Networks from Large-Scale CLIP-Seq Data. Nucleic Acids Res. 2014, 42, D92–D97. [Google Scholar] [CrossRef] [PubMed]
- Wa, Q.; Li, L.; Lin, H.; Peng, X.; Ren, D.; Huang, Y.; He, P.; Huang, S. Downregulation of MiR-19a-3p Promotes Invasion, Migration and Bone Metastasis via Activating TGF-β Signaling in Prostate Cancer. Oncol. Rep. 2018, 39, 81–90. [Google Scholar] [CrossRef]
- Lee, S.; Lee, H.; Bae, H.; Choi, E.H.; Kim, S.J. Epigenetic Silencing of MiR-19a-3p by Cold Atmospheric Plasma Contributes to Proliferation Inhibition of the MCF-7 Breast Cancer Cell. Sci. Rep. 2016, 6, 30005. [Google Scholar] [CrossRef]
- Mearini, E.; Poli, G.; Cochetti, G.; Boni, A.; Egidi, M.G.; Brancorsini, S. Expression of urinary miRNAs targeting NLRs inflammasomes in bladder cancer. Onco. Targets Ther. 2017, 10, 2665–2673. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, F.; Li, T.; Zhang, B.; Li, H.; Wu, Q.; Yang, L.; Nie, Y.; Wu, K.; Shi, Y.; Fan, D. MicroRNA-19a/b Regulates Multidrug Resistance in Human Gastric Cancer Cells by Targeting PTEN. Biochem. Biophys. Res. Commun. 2013, 434, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chen, J.; Zhao, X.; Liang, C.; Wang, Y.; Sun, L.; Jiang, Z.; Zhang, Z.; Yang, R.; Chen, J.; et al. MicroRNA Expression Signatures of Bladder Cancer Revealed by Deep Sequencing. PLoS ONE 2011, 6, e18286. [Google Scholar] [CrossRef]
- Ratert, N.; Meyer, H.-A.; Jung, M.; Lioudmer, P.; Mollenkopf, H.-J.; Wagner, I.; Miller, K.; Kilic, E.; Erbersdobler, A.; Weikert, S.; et al. MiRNA Profiling Identifies Candidate MiRNAs for Bladder Cancer Diagnosis and Clinical Outcome. J. Mol. Diagn. 2013, 15, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Liu, S.; Zhang, X.; Chen, G.; Liang, H.; Yu, M.; Liao, Z.; Zhou, Y.; Zhang, C.-Y.; Wang, T.; et al. Oncogenic MiR-19a and MiR-19b Co-Regulate Tumor Suppressor MTUS1 to Promote Cell Proliferation and Migration in Lung Cancer. Protein Cell 2017, 8, 455–466. [Google Scholar] [CrossRef]
- Xu, X.-L.; Jiang, Y.-H.; Feng, J.-G.; Su, D.; Chen, P.-C.; Mao, W.-M. MicroRNA-17, MicroRNA-18a, and MicroRNA-19a Are Prognostic Indicators in Esophageal Squamous Cell Carcinoma. Ann. Thorac. Surg. 2014, 97, 1037–1045. [Google Scholar] [CrossRef]
- Torres-Bustamante, M.I.; Vazquez-Urrutia, J.R.; Solorzano-Ibarra, F.; Ortiz-Lazareno, P.C. The Role of MiRNAs to Detect Progression, Stratify, and Predict Relevant Clinical Outcomes in Bladder Cancer. Int. J. Mol. Sci. 2024, 25, 2178. [Google Scholar] [CrossRef]
miRNA | Case–Control (41 T vs. 28 PT) | Paired (24 T vs. 24 PT) | ||||||
---|---|---|---|---|---|---|---|---|
2−∆Ct (Mean ± SD) T | 2−∆Ct (Mean ± SD) PT | FR | p-Value | 2−∆Ct (Mean ± SD) T | 2−∆Ct (Mean ± SD) PT | FR | p-Value | |
miR-133a-3p | 0.015 ± 0.04 | 0.197 ± 0.22 | −13.49 | <0.001 | 0.020 ± 0.05 | 0.189 ± 0.21 | −9.53 | <0.001 |
miR-1 | 0.012 ± 0.03 | 0.113 ± 0.14 | −9.20 | <0.001 | 0.017 ± 0.04 | 0.114 ± 0.14 | −6.71 | <0.001 |
miR-100-5p | 0.091 ± 0.17 | 0.742 ± 0.45 | −8.12 | <0.001 | 0.109 ± 0.20 | 0.735 ± 0.48 | −6.72 | <0.001 |
miR-99a-5p | 0.088 ± 0.17 | 0.702 ± 0.48 | −7.95 | <0.001 | 0.103 ± 0.28 | 0.708 ± 0.51 | −6.86 | <0.001 |
miR-125b-5p | 0.743 ± 1.68 | 5.307 ± 3.01 | −7.15 | <0.001 | 0.923 ± 2.09 | 5.408 ± 3.17 | −5.86 | <0.001 |
miR-145-5p | 2.458 ± 4.58 | 16.799 ± 16.04 | −6.84 | <0.001 | 2.957 ± 5.66 | 16.722 ± 16.84 | −5.66 | <0.001 |
miR-143-3p | 1.030 ± 1.70 | 5.635 ± 4.82 | −5.47 | <0.001 | 1.030 ± 1.70 | 5.635 ± 4.82 | −4.72 | <0.001 |
miR-132-3p | 0.019 ± 0.02 | 0.063 ± 0.05 | −3.37 | <0.001 | 0.018 ± 0.02 | 0.062 ± 0.05 | −3.34 | <0.001 |
miR-150-5p | 0.353 ± 0.52 | 1.130 ± 1.53 | −3.20 | <0.001 | 0.271 ± 0.33 | 1.209 ± 1.64 | −4.46 | <0.001 |
miR-214-3p | 0.129 ± 0.23 | 0.370 ± 0.18 | −2.86 | <0.001 | 0.113 ± 0.22 | 0.369 ± 0.20 | −3.27 | <0.001 |
miR-126-3p | 1.158 ± 1.56 | 2.726 ± 1.61 | −2.35 | <0.001 | 0.991 ± 0.90 | 2.713 ± 1.65 | −2.74 | <0.001 |
let-7c-5p | 0.803 ± 0.55 | 1.889 ± 1.45 | −2.35 | <0.001 | 0.804 ± 0.56 | 1.972 ± 1.55 | −2.45 | <0.001 |
miR-195-5p | 0.164 ± 0.23 | 0.355 ± 0.34 | −2.17 | <0.001 | 0.182 ± 0.28 | 0.352 ± 0.35 | −1.93 | 0.009 |
miR-26a-5p | 1.119 ± 0.90 | 2.262 ± 1.04 | −2.02 | <0.001 | 1.267 ± 1.04 | 2.246 ± 1.02 | −1.77 | 0.002 |
let-7i-5p | 0.209 ± 0.22 | 0.419 ± 0.22 | −2.00 | <0.001 | 0.209 ± 0.20 | 0.429 ± 0.23 | −2.06 | <0.001 |
miR-200c-3p | 4.411 ± 3.83 | 2.149 ± 1.68 | 2.05 | 0.018 | 4.130 ± 3.76 | 1.973 ± 1.46 | 2.09 | 0.012 |
miR-106b-5p | 0.346 ± 0.27 | 0.162 ± 0.09 | 2.13 | 0.003 | 0.328 ± 0.28 | 0.157 ± 0.08 | 2.09 | 0.004 |
miR-20a-5p | 0.929 ± 1.05 | 0.417 ± 0.36 | 2.23 | 0.011 | 0.725 ± 0.99 | 0.397 ± 0.37 | ns | ns |
miR-106a-5p | 0.771 ± 0.88 | 0.332 ± 0.22 | 2.33 | 0.039 | 0.711 ± 0.97 | 0.318 ± 0.21 | 2.23 | 0.040 |
miR-21-5p | 12.287 ± 11.41 | 4.902 ± 4.28 | 2.51 | 0.004 | 10.189 ± 11.31 | 4.833 ± 4.40 | 2.10 | 0.004 |
miR-19b-3p | 1.313 ± 1.60 | 0.478 ± 0.39 | 2.75 | 0.006 | 0.962 ± 1.23 | 0.468 ± 0.41 | 2.06 | 0.037 |
miR-17-5p | 0.810 ± 1.08 | 0.270 ± 0.29 | 3.00 | 0.001 | 0.721 ± 1.26 | 0.266 ± 0.30 | 2.72 | 0.005 |
miR-19a-3p | 1.142 ± 1.67 | 0.370 ± 0.40 | 3.09 | 0.003 | 0.921 ± 1.48 | 0.361 ± 0.43 | 2.55 | 0.012 |
miR-18a-5p | 0.052 ± 0.07 | 0.015 ± 0.02 | 3.55 | <0.001 | 0.041 ± 0.06 | 0.015 ± 0.02 | 2.82 | 0.002 |
miR-182-5p | 0.172 ± 0.31 | 0.036 ± 0.06 | 4.79 | <0.001 | 0.196 ± 0.40 | 0.033 ± 0.05 | 5.87 | <0.001 |
miR-210-3p | 0.183 ± 0.17 | 0.034 ± 0.04 | 5.38 | <0.001 | 0.139 ± 0.12 | 0.034 ± 0.04 | 4.14 | <0.001 |
miRNA | MIBC (N = 7) 2−∆Ct (Mean ± SD) | NMIBC (N = 25) 2−∆Ct (Mean ± SD) | FR | p-Value |
---|---|---|---|---|
miR-19b-3p | 2.125 ± 1.52 | 1.043 ± 1.71 | 2.04 | 0.005 |
miR-186-5p | 0.024 ± 0.02 | 0.011 ± 0.01 | 2.16 | 0.048 |
miR-221-3p | 0.278 ± 0.38 | 0.126 ± 0.13 | 2.21 | 0.048 |
miR-19a-3p | 2.047 ± 2.16 | 0.889 ± 1.68 | 2.30 | 0.010 |
miR-18a-5p | 0.108 ± 0.09 | 0.036 ± 0.06 | 2.95 | 0.011 |
miR-195-5p | 0.291 ± 0.29 | 0.096 ± 0.10 | 3.02 | 0.030 |
miR-17-5p | 1.756 ± 2.00 | 0.522 ± 0.68 | 3.36 | 0.018 |
miRNA | L-I Risk (N = 11) 2−∆Ct (Mean ± SD) | H Risk (N = 14) 2−∆Ct (Mean ± SD) | FR | p-Value |
---|---|---|---|---|
miR-195-5p | 0.059 ± 0.07 | 0.126 ± 0.12 | 2.12 | 0.029 |
miR-7-5p | 0.004 ± 0.005 | 0.011 ± 0.013 | 2.47 | 0.038 |
miR-196a-5p | 0.003 ± 0.006 | 0.163 ± 0.02 | 4.94 | 0.015 |
miR-20b-5p | 0.0002 ± 0.0002 | 0.0015 ± 0.0020 | 7.17 | 0.011 |
Total (N = 41) | NMIBC (N = 25) | MIBC (N = 7) | ||||
---|---|---|---|---|---|---|
Sociodemographic Data and Comorbidities | ||||||
Sex (%F; %M) | 22%; 78% | 24%; 76% | 28.6%; 71.4% | |||
Mean ± SD | min–max | Mean ± SD | min-max | Mean ± SD | min-max | |
Age | 69.61 ± 10.04 | 39–85 | 68.04 ± 11.42 | 39–85 | 70.29 ± 4.71 | 64–78 |
BMI | 29.21 ± 6.65 | 20.44–55.10 | 30.54 ± 7.35 | 20.44–55.10 | 26.13 ± 3.85 | 20.76–32.79 |
available for 38 patients | ||||||
% YES | % NO | % YES | % NO | % YES | % NO | |
Smoker | 48.60% | 51.40% | 48% | 52% | 57.10% | 42.90% |
available for 37 patients | ||||||
Obesity | 31.60% | 68.40% | 40% | 60% | 14.30% | 85.70% |
available for 38 patients | ||||||
Hypertension | 42.10% | 57.90% | 44% | 56% | 28.60% | 71.40% |
available for 38 patients | ||||||
Diabetes | 7.30% | 92.70% | 4% | 96% | 0.00% | 100% |
Heart failure | 12.50% | 87.50% | 16% | 84% | 14.30% | 85.70% |
available for 40 patients | ||||||
Coronary heart disease | 2.50% | 97.50% | 0.00% | 100% | 0.00% | 100% |
available for 40 patients | ||||||
Dyslipidemia | 25% | 75% | 36% | 64% | 0.00% | 100% |
available for 40 patients | ||||||
Biochemical parameters | ||||||
mean ± SD | min–max | mean ± SD | min–max | mean ± SD | min–max | |
Hemoglobin (g/dL) | 12.71 ± 2.87 | 3.8–16.1 | 13.36 ± 2.20 | 7.9–16.1 | 10.61 ± 3.81 | 3.8–15.6 |
Glycemia (mg/dL) | 121.48 ± 31.62 | 74–208 | 113.63 ± 31.56 | 83.0–208.0 | 123.14 ± 26.07 | 74.0–146.0 |
available for 40 patients | available for 24 patients | |||||
White blood cells | 7.99 ± 2.54 | 4.05–16.78 | 8.07 ± 2.68 | 4.05–16.78 | 7.52 ± 2.23 | 4.14–9.96 |
(N × 103/µL) | ||||||
Platelets | 257.29 ± 73.99 | 82–432 | 273.92 ± 61.32 | 193.0–432.0 | 246.57 ± 101.94 | 82.0–394.0 |
(N × 103/µL) | ||||||
Lymphocytes | 1.81 ± 0.68 | 0.84–3.61 | 1.94 ± 0.76 | 0.84–3.61 | 1.66 ± 0.57 | 0.92–2.41 |
(N × 103/µL) | ||||||
Neutrophile | 5.14 ± 2.19 | 1.34–12.51 | 4.97 ± 2.27 | 1.34–12.51 | 5.15 ± 2.06 | 2.32–745.0 |
(N × 103/µL) | ||||||
Tumor Characteristics | ||||||
Recurrence | Primary 73.2% | Primary 80% | Primary 28.6% | |||
Recurrent 26.8% | Recurrent 20% | Recurrent 71.4% | ||||
Grade | G1 12.2% | G1 20% | ||||
G2 17.1% | G2 20% | G2 14.3% | ||||
G3 70.7% | G3 60% | G3 85.7% | ||||
TNM classification | Ta 36.6% | Ta 60% | ||||
T1 46.3% | T1 40% | |||||
T2 12.2% | T2 71.4% | |||||
T4 4.9% | T4 28.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavalean, M.I.; Dobre, M.; Pelisenco, I.A.; Madan, V.L.; Milanesi, E.; Hinescu, M.E. Association of miRNA-17-92 Cluster with Muscle Invasion in Bladder Cancer. Int. J. Mol. Sci. 2025, 26, 7546. https://doi.org/10.3390/ijms26157546
Pavalean MI, Dobre M, Pelisenco IA, Madan VL, Milanesi E, Hinescu ME. Association of miRNA-17-92 Cluster with Muscle Invasion in Bladder Cancer. International Journal of Molecular Sciences. 2025; 26(15):7546. https://doi.org/10.3390/ijms26157546
Chicago/Turabian StylePavalean, Mihai Ioan, Maria Dobre, Iulia Andreea Pelisenco, Victor Lucian Madan, Elena Milanesi, and Mihail Eugen Hinescu. 2025. "Association of miRNA-17-92 Cluster with Muscle Invasion in Bladder Cancer" International Journal of Molecular Sciences 26, no. 15: 7546. https://doi.org/10.3390/ijms26157546
APA StylePavalean, M. I., Dobre, M., Pelisenco, I. A., Madan, V. L., Milanesi, E., & Hinescu, M. E. (2025). Association of miRNA-17-92 Cluster with Muscle Invasion in Bladder Cancer. International Journal of Molecular Sciences, 26(15), 7546. https://doi.org/10.3390/ijms26157546