Metabolic Dysfunction-Associated Steatotic Liver Disease Is Characterized by Enhanced Endogenous Cholesterol Synthesis and Impaired Synthesis/Absorption Balance
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Laboratory Methods
4.3. Non-Cholesterol Sterols’ Determination
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.-Y.; Zheng, M.-H. Current Status and Future Trends of the Global Burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Razavi, H.; Sherman, M.; Allen, A.M.; Anstee, Q.M.; Cusi, K.; Friedman, S.L.; Lawitz, E.; Lazarus, J.V.; Schuppan, D.; et al. Addressing the High and Rising Global Burden of Metabolic Dysfunction—Associated Steatotic Liver Disease (MASLD) and Metabolic Dysfunction—Associated Steatohepatitis (MASH): From the Growing Prevalence to Payors’ Perspective. Aliment. Pharmacol. Ther. 2025, 61, 1467–1478. [Google Scholar] [CrossRef]
- Stefan, N.; Yki-Järvinen, H.; Neuschwander-Tetri, B.A. Metabolic Dysfunction-Associated Steatotic Liver Disease: Heterogeneous Pathomechanisms and Effectiveness of Metabolism-Based Treatment. Lancet Diabetes Endocrinol. 2024, 13, 134–148. [Google Scholar] [CrossRef]
- Li, Y.; Yang, P.; Ye, J.; Xu, Q.; Wu, J.; Wang, Y. Updated Mechanisms of MASLD Pathogenesis. Lipids Health Dis. 2024, 23, 117. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xu, X.; Wu, J.; Ji, L.; Huang, H.; Chen, M. Association between Neutrophil-To-High-Density Lipoprotein Cholesterol Ratio and Metabolic Dysfunction-Associated Steatotic Liver Disease and Liver Fibrosis in the US Population: A Nationally Representative Cross-Sectional Study Using NHANES Data from 2017 to 2020. BMC Gastroenterol. 2024, 24, 300. [Google Scholar] [CrossRef]
- Liang, B.; Qiu, X.; Huang, J.; Lu, Y.; Shen, H.; Ma, J.; Chen, Y. Nonlinear Associations of the Hs-CRP/HDL-C Index with Metabolic Dysfunction-Associated Steatotic Liver Disease and Advanced Liver Fibrosis in US Adults: Insights from NHANES 2017–2018. Sci. Rep. 2025, 15, 4029. [Google Scholar] [CrossRef]
- Li, B.; Liu, Y.; Ma, X.; Guo, X. The Association between Non-High-Density Lipoprotein Cholesterol to High-Density Lipoprotein Cholesterol Ratio and Hepatic Steatosis and Liver Fibrosis among US Adults Based on NHANES. Sci. Rep. 2025, 15, 6527. [Google Scholar] [CrossRef]
- Frankovic, I.; Djuricic, I.; Ninic, A.; Vekic, J.; Vorkapic, T.; Erceg, S.; Gojkovic, T.; Tomasevic, R.; Mamic, M.; Mitrovic, M.; et al. Increased Odds of Metabolic Dysfunction-Associated Steatotic Liver Disease Are Linked to Reduced N-6, but Not N-3 Polyunsaturated Fatty Acids in Plasma. Biomolecules 2024, 14, 902. [Google Scholar] [CrossRef]
- Baumer, Y.; McCurdy, S.G.; Boisvert, W.A. Formation and Cellular Impact of Cholesterol Crystals in Health and Disease. Adv. Biol. 2021, 5, e2100638. [Google Scholar] [CrossRef]
- Duan, Y.; Gong, K.; Xu, S.; Zhang, F.; Meng, X.; Han, J. Regulation of Cholesterol Homeostasis in Health and Diseases: From Mechanisms to Targeted Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 265. [Google Scholar] [CrossRef] [PubMed]
- Mashnafi, S.; Plat, J.; Mensink, R.P.; Baumgartner, S. Non-Cholesterol Sterol Concentrations as Biomarkers for Cholesterol Absorption and Synthesis in Different Metabolic Disorders: A Systematic Review. Nutrients 2019, 11, 124. [Google Scholar] [CrossRef]
- Olkkonen, V.M.; Gylling, H.; Ikonen, E. Plant Sterols, Cholesterol Precursors and Oxysterols: Minute Concentrations—Major Physiological Effects. J. Steroid Biochem. Mol. Biol. 2017, 169, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Gojkovic, T.; Vladimirov, S.; Spasojevic-Kalimanovska, V.; Zeljkovic, A.; Vekic, J.; Kalimanovska-Ostric, D.; Djuricic, I.; Sobajic, S.; Jelic-Ivanovic, Z. Can Non-Cholesterol Sterols and Lipoprotein Subclasses Distribution Predict Different Patterns of Cholesterol Metabolism and Statin Therapy Response? Clin. Chem. Lab. Med. 2016, 55, 447–457. [Google Scholar] [CrossRef]
- Katsuki, S.; Matoba, T.; Akiyama, Y.; Yoshida, H.; Kotani, K.; Fujii, H.; Harada-Shiba, M.; Ishibashi, Y.; Ishida, T.; Ishigaki, Y.; et al. Association of Serum Levels of Cholesterol Absorption and Synthesis Markers with the Presence of Cardiovascular Disease: The CACHE Study CVD Analysis. J. Atheroscler. Thromb. 2023, 30, 1766–1777. [Google Scholar] [CrossRef]
- Zeljković, A.; Milojević, A.; Vladimirov, S.; Zdravković, M.; Memon, L.; Brajković, M.; Gardijan, V.; Gojković, T.; Stefanović, A.; Miljković-Trailović, M.; et al. Alterations of Cholesterol Synthesis and Absorption in Obstructive Sleep Apnea: Influence of Obesity and Disease Severity. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2848–2857. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Sun, L.; Hao, Y.; Li, P.; Zhou, Y.; Liang, X.; Hu, J.; Wei, H. From NAFLD to MASLD: When Metabolic Comorbidity Matters. Ann. Hepatol. 2023, 29, 101281. [Google Scholar] [CrossRef] [PubMed]
- Syed-Abdul, M.M. Lipid Metabolism in Metabolic-Associated Steatotic Liver Disease (MASLD). Metabolites 2023, 14, 12. [Google Scholar] [CrossRef]
- Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, T.A.; Abdelmalek, M.F.; Suzuki, A. Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps. Hepatology 2019, 70, 1457–1469. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A Multi-Society Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Ratziu, V.; Boursier, J.; De Lédinghen, V.; Anty, R.; Costentin, C.; Bureau, C. Confirmatory Biomarker Diagnostic Studies Are Not Needed When Transitioning from NAFLD to MASLD. J. Hepatol. 2023, 80, e51–e52. [Google Scholar] [CrossRef]
- Song, S.J.; Lai, J.C.; Wong, G.L.; Wong, V.W.; Yip, T.C. Can We Use Old NAFLD Data under the New MASLD Definition? J. Hepatol. 2024, 80, e54–e56. [Google Scholar] [CrossRef]
- Abdelhameed, F.; Kite, C.; Lagojda, L.; Dallaway, A.; Chatha, K.K.; Chaggar, S.S.; Dalamaga, M.; Kassi, E.; Kyrou, I.; Randeva, H.S. Non-Invasive Scores and Serum Biomarkers for Fatty Liver in the Era of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A Comprehensive Review from NAFLD to MAFLD and MASLD. Curr. Obes. Rep. 2024, 13, 510–531. [Google Scholar] [CrossRef]
- Nakano, M.; Kawaguchi, M.; Kawaguchi, T. Almost Identical Values of Various Non-Invasive Indexes for Hepatic Fibrosis and Steatosis between NAFLD and MASLD in Asia. J. Hepatol. 2024, 80, e155–e157. [Google Scholar] [CrossRef]
- Crudele, L.; Matteis, C.D.; Novielli, F.; Di Buduo, E.; Petruzzelli, S.; Giorgi, A.D.; Antonica, G.; Berardi, E.; Moschetta, A. Fatty Liver Index (FLI) Is the Best Score to Predict MASLD with 50% Lower Cut-off Value in Women than in Men. Biol. Sex Differ. 2024, 15, 43. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, P.; Hou, X.; Sun, Y.; Jiao, M.; Peng, L.; Dai, Z.; Yin, X.; Liu, R.; Li, Y.; et al. Association between Triglyceride-Glucose Related Indices and Mortality among Individuals with Non-Alcoholic Fatty Liver Disease or Metabolic Dysfunction-Associated Steatotic Liver Disease. Cardiovasc. Diabetol. 2024, 23, 232. [Google Scholar] [CrossRef]
- Horn, C.L.; Morales, A.; Savard, C.E.; Farrell, G.C.; Ioannou, G.N. Role of Cholesterol—Associated Steatohepatitis in the Development of NASH. Hepatol. Commun. 2021, 6, 12–35. [Google Scholar] [CrossRef]
- Mitsche, M.A.; McDonald, J.G.; Hobbs, H.H.; Cohen, J.C. Flux Analysis of Cholesterol Biosynthesis in Vivo Reveals Multiple Tissue and Cell-Type Specific Pathways. eLife 2015, 4, e07999. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, P.; Gill, R.K.; Saksena, S.; Alrefai, W.A. Disturbances in Cholesterol Homeostasis and Non-Alcoholic Fatty Liver Diseases. Front. Med. 2020, 7, 467. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.; Paila, Y.D.; Kombrabail, M.; Krishnamoorthy, G.; Chattopadhyay, A. Role of Cholesterol and Its Immediate Biosynthetic Precursors in Membrane Dynamics and Heterogeneity: Implications for Health and Disease. J. Phys. Chem. B 2020, 124, 6312–6320. [Google Scholar] [CrossRef]
- Zhang, X.; McDonald, J.G.; Aryal, B.; Canfrán-Duque, A.; Goldberg, E.L.; Araldi, E.; Ding, W.; Fan, Y.; Thompson, B.M.; Singh, A.K.; et al. Desmosterol Suppresses Macrophage Inflammasome Activation and Protects against Vascular Inflammation and Atherosclerosis. Proc. Natl. Acad. Sci. USA 2021, 118, e2107682118. [Google Scholar] [CrossRef] [PubMed]
- Simonen, P.; Kotronen, A.; Hallikainen, M.; Sevastianova, K.; Makkonen, J.; Hakkarainen, A.; Lundbom, N.; Miettinen, T.A.; Gylling, H.; Yki-Järvinen, H. Cholesterol Synthesis Is Increased and Absorption Decreased in Non-Alcoholic Fatty Liver Disease Independent of Obesity. J. Hepatol. 2011, 54, 153–159. [Google Scholar] [CrossRef]
- Yang, J.-W.; Ji, H.-F. Phytosterols as Bioactive Food Components against Nonalcoholic Fatty Liver Disease. Crit. Rev. Food Sci. Nutr. 2021, 63, 4675–4686. [Google Scholar] [CrossRef]
- Frasinariu, O.; Serban, R.; Trandafir, L.M.; Miron, I.; Starcea, M.; Vasiliu, I.; Alisi, A.; Temneanu, O.R. The Role of Phytosterols in Nonalcoholic Fatty Liver Disease. Nutrients 2022, 14, 2187. [Google Scholar] [CrossRef]
- Nunes, V.S.; da Silva, E.J.; Ferreira, G.D.S.; Assis, S.I.S.D.; Cazita, P.M.; Nakandakare, E.R.; Zago, V.H.D.S.; de Faria, E.C.; Quintão, E.C.R. The Plasma Distribution of Non-Cholesterol Sterol Precursors and Products of Cholesterol Synthesis and Phytosterols Depend on HDL Concentration. Front. Nutr. 2022, 9, 723555. [Google Scholar] [CrossRef]
- Li, J.; Kou, C.; Chai, Y.; Li, Y.; Liu, X.; Zhang, L.; Zhang, H. The Relationship between the Ratio of Non-High-Density Lipoprotein Cholesterol to High-Density Lipoprotein Cholesterol (NHHR) and Both MASLD and Advanced Liver Fibrosis: Evidence from NHANES 2017–2020. Front. Nutr. 2025, 11, 1508106. [Google Scholar] [CrossRef]
- Cherubini, A.; Della Torre, S.; Pelusi, S.; Valenti, L. Sexual Dimorphism of Metabolic Dysfunction-Associated Steatotic Liver Disease. Trends Mol. Med. 2024, 30, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Manjarrés, L.; Xavier, A.; González, L.; Garrido, C.; Zacconi, F.C.; Rivera, K.; Parra, L.; Phinikaridou, A.; Besa, C.; Andia, M.E. Sex Differences in the Relationship between Body Composition and MASLD Progression in a Murine Model of Metabolic Syndrome. iScience 2025, 28, 111863. [Google Scholar] [CrossRef] [PubMed]
- Mambrini, S.P.; Grillo, A.; Colosimo, S.; Zarpellon, F.; Pozzi, G.; Furlan, D.; Amodeo, G.; Bertoli, S. Diet and Physical Exercise as Key Players to Tackle MASLD through Improvement of Insulin Resistance and Metabolic Flexibility. Front. Nutr. 2024, 11, 1426551. [Google Scholar] [CrossRef]
- Giardoglou, P.; Gavra, I.; Amanatidou, A.I.; Kalafati, I.P.; Symianakis, P.; Kafyra, M.; Moulos, P.; Dedoussis, G.V. Development of a Polygenic Risk Score for Metabolic Dysfunction-Associated Steatotic Liver Disease Prediction in UK Biobank. Genes 2024, 16, 33. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.; Lui, D.T.W.; Fong, C.H.Y.; Wong, Y.; Shiu, S.W.M.; Lam, K.S.L.; Mak, L.-Y.; Yuen, M.-F.; Lee, C.-H.; Tan, K.C.-B. Serum Tsukushi Level Is Negatively Associated with Cholesterol Efflux Capacity in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Cross-Sectional Study. Sci. Rep. 2025, 15, 21883. [Google Scholar] [CrossRef]
- Li, X.; Li, M. Unlocking Cholesterol Metabolism in Metabolic-Associated Steatotic Liver Disease: Molecular Targets and Natural Product Interventions. Pharmaceuticals 2024, 17, 1073. [Google Scholar] [CrossRef] [PubMed]
- Boutari, C.; Rizos, C.V.; Liamis, G.; Skoumas, I.; Rallidis, L.; Garoufi, A.; Kolovou, G.; Sfikas, G.; Tziomalos, K.; Skalidis, E.; et al. The Effect of Lipid-Lowering Treatment on Indices of MASLD in Familial Hypercholesterolemia Patients. Clin. Nutr. 2024, 43, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Prasoppokakorn, T. Applicability of Statins in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Livers 2025, 5, 4. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.; Kim, H.J.; Lee, C.-H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.-H.; Cho, S.-H.; Sung, M.-W.; et al. Hepatic Steatosis Index: A Simple Screening Tool Reflecting Nonalcoholic Fatty Liver Disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A Simple and Accurate Predictor of Hepatic Steatosis in the General Population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Zhang, S.; Du, T.; Zhang, J.; Lu, H.; Lin, X.; Xie, J.; Yang, Y.; Yu, X. The Triglyceride and Glucose Index (TyG) Is an Effective Biomarker to Identify Nonalcoholic Fatty Liver Disease. Lipids Health Dis. 2017, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-F.; Wang, Q.-H.; Zhang, T.; Mi, S.-H.; Liu, Y.; Wang, L.-Y. Gas Chromatography Analysis of Serum Cholesterol Synthesis and Absorption Markers Used to Predict the Efficacy of Simvastatin in Patients with Coronary Heart Disease. Clin. Biochem. 2013, 46, 993–998. [Google Scholar] [CrossRef]
- Gojkovic, T.; Vladimirov, S.; Spasojevic-Kalimanovska, V.; Zeljkovic, A.; Arsenijevic, J.; Djuricic, I.; Sobajic, S.; Jelic-Ivanovic, Z. Preanalytical and Analytical Challenges in Gas Chromatographic Determination of Cholesterol Synthesis and Absorption Markers. Clin. Chim. Acta 2018, 478, 74–81. [Google Scholar] [CrossRef]
Parameter | MASLD (N = 124) | Control Group (N = 43) | p |
---|---|---|---|
Age (years) | 55.00 (43.00–64.00) | 51.00 (41.00–67.00) | 0.322 |
Gender, male (%) | 51.6 | 37.2 | 0.103 |
Smoking, yes (%) | 33.1 | 34.2 | 0.895 |
Occasional alcohol intake, no (%) | 68.4 | 64.9 | 0.218 |
Physical activity, yes (%) | 43.0 | 64.9 | 0.021 |
BMI, kg/m2 | 28.96 (26.27–31.22) | 25.14 (22.46–26.64) | <0.001 |
Waist-to-hip ratio * | 0.93 ± 0.10 | 0.83 ± 0.09 | <0.001 |
Systolic pressure (mm Hg) * | 127.7 ± 15.4 | 125.9 ± 16.9 | 0.331 |
Diastolic pressure (mm Hg) * | 79.9 ± 12.7 | 78.0 ± 10.6 | 0.351 |
Glucose (mmol/L) | 5.80 (5.20–6.90) | 5.20 (4.80–5.50) | <0.001 |
HbA1C (mmol/mol) | 37.0 (34.4–57.7) | 33.0 (30.0–35.0) | <0.001 |
CRP (mg/L) | 3.20 (1.60–5.60) | 1.00 (0.50–2.80) | <0.001 |
Albumin (g/L) * | 43.26 ± 4.56 | 44.52 ± 2.52 | 0.031 |
ALT (U//L) | 26.5 (17.0–39.0) | 23.5 (17.0–28.0) | 0.054 |
GGT (U//L) | 29.0 (19.0–44.5) | 15.0 (13.0–25.0) | <0.001 |
TC (mmol/L) | 5.20 (4.53–5.91) | 5.14 (4.50–5.85) | 0.789 |
LDL-C (mmol/L) | 3.10 (2.60–3.90) | 3.10 (2.55–3.80) | 0.832 |
HDL-C (mmol/L) * | 1.31 ± 0.35 | 1.70 ± 0.45 | <0.001 |
TG (mmol/L) | 1.50 (1.10–2.04) | 0.89 (0.71–1.39) | <0.001 |
FLI | 28.56 (1.22–61.85) | 4.92 (0.24–28.34) | 0.002 |
HSI | 39.14 (33.95–43.56) | 32.68 (29.79–34.85) | <0.001 |
TyG index * | 8.95 ± 0.66 | 8.32 ± 0.48 | <0.001 |
Parameter | MASLD (N = 124) | Control Group (N = 43) | p |
---|---|---|---|
Desmosterol (μmol/L) * | 6.83 ± 1.70 | 6.61 ± 1.80 | 0.472 |
Lathosterol (μmol/L) | 7.12 (4.63–9.55) | 5.13 (2.57–8.25) | 0.006 |
Campesterol (μmol/L) | 10.94 (7.94–14.14) | 11.16 (9.17–14.76) | 0.354 |
Stigmasterol (μmol/L) * | 5.14 ± 2.62 | 4.47 ± 2.04 | 0.133 |
β-sitosterol (μmol/L) | 16.80 (13.84–24.67) | 18.35 (14.80–22.78) | 0.770 |
Desmosterol/cholesterol (mmol/mol) * | 1.33 ± 0.31 | 1.26 ± 0.0.33 | 0.192 |
Lathosterol/cholesterol (mmol/mol) | 1.38 (0.90–1.82) | 0.91 (0.54–1.44) | 0.002 |
Campesterol/cholesterol (mmol/mol) | 2.01 (1.56–2.55) | 2.25 (1.83–2.73) | 0.119 |
Stigmasterol/cholesterol (mmol/mol) | 0.91 (0.68–1.33) | 0.77 (0.58–1.17) | 0.090 |
β-sitosterol/cholesterol (mmol/mol) | 3.49 (2.71–5.32) | 3.49 (2.79–4.49) | 0.515 |
Desmosterol/campesterol | 0.65 (0.50–0.87) | 0.57 (0.44–0.77) | 0.163 |
Desmosterol/stigmasterol | 1.36 (0.96–2.06) | 1.42 (1.15–2.39) | 0.467 |
Desmosterol/β-sitosterol | 0.39 (0.27–0.52) | 0.35 (0.26–0.44) | 0.370 |
Lathosterol/campesterol | 0.67 (0.43–1.08) | 0.39 (0.21–0.79) | 0.001 |
Lathosterol/stigmasterol | 1.39 (0.82–2.40) | 1.22 (0.54–2.22) | 0.217 |
Lathosterol/β-sitosterol | 0.38 (0.21–0.66) | 0.24 (0.12–0.46) | 0.026 |
CSS (μmol/L) * | 14.48 ± 5.21 | 12.23 ± 4.87 | 0.014 |
CAS (μmol/L) * | 35.78 ± 11.78 | 36.02 ± 12.09 | 0.907 |
CSS/CAS | 0.40 (0.29–0.56) | 0.32 (0.23–0.47) | 0.044 |
Parameter | BMI (kg/m2) | Albumin (g/L) | ALT (U/L) | GGT (U/L) | TC (mmol/L) | HDL-C (mmol/L) | LDL-C (mmol/L) | TG (mmol/L) | FLI | HSI | TyG Index |
---|---|---|---|---|---|---|---|---|---|---|---|
Desmosterol (μmol/L) | 0.222 ** | 0.176 * | 0.277 ** | 0.205 ** | 0.400 ** | 0.407 ** | 0.227 ** | 0.219 ** | 0.205 ** | 0.164 * | |
Lathosterol (μmol/L) | 0.260 ** | 0.195 * | 0.297 ** | 0.355 ** | 0.324 ** | 0.236 ** | 0.290 ** | 0.294 * | |||
Campesterol (μmol/L) | −0.188 * | 0.247 ** | −0.170 * | 0.529 ** | 0.417 ** | 0.461 ** | |||||
Desmosterol/cholesterol (mmol/mol) | 0.196 * | 0.264 ** | 0.198 * | −0.480 ** | −0.248 ** | −0.438 ** | |||||
Lathosterol/cholesterol (mmol/mol) | 0.316 ** | 0.220 ** | −0.269 ** | 0.274 ** | 0.194 * | 0.320 ** | 0.260 ** | ||||
Campesterol/cholesterol (mmol/mol) | −0.297 ** | 0.223 ** | −0.223 ** | 0.201 * | −0.175 * | −0.172 * | |||||
Stigmasterol/cholesterol (mmol/mol) | −0.202 * | −0.324 ** | −0.338 ** | ||||||||
β-sitosterol/cholesterol (mmol/mol) | −0.177 * | −0.443 ** | −0.447 ** | −0.168 * | |||||||
CSS (μmol/L) | 0.275 ** | 0.255 ** | 0.166 * | 0.360 ** | 0.407 ** | 0.339 ** | 0.243 ** | 0.301 ** | 0.300 ** | ||
CAS (μmol/L) | 0.245 * | 0.234 ** | 0.198 * | ||||||||
CSS/CAS | 0.205 * | 0.246 ** | 0.174 * | 0.203 * | 0.195 * | 0.221 ** | 0.221 ** | 0.182 ** |
Dependent variable: FLI | ||||
Parameter | B | S.E. | β | p |
CSS (μmol/L) | 1.313 | 0.520 | 0.200 | 0.013 |
Dependent variable: HSI | ||||
Parameter | B | S.E. | β | p |
CSS (μmol/L) | 0.319 | 0.159 | 0.156 | 0.047 |
Dependent variable: TyG index | ||||
Parameter | B | S.E. | β | p |
CSS (μmol/L) | 0.036 | 0.010 | 0.270 | 0.001 |
Dependent variable: FLI | |||||
Parameter | B | S.E. | β | p | Adjusted R2 |
CSS (μmol/L) | 1.336 | 0.506 | 0.233 | 0.010 | 0.464 |
Gender (m/f) | −9.845 | 5.764 | −0.174 | 0.092 | |
Waist-to-hip ratio | 86.582 | 30.230 | 0.316 | 0.006 | |
Albumin (g/L) | −1.657 | 0.807 | −0.209 | 0.044 | |
HDL-C (mmol/L) | −12.542 | 7.209 | −0.188 | 0.087 | |
CRP (mg/L) | 1.822 | 0.597 | 0.276 | 0.003 | |
HbA1C (mmol/mol) | 0.093 | 0.168 | 0.056 | 0.582 | |
Dependent variable: HSI | |||||
Parameter | B | S.E. | β | p | Adjusted R2 |
CSS (μmol/L) | 0.317 | 0.124 | 0.269 | 0.013 | 0.246 |
Gender (m/f) | 0.664 | 1.408 | 0.057 | 0.639 | |
Waist-to-hip ratio | 5.719 | 7.382 | 0.101 | 0.441 | |
Albumin (g/L) | −0.209 | 0.197 | −0.129 | 0.292 | |
HDL-C (mmol/L) | −3.669 | 1.761 | −0.267 | 0.041 | |
CRP (mg/L) | 0.259 | 0.146 | 0.191 | 0.080 | |
HbA1C (mmol/mol) | 0.056 | 0.041 | 0.162 | 0.179 | |
Dependent variable: TyG index | |||||
Parameter | B | S.E. | β | p | Adjusted R2 |
CSS (μmol/L) | 0.041 | 0.013 | 0.329 | 0.002 | 0.289 |
Gender (m/f) | 0.241 | 0.146 | 0.194 | 0.103 | |
Waist-to-hip ratio | 1.149 | 0.767 | 0.190 | 0.139 | |
Albumin (g/L) | −0.014 | 0.020 | −0.078 | 0.507 | |
HDL (mmol/L) | −0.403 | 0.183 | −0.275 | 0.031 | |
CRP (mg/L) | −0.004 | 0.015 | −0.030 | 0.775 | |
HbA1C (mmol/mol) | 0.010 | 0.004 | 0.265 | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frankovic, I.; Zeljkovic, A.; Djuricic, I.; Ninic, A.; Vekic, J.; Derikonjic, M.; Erceg, S.; Tomasevic, R.; Mamic, M.; Mitrovic, M.; et al. Metabolic Dysfunction-Associated Steatotic Liver Disease Is Characterized by Enhanced Endogenous Cholesterol Synthesis and Impaired Synthesis/Absorption Balance. Int. J. Mol. Sci. 2025, 26, 7462. https://doi.org/10.3390/ijms26157462
Frankovic I, Zeljkovic A, Djuricic I, Ninic A, Vekic J, Derikonjic M, Erceg S, Tomasevic R, Mamic M, Mitrovic M, et al. Metabolic Dysfunction-Associated Steatotic Liver Disease Is Characterized by Enhanced Endogenous Cholesterol Synthesis and Impaired Synthesis/Absorption Balance. International Journal of Molecular Sciences. 2025; 26(15):7462. https://doi.org/10.3390/ijms26157462
Chicago/Turabian StyleFrankovic, Irena, Aleksandra Zeljkovic, Ivana Djuricic, Ana Ninic, Jelena Vekic, Minja Derikonjic, Sanja Erceg, Ratko Tomasevic, Milica Mamic, Milos Mitrovic, and et al. 2025. "Metabolic Dysfunction-Associated Steatotic Liver Disease Is Characterized by Enhanced Endogenous Cholesterol Synthesis and Impaired Synthesis/Absorption Balance" International Journal of Molecular Sciences 26, no. 15: 7462. https://doi.org/10.3390/ijms26157462
APA StyleFrankovic, I., Zeljkovic, A., Djuricic, I., Ninic, A., Vekic, J., Derikonjic, M., Erceg, S., Tomasevic, R., Mamic, M., Mitrovic, M., & Gojkovic, T. (2025). Metabolic Dysfunction-Associated Steatotic Liver Disease Is Characterized by Enhanced Endogenous Cholesterol Synthesis and Impaired Synthesis/Absorption Balance. International Journal of Molecular Sciences, 26(15), 7462. https://doi.org/10.3390/ijms26157462