Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine
Abstract
1. Introduction
2. Nucleic Acid Modification in Regenerative Medicine
2.1. Gene Addition
2.2. Gene Silencing
2.3. Genome Editing with CRISPR/Cas9
3. Nucleic Acid Drug Delivery in Multi-Scale Tissue Engineering and Regenerative Medicine
3.1. Tissue-Targeted Delivery
3.2. Cell-Targeted Delivery
3.3. Efficient Intracellular Delivery
4. Vectors for Nucleic Acids
4.1. Overview of Vector Design
4.2. Advantages and Limitations of Natural Vectors
4.2.1. Viral Vectors in Regenerative Medicine
- Adenovirus
- Adeno-associated virus
- Lentivirus
4.2.2. Non-Viral Vectors
- Exosome
- Lipid-based systems
- Peptide-based gene delivery systems
- Polysaccharide derivatives
- Nucleic acid-based nanomaterials
4.3. Innovations and Optimization of Synthetic Vectors
4.3.1. Polymer Used for Nucleic Acid Delivery Systems
- Cationic polymers
- Polyamide amine dendrimers
4.3.2. Inorganic Salt-Based Nanomaterials
5. Application of in Site Delivery Systems in Gene Therapy
5.1. An Injectable Delivery System for Nucleic Acid Therapy
5.1.1. Design for Sustained and Sequential Release
5.1.2. Designs for Stimuli-Responsive Systems
- Photosensitive hydrogel
- pH-responsive hydrogels
- Enzyme-responsive hydrogels
- Temperature-sensitive hydrogel
5.1.3. Design for In Situ Self-Assemble Hydrogels
- Host–guest self-assembling hydrogels
- Peptide self-assembling hydrogels
5.2. Three-Dimensional Delivery Systems for Nucleic Acid Therapy
5.2.1. Scaffold Structure and the Preparation Method
- Non-printed scaffolds for padding
- 3D-printed porous braided scaffolds
- 3D scaffolds with bionic structures
5.2.2. Design for Nucleic Acid Release
5.3. Sheet-Like Delivery Systems for Nucleic Acid Therapy
5.3.1. Scaffold Structure and the Preparation Method
- Hydrogel 3D sheet-like scaffolds
- Polymer fiber 3D sheet-like scaffolds
- Layer-by-layer thin sheets
5.3.2. Design for Nucleic Acid Release from Sheet-Like Scaffolds
6. Clinical Translation Prospect and Challenges of Nucleic Acid Delivery Systems
- Injectable Hydrogels
- 3D Structural Scaffolds:
- Sheet-Like Scaffolds:
6.1. GMP Manufacturing Challenges
6.2. Scalability Limitations
6.3. Regulatory Pathways (NMPA/FDA/EMA Frameworks)
6.4. Commercial Viability Metrics
7. Conclusions and Future Perspectives
Funding
Conflicts of Interest
Abbreviations
PEG | Polyethylene glycol |
MSNs | Mesoporous silica nanoparticles |
α-CD | Alpha-cyclodextrin |
PAMAM | Poly(amidoamine) |
HA | Hyaluronic acid |
PBA | Phenylboronic acid |
OG | Oxidized dextran |
ADH-GCA | Adipic acid dihydrazide-grafted catechol-coupled gelatin |
ADSCs | Adipose-derived stem cells |
hUC-MSCs | Human umbilical cord-mesenchymal stem cells |
GelMA | Gelatin methacryloyl |
BMSCs | Bone marrow mesenchymal stem cells |
CSMA | Chitosan-methyl methacrylate |
CNPs | Cerium oxide nanoparticles |
SBMA | Chitosan-methyl methacrylate |
SBMA | [2-(methacryloloxy) ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide |
HEMA | 2-Hydroxyethyl methacrylate |
PEGDMA | Polyethylene glycol dimethacrylate |
LNPs | Lipid nanoparticles |
SA | Stearylamine |
Chol | Cholesterol |
MeGC | Methacrylated glycol chitosan |
DMAEMA | Dimethylaminoethyl methacrylate |
PLA | Poly(lactide) |
DM | Dimethacrylate |
DEGMA | Dimethylaminoethyl methacrylate |
PNIPAAm | Poly(N-isopropylacrylamide) |
BSA | Cationic bovine serum albumin |
PF-127 | Pluronic F127 |
PEG-PLGA-PNIPAM | Poly(ethylene glycol)-b-poly(lactic-co-glycolic acid)-b-poly(N-isopropylacrylamide) |
PLGA | Poly(lactic-co-glycolic acid) |
PEI | Polyethylenimine |
bPEI | Branched polyethylenimine |
Dex-PCL-HEMA/PNIPAAm | Dextran-poly(e-caprolactone)-2-hydroxylethylmethacrylate-poly(N-isopropylacrylamide), CBMA=3-[[2-(methacryloyloxy)ethyl] dimethylammonio] propionate |
dECM | Decellularized extracellular matrix |
EC-Exos | Endothelial cell-derived exosomes |
HB-PEGDA | Hyperbranched polyethylene glycol diacrylate |
SH-HA | Sulfhydryl-modified hyaluronic acid |
SH-HA-PEGDA | Thiolated hyaluronic acid cross-linked with poly(ethylene glycol) diacrylate |
DSPE | 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine |
TAT peptide | Transactivator of transcription peptide |
ELP | Elastin-like protein |
HYD | Hydrazide |
ALD | Aldehyde |
SNAs | Spherical nucleic acids |
hAD-MSCs | Human adipose-derived mesenchymal stem cells |
PEGS-A | PEGylated poly(glycerol sebacate) acrylate (PEGS-A) |
PELCL | Poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) |
PCL | Polycaprolactone |
PCLEEP | Poly(caprolactone-co-ethyl ethylene phosphate) |
PEI | Polyethyleneimine |
HA-GMA | Hyaluronic acid-glycidyl methacrylate |
Star-PLLs | Star-shaped poly(L-lysine) polypeptides |
CHA | Collagen-hydroxyapatite |
PPF/TCP | Polypropylene fumarate/tricalcium phosphate |
TSPCs | Tendon stem/progenitor cells |
PDA | Polydopamine |
SA | Sodium alginate |
TA | Tannic acid |
PVA | Poly(vinyl alcohol) |
HLC | Human-like collagen |
2-DMAEMA | 2-(dimethylamino) ethyl methacrylate |
2-PAA | 2-propylacrylic acid |
BMA | Butyl methacrylate (BMA) |
PTK-UR | Porous poly(thioketal-urethane) |
CMCS | Carboxymethyl chitosan |
SMSCs | Synovium mesenchymal stem cells |
G5-GBA | Generation 5 polyamidoamine |
CNCs | Cellulose nanocrystals |
References
- Ding, S. Therapeutic Reprogramming toward Regenerative Medicine. Chem. Rev. 2025, 125, 1805–1822. [Google Scholar] [CrossRef]
- Asch, A.; Kalbermatten, D.F.; Madduri, S. Clinical Safety and Efficacy of Allogeneic Adipose Stem Cells: A Systematic Review of the Clinical Trials. Int. J. Mol. Sci. 2025, 26, 6376. [Google Scholar] [CrossRef]
- Chang, D.; Yang, X.; Fan, S.; Fan, T.; Zhang, M.; Ono, M. Engineering of MSCs Sheet for the Prevention of Myocardial Ischemia and for Left Ventricle Remodeling. Stem Cell Res. Ther. 2023, 14, 102. [Google Scholar] [CrossRef] [PubMed]
- Eweje, F.; Walsh, M.L.; Ahmad, K.; Ibrahim, V.; Alrefai, A.; Chen, J.; Chaikof, E.L. Protein-Based Nanoparticles for Therapeutic Nucleic Acid Delivery. Biomaterials 2024, 305, 122464. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Fang, H.; Tian, H. mRNA Vaccines Contribute to Innate and Adaptive Immunity to Enhance Immune Response in Vivo. Biomaterials 2024, 310, 122628. [Google Scholar] [CrossRef]
- Qiaerxie, G.; Jiang, Y.; Li, G.; Yang, Z.; Long, F.; Yu, Y.; Lu, J.S.; Du, P.; Cui, Y. Design and Evaluation of mRNA Encoding Recombinant Neutralizing Antibodies for Botulinum Neurotoxin Type B Intoxication Prophylaxis. Hum. Vaccines Immunother. 2024, 20, 2358570. [Google Scholar] [CrossRef]
- Xiong, H.; Song, Z.; Wang, T.; Huang, K.; Yu, F.; Sun, W.; Liu, X.; Liu, L.; Jiang, H.; Wang, X. Photoswitchable Dynamics and RNAi Synergist with Tailored Interface and Controlled Release Reprogramming Tumor Immunosuppressive Niche. Biomaterials 2025, 312, 122712. [Google Scholar] [CrossRef]
- Chen, J.; Su, S.; Pickar-Oliver, A.; Chiarella, A.M.; Hahn, Q.; Goldfarb, D.; Cloer, E.W.; Small, G.W.; Sivashankar, S.; Ramsden, D.A.; et al. Engineered Cas9 Variants Bypass Keap1-Mediated Degradation in Human Cells and Enhance Epigenome Editing Efficiency. Nucleic Acids Res. 2024, 52, 11536–11551. [Google Scholar] [CrossRef]
- Chen, X.; Luo, X.; Yin, W.; Cui, W.; He, Y.; Tian, T.; Lin, Y. Framework Nucleic Acid Nanomaterials for Central Nervous System Therapies: Design for Barrier Penetration, Targeted Delivery, Cellular Uptake, and Endosomal Escape. ACS Nano 2025, 19, 24335–24376. [Google Scholar] [CrossRef]
- Zheng, Q.; Xing, J.; Li, X.; Tang, X.; Zhang, D. PRDM16 Suppresses Ferroptosis to Protect against Sepsis-Associated Acute Kidney Injury by Targeting the NRF2/GPX4 Axis. Redox Biol. 2024, 78, 103417. [Google Scholar] [CrossRef]
- Pichon, C.; Billiet, L.; Midoux, P. Chemical vectors for gene delivery: Uptake and intracellular trafficking. Curr. Opin. Biotechnol. 2010, 21, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Kim, S.-M.; Lee, E.-H.; Kim, M.; Lee, Y.; Ko, S.H.; Jeong, J.H.; Park, C.-H.; Lee, M. Messenger RNA/Polymeric Carrier Nanoparticles for Delivery of Heme Oxygenase-1 Gene in the Post-Ischemic Brain. Biomater. Sci. 2020, 8, 3063–3071. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Cui, J.; Liu, X.; Lv, B.; Liu, X.; Xie, Z.; Yu, B. Roles of microRNA-34a Targeting SIRT1 in Mesenchymal Stem Cells. Stem Cell Res. Ther. 2015, 6, 195. [Google Scholar] [CrossRef]
- Ye, Z.-Q.; Meng, X.-H.; Fang, X.; Liu, H.-Y.; Mwindadi, H.H. MiR-126 Regulates the Effect of Mesenchymal Stem Cell Vascular Repair on Carotid Atherosclerosis through MAPK/ERK Signaling Pathway. World J. Stem Cells 2025, 17, 106520. [Google Scholar] [CrossRef]
- Qu, J.; Lu, Z.; Cheng, Y.; Deng, S.; Shi, W.; Liu, Q.; Ling, Y. miR-484 in Hippocampal Astrocytes of Aged and Young Rats Targets CSF-1 to Regulate Neural Progenitor/Stem Cell Proliferation and Differentiation into Neurons. CNS Neurosci. Ther. 2025, 31, e70415. [Google Scholar] [CrossRef]
- Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stähler, C.; Meese, E.; et al. Distribution of miRNA Expression across Human Tissues. Nucleic Acids Res. 2016, 44, 3865–3877. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, Y.; Richards, A.M. Effective Tools for RNA-Derived Therapeutics: siRNA Interference or miRNA Mimicry. Theranostics 2021, 11, 8771–8796. [Google Scholar] [CrossRef]
- Alshaer, W.; Zureigat, H.; Al Karaki, A.; Al-Kadash, A.; Gharaibeh, L.; Hatmal, M.M.; Aljabali, A.A.A.; Awidi, A. siRNA: Mechanism of Action, Challenges, and Therapeutic Approaches. Eur. J. Pharmacol. 2021, 905, 174178. [Google Scholar] [CrossRef]
- Ebenezer, O.; Oyebamiji, A.K.; Olanlokun, J.O.; Tuszynski, J.A.; Wong, G.K.-S. Recent Update on siRNA Therapeutics. Int. J. Mol. Sci. 2025, 26, 3456. [Google Scholar] [CrossRef]
- Ding, L.; Zhu, Z.; Wang, Y.; Zeng, L.; Wang, T.; Luo, J.; Zou, T.-B.; Li, R.; Sun, X.; Zhou, G.; et al. LINGO-1 shRNA Loaded by Pluronic F-127 Promotes Functional Recovery After Ventral Root Avulsion. Tissue Eng. Part A 2019, 25, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, Y.; Zhang, Y.; Hu, D.; Tang, L.; Zhou, B.; Yang, L. Landscape of Small Nucleic Acid Therapeutics: Moving from the Bench to the Clinic as next-Generation Medicines. Signal Transduct. Target. Ther. 2025, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.-N.; Chang, Y.-H.; Truong, V.A.; Lai, P.-L.; Nguyen, T.K.N.; Hu, Y.-C. CRISPR Technologies for Stem Cell Engineering and Regenerative Medicine. Biotechnol. Adv. 2019, 37, 107447. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Pan, C.; Yan, J.; Ge, W.; Wang, J.; Liu, L.; Zhang, L.; Lin, D.; Shen, S.G.F. Mesoporous Bioactive Glass Scaffolds for the Delivery of Bone Marrow Stem Cell-Derived Osteoinductive Extracellular Vesicles lncRNA Promote Senescent Bone Defect Repair by Targeting the miR-1843a-5p/Mob3a/YAP Axis. Acta Biomater. 2024, 177, 486–505. [Google Scholar] [CrossRef]
- Cheng, P.; Xie, X.; Hu, L.; Zhou, W.; Mi, B.; Xiong, Y.; Xue, H.; Zhang, K.; Zhang, Y.; Hu, Y.; et al. Hypoxia Endothelial Cells-Derived Exosomes Facilitate Diabetic Wound Healing through Improving Endothelial Cell Function and Promoting M2 Macrophages Polarization. Bioact. Mater. 2024, 33, 157–173. [Google Scholar] [CrossRef]
- He, Z.; Wang, B.; Hu, C.; Zhao, J. An Overview of Hydrogel-Based Intra-Articular Drug Delivery for the Treatment of Osteoarthritis. Colloids Surf. B Biointerfaces 2017, 154, 33–39. [Google Scholar] [CrossRef]
- Chitosan Poly(Vinyl Alcohol) Methacrylate Hydrogels for Tissue Engineering Scaffolds—PMC. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC11653253/ (accessed on 22 July 2025).
- Nyesiga, B.; Hägerbrand, K.; Varas, L.; Gjörloff Wingren, A.; Ohlin, M.; Ellmark, P.; von Schantz, L. Antigenic Peptide Delivery to Antigen-Presenting Cells Using a CD40-Coiled Coil Affinity-Based Platform. Drug Deliv. 2025, 32, 2486340. [Google Scholar] [CrossRef]
- Tashima, T. Effective Cancer Therapy Based on Selective Drug Delivery into Cells across Their Membrane Using Receptor-Mediated Endocytosis. Bioorg. Med. Chem. Lett. 2018, 28, 3015–3024. [Google Scholar] [CrossRef]
- Abdelaal, A.M.; Sohal, I.S.; Iyer, S.G.; Sudarshan, K.; Orellana, E.A.; Ozcan, K.E.; dos Santos, A.P.; Low, P.S.; Kasinski, A.L. Selective Targeting of Chemically Modified miR-34a to Prostate Cancer Using a Small Molecule Ligand and an Endosomal Escape Agent. Mol. Ther. Nucleic Acids 2024, 35, 102193. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Liu, X.; Wu, S.; Wang, M.; Turowski, S.G.; Spernyak, J.A.; Tracz, A.; Abdelaal, A.M.; Sudarshan, K.; et al. Developing Folate-Conjugated miR-34a Therapeutic for Prostate Cancer: Challenges and Promises. Int. J. Mol. Sci. 2024, 25, 2123. [Google Scholar] [CrossRef]
- Banda, O.; Adams, S.E.; Omer, L.; Jung, S.K.; Said, H.; Phoka, T.; Tam, Y.; Weissman, D.; Rivella, S.; Alameh, M.-G.; et al. Restoring Hematopoietic Stem and Progenitor Cell Function in Fancc -/- Mice by in Situ Delivery of RNA Lipid Nanoparticles. Mol. Ther. Nucleic Acids 2025, 36, 102423. [Google Scholar] [CrossRef]
- Yin, H.; Kanasty, R.L.; Eltoukhy, A.A.; Vegas, A.J.; Dorkin, J.R.; Anderson, D.G. Non-Viral Vectors for Gene-Based Therapy. Nat. Rev. Genet. 2014, 15, 541–555. [Google Scholar] [CrossRef]
- Dowdy, S.F. Overcoming Cellular Barriers for RNA Therapeutics. Nat. Biotechnol. 2017, 35, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Dowdy, S.F.; Setten, R.L.; Cui, X.-S.; Jadhav, S.G. Delivery of RNA Therapeutics: The Great Endosomal Escape! Nucleic Acid Ther. 2022, 32, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Shui, M.; Chen, Z.; Chen, Y.; Yuan, Q.; Li, H.; Vong, C.T.; Farag, M.A.; Wang, S. Engineering Polyphenol-Based Carriers for Nucleic Acid Delivery. Theranostics 2023, 13, 3204–3223. [Google Scholar] [CrossRef]
- Khan, M. Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules. Polymers 2024, 16, 2629. [Google Scholar] [CrossRef]
- Guan, J.-X.; Wang, Y.-L.; Wang, J.-L. How Advanced Are Nanocarriers for Effective Subretinal Injection? Int. J. Nanomed. 2024, 19, 9273–9289. [Google Scholar] [CrossRef]
- Chandler, L.A.; Doukas, J.; Gonzalez, A.M.; Hoganson, D.K.; Gu, D.L.; Ma, C.; Nesbit, M.; Crombleholme, T.M.; Herlyn, M.; Sosnowski, B.A.; et al. FGF2-Targeted Adenovirus Encoding Platelet-Derived Growth Factor-B Enhances de Novo Tissue Formation. Mol. Ther. J. Am. Soc. Gene Ther. 2000, 2, 153–160. [Google Scholar] [CrossRef]
- Yang, H.; Qin, X.; Wang, H.; Zhao, X.; Liu, Y.; Wo, H.-T.; Liu, C.; Nishiga, M.; Chen, H.; Ge, J.; et al. An in Vivo miRNA Delivery System for Restoring Infarcted Myocardium. ACS Nano 2019, 13, 9880–9894. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Feng, J.; Xu, B.; Niu, Y.; Zheng, Y. From Bone Remodeling to Wound Healing: An miR-146a-5p-Loaded Nanocarrier Targets Endothelial Cells to Promote Angiogenesis. ACS Appl. Mater. Interfaces 2024, 16, 32992–33004. [Google Scholar] [CrossRef]
- Yin, L.; He, H.; Zhang, H.; Shang, Y.; Fu, C.; Wu, S.; Jin, T. Revolution of AAV in Drug Discovery: From Delivery System to Clinical Application. J. Med. Virol. 2025, 97, e70447. [Google Scholar] [CrossRef]
- Dhungel, B.P.; Bailey, C.G.; Rasko, J.E.J. Journey to the Center of the Cell: Tracing the Path of AAV Transduction. Trends Mol. Med. 2021, 27, 172–184. [Google Scholar] [CrossRef]
- Wang, D.; Tai, P.W.L.; Gao, G. Adeno-Associated Virus Vector as a Platform for Gene Therapy Delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef] [PubMed]
- Schultz, B.R.; Chamberlain, J.S. Recombinant Adeno-Associated Virus Transduction and Integration. Mol. Ther. J. Am. Soc. Gene Ther. 2008, 16, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Finkel, Z.; Esteban, F.; Rodriguez, B.; Clifford, T.; Joseph, A.; Alostaz, H.; Dalmia, M.; Gutierrez, J.; Tamasi, M.J.; Zhang, S.M.; et al. AAV6 Mediated Gsx1 Expression in Neural Stem Progenitor Cells Promotes Neurogenesis and Restores Locomotor Function after Contusion Spinal Cord Injury. Neurother. J. Am. Soc. Exp. Neurother. 2024, 21, e00362. [Google Scholar] [CrossRef]
- He, L.; Ding, Y.; Zhao, Y.; So, K.K.; Peng, X.L.; Li, Y.; Yuan, J.; He, Z.; Chen, X.; Sun, H.; et al. CRISPR/Cas9/AAV9-Mediated in Vivo Editing Identifies MYC Regulation of 3D Genome in Skeletal Muscle Stem Cell. Stem Cell Rep. 2021, 16, 2442–2458. [Google Scholar] [CrossRef]
- Lovric, J.; Mano, M.; Zentilin, L.; Eulalio, A.; Zacchigna, S.; Giacca, M. Terminal Differentiation of Cardiac and Skeletal Myocytes Induces Permissivity to AAV Transduction by Relieving Inhibition Imposed by DNA Damage Response Proteins. Mol. Ther. J. Am. Soc. Gene Ther. 2012, 20, 2087–2097. [Google Scholar] [CrossRef]
- Humbel, M.; Ramosaj, M.; Zimmer, V.; Regio, S.; Aeby, L.; Moser, S.; Boizot, A.; Sipion, M.; Rey, M.; Déglon, N. Maximizing Lentiviral Vector Gene Transfer in the CNS. Gene Ther. 2021, 28, 75–88. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, J.; Huang, J.; Tang, Y.; Du, S.; Li, P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. Int. J. Nanomed. 2020, 15, 6917–6934. [Google Scholar] [CrossRef]
- Tan, F.; Li, X.; Wang, Z.; Li, J.; Shahzad, K.; Zheng, J. Clinical Applications of Stem Cell-Derived Exosomes. Signal Transduct. Target. Ther. 2024, 9, 17. [Google Scholar] [CrossRef]
- Liu, W.; Yu, M.; Chen, F.; Wang, L.; Ye, C.; Chen, Q.; Zhu, Q.; Xie, D.; Shao, M.; Yang, L. A Novel Delivery Nanobiotechnology: Engineered miR-181b Exosomes Improved Osteointegration by Regulating Macrophage Polarization. J. Nanobiotechnol. 2021, 19, 269. [Google Scholar] [CrossRef]
- Tao, S.-C.; Guo, S.-C.; Li, M.; Ke, Q.-F.; Guo, Y.-P.; Zhang, C.-Q. Chitosan Wound Dressings Incorporating Exosomes Derived from MicroRNA-126-Overexpressing Synovium Mesenchymal Stem Cells Provide Sustained Release of Exosomes and Heal Full-Thickness Skin Defects in a Diabetic Rat Model. Stem Cells Transl. Med. 2017, 6, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Shafei, S.; Khanmohammadi, M.; Ghanbari, H.; Nooshabadi, V.T.; Tafti, S.H.A.; Rabbani, S.; Kasaiyan, M.; Basiri, M.; Tavoosidana, G. Effectiveness of Exosome Mediated miR-126 and miR-146a Delivery on Cardiac Tissue Regeneration. Cell Tissue Res. 2022, 390, 71–92. [Google Scholar] [CrossRef] [PubMed]
- Mi, B.; Chen, L.; Xiong, Y.; Yang, Y.; Panayi, A.C.; Xue, H.; Hu, Y.; Yan, C.; Hu, L.; Xie, X.; et al. Osteoblast/Osteoclast and Immune Cocktail Therapy of an Exosome/Drug Delivery Multifunctional Hydrogel Accelerates Fracture Repair. ACS Nano 2022, 16, 771–782. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, L.; Zhang, J.; Chiang, C.-L.; Pan, J.; Wang, X.; Kwak, K.J.; Li, H.; Zhao, R.; Rima, X.Y.; et al. Exosomal mRNAs for Angiogenic-Osteogenic Coupled Bone Repair. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2023, 10, e2302622. [Google Scholar] [CrossRef]
- Wan, T.; Zhong, J.; Pan, Q.; Zhou, T.; Ping, Y.; Liu, X. Exosome-Mediated Delivery of Cas9 Ribonucleoprotein Complexes for Tissue-Specific Gene Therapy of Liver Diseases. Sci. Adv. 2022, 8, eabp9435. [Google Scholar] [CrossRef]
- Kulkarni, J.A.; Darjuan, M.M.; Mercer, J.E.; Chen, S.; van der Meel, R.; Thewalt, J.L.; Tam, Y.Y.C.; Cullis, P.R. On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA. ACS Nano 2018, 12, 4787–4795. [Google Scholar] [CrossRef]
- Tseng, Y.-C.; Mozumdar, S.; Huang, L. Lipid-Based Systemic Delivery of siRNA. Adv. Drug Deliv. Rev. 2009, 61, 721–731. [Google Scholar] [CrossRef]
- Kanvinde, S.; Kulkarni, T.; Deodhar, S.; Bhattacharya, D.; Dasgupta, A. Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BioTech 2022, 11, 6. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, W.; Ren, Y.; Li, S.; Liu, M.; Xing, J.; Han, Y.; Chen, Y.; Tao, R.; Guo, L.; et al. Lipid Nanoparticle-Encapsulated VEGFa siRNA Facilitates Cartilage Formation by Suppressing Angiogenesis. Int. J. Biol. Macromol. 2022, 221, 1313–1324. [Google Scholar] [CrossRef]
- Kubota, K.; Onishi, K.; Sawaki, K.; Li, T.; Mitsuoka, K.; Sato, T.; Takeoka, S. Effect of the Nanoformulation of siRNA-Lipid Assemblies on Their Cellular Uptake and Immune Stimulation. Int. J. Nanomed. 2017, 12, 5121–5133. [Google Scholar] [CrossRef]
- Li, Y.; Du, K.; Peng, D.; Zhang, X.; Piao, Y.; Peng, M.; He, W.; Wang, Y.; Wu, H.; Liu, Y.; et al. Local Delivery of siRNA Using Lipid-Based Nanocarriers with ROS-Scavenging Ability for Accelerated Chronic Wound Healing in Diabetes. Biomaterials 2025, 322, 123411. [Google Scholar] [CrossRef]
- Ngarande, E.; Doubell, E.; Tamgue, O.; Mano, M.; Human, P.; Giacca, M.; Davies, N.H. Modified Fibrin Hydrogel for Sustained Delivery of RNAi Lipopolyplexes in Skeletal Muscle. Regen. Biomater. 2023, 10, rbac101. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Pierre, V.; Liu, C.; Senapati, S.; Park, P.S.-H.; Senyo, S.E. Exogenous Extracellular Matrix Proteins Decrease Cardiac Fibroblast Activation in Stiffening Microenvironment through CAPG. J. Mol. Cell. Cardiol. 2021, 159, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Alam, P.; Haile, B.; Arif, M.; Pandey, R.; Rokvic, M.; Nieman, M.; Maliken, B.D.; Paul, A.; Wang, Y.G.; Sadayappan, S.; et al. Inhibition of Senescence-Associated Genes Rb1 and Meis2 in Adult Cardiomyocytes Results in Cell Cycle Reentry and Cardiac Repair Post-Myocardial Infarction. J. Am. Heart Assoc. 2019, 8, e012089. [Google Scholar] [CrossRef] [PubMed]
- Vhora, I.; Lalani, R.; Bhatt, P.; Patil, S.; Patel, H.; Patel, V.; Misra, A. Colloidally Stable Small Unilamellar Stearyl Amine Lipoplexes for Effective BMP-9 Gene Delivery to Stem Cells for Osteogenic Differentiation. AAPS PharmSciTech 2018, 19, 3550–3560. [Google Scholar] [CrossRef]
- Szabó, I.; Yousef, M.; Soltész, D.; Bató, C.; Mező, G.; Bánóczi, Z. Redesigning of Cell-Penetrating Peptides to Improve Their Efficacy as a Drug Delivery System. Pharmaceutics 2022, 14, 907. [Google Scholar] [CrossRef]
- Chambers, P.; Ziminska, M.; Elkashif, A.; Wilson, J.; Redmond, J.; Tzagiollari, A.; Ferreira, C.; Balouch, A.; Bogle, J.; Donahue, S.W.; et al. The Osteogenic and Angiogenic Potential of microRNA-26a Delivered via a Non-Viral Delivery Peptide for Bone Repair. J. Control. Release 2023, 362, 489–501. [Google Scholar] [CrossRef]
- Mulholland, E.J.; Ali, A.; Robson, T.; Dunne, N.J.; McCarthy, H.O. Delivery of RALA/siFKBPL Nanoparticles via Electrospun Bilayer Nanofibres: An Innovative Angiogenic Therapy for Wound Repair. J. Control. Release Off. J. Control. Release Soc. 2019, 316, 53–65. [Google Scholar] [CrossRef]
- McCarthy, H.O.; McCaffrey, J.; McCrudden, C.M.; Zholobenko, A.; Ali, A.A.; McBride, J.W.; Massey, A.S.; Pentlavalli, S.; Chen, K.-H.; Cole, G.; et al. Development and Characterization of Self-Assembling Nanoparticles Using a Bio-Inspired Amphipathic Peptide for Gene Delivery. J. Control. Release Off. J. Control. Release Soc. 2014, 189, 141–149. [Google Scholar] [CrossRef]
- Morrison, J.I.; Lööf, S.; He, P.; Aleström, P.; Collas, P.; Simon, A. Targeted Gene Delivery to Differentiated Skeletal Muscle: A Tool to Study Dedifferentiation. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2007, 236, 481–488. [Google Scholar] [CrossRef]
- Raftery, R.M.; Walsh, D.P.; Blokpoel Ferreras, L.; Mencía Castaño, I.; Chen, G.; LeMoine, M.; Osman, G.; Shakesheff, K.M.; Dixon, J.E.; O’Brien, F.J. Highly Versatile Cell-Penetrating Peptide Loaded Scaffold for Efficient and Localised Gene Delivery to Multiple Cell Types: From Development to Application in Tissue Engineering. Biomaterials 2019, 216, 119277. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.-R.; Shim, I.-K.; Kim, E.-S.; Park, Y.-J.; Yang, Y.-I.; Lee, S.-K.; Lee, S.-J. Controlled Release of Cell-Permeable Gene Complex from Poly(L-Lactide) Scaffold for Enhanced Stem Cell Tissue Engineering. J. Control. Release Off. J. Control. Release Soc. 2011, 152, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Heise, A. Stimuli Responsive Synthetic Polypeptides Derived from N-Carboxyanhydride (NCA) Polymerisation. Chem. Soc. Rev. 2013, 42, 7373–7390. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.P.; Murphy, R.D.; Panarella, A.; Raftery, R.M.; Cavanagh, B.; Simpson, J.C.; O’Brien, F.J.; Heise, A.; Cryan, S.-A. Bioinspired Star-Shaped Poly(l-Lysine) Polypeptides: Efficient Polymeric Nanocarriers for the Delivery of DNA to Mesenchymal Stem Cells. Mol. Pharm. 2018, 15, 1878–1891. [Google Scholar] [CrossRef]
- Ji, K.; Xiao, Y.; Zhang, W. Acid-activated nonviral peptide vector for gene delivery. J. Pept. Sci. 2020, 26, e3230. [Google Scholar] [CrossRef]
- Chen, S.; Tian, H.; Mao, J.; Ma, F.; Zhang, M.; Chen, F.; Yang, P. Preparation and Application of Chitosan-Based Medical Electrospun Nanofibers. Int. J. Biol. Macromol. 2023, 226, 410–422. [Google Scholar] [CrossRef]
- Malakooty Poor, E.; Baghaban Eslaminejad, M.; Gheibi, N.; Bagheri, F.; Atyabi, F. Chitosan-pDNA Nanoparticle Characteristics Determine the Transfection Efficacy of Gene Delivery to Human Mesenchymal Stem Cells. Artif. Cells Nanomed. Biotechnol. 2014, 42, 376–384. [Google Scholar] [CrossRef]
- Çelik, S.; Gök, M.K.; Demir, K.; Pabuccuoğlu, S.; Özgümüş, S. Relationship between Phosphorylamine-Modification and Molecular Weight on Transfection Efficiency of Chitosan. Carbohydr. Polym. 2022, 277, 118870. [Google Scholar] [CrossRef]
- Raftery, R.M.; Tierney, E.G.; Curtin, C.M.; Cryan, S.-A.; O’Brien, F.J. Development of a Gene-Activated Scaffold Platform for Tissue Engineering Applications Using Chitosan-pDNA Nanoparticles on Collagen-Based Scaffolds. J. Control. Release 2015, 210, 84–94. [Google Scholar] [CrossRef]
- Li, D.-D.; Pan, J.-F.; Ji, Q.-X.; Yu, X.-B.; Liu, L.-S.; Li, H.; Jiao, X.-J.; Wang, L. Characterization and Cytocompatibility of Thermosensitive Hydrogel Embedded with Chitosan Nanoparticles for Delivery of Bone Morphogenetic Protein-2 Plasmid DNA. J. Mater. Sci. Mater. Med. 2016, 27, 134. [Google Scholar] [CrossRef]
- Zhao, J.; Fan, X.; Zhang, Q.; Sun, F.; Li, X.; Xiong, C.; Zhang, C.; Fan, H. Chitosan-Plasmid DNA Nanoparticles Encoding Small Hairpin RNA Targeting MMP-3 and -13 to Inhibit the Expression of Dedifferentiation Related Genes in Expanded Chondrocytes. J. Biomed. Mater. Res. A 2014, 102, 373–380. [Google Scholar] [CrossRef]
- Moncal, K.K.; Tigli Aydın, R.S.; Godzik, K.P.; Acri, T.M.; Heo, D.N.; Rizk, E.; Wee, H.; Lewis, G.S.; Salem, A.K.; Ozbolat, I.T. Controlled Co-Delivery of pPDGF-B and pBMP-2 from Intraoperatively Bioprinted Bone Constructs Improves the Repair of Calvarial Defects in Rats. Biomaterials 2022, 281, 121333. [Google Scholar] [CrossRef]
- Li, H.; Ji, Q.; Chen, X.; Sun, Y.; Xu, Q.; Deng, P.; Hu, F.; Yang, J. Accelerated Bony Defect Healing Based on Chitosan Thermosensitive Hydrogel Scaffolds Embedded with Chitosan Nanoparticles for the Delivery of BMP2 Plasmid DNA. J. Biomed. Mater. Res. A 2017, 105, 265–273. [Google Scholar] [CrossRef]
- Hasani-Sadrabadi, M.M.; Hajrezaei, S.P.; Emami, S.H.; Bahlakeh, G.; Daneshmandi, L.; Dashtimoghadam, E.; Seyedjafari, E.; Jacob, K.I.; Tayebi, L. Enhanced Osteogenic Differentiation of Stem Cells via Microfluidics Synthesized Nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1809–1819. [Google Scholar] [CrossRef]
- Malek-Khatabi, A.; Javar, H.A.; Dashtimoghadam, E.; Ansari, S.; Hasani-Sadrabadi, M.M.; Moshaverinia, A. In Situ Bone Tissue Engineering Using Gene Delivery Nanocomplexes. Acta Biomater. 2020, 108, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Newland, B.; Tai, H.; Zheng, Y.; Velasco, D.; Di Luca, A.; Howdle, S.M.; Alexander, C.; Wang, W.; Pandit, A. A Highly Effective Gene Delivery Vector--Hyperbranched Poly(2-(Dimethylamino)Ethyl Methacrylate) from in Situ Deactivation Enhanced ATRP. Chem. Commun. Camb. Engl. 2010, 46, 4698–4700. [Google Scholar] [CrossRef] [PubMed]
- Lan, B.; Wu, J.; Li, N.; Pan, C.; Yan, L.; Yang, C.; Zhang, L.; Yang, L.; Ren, M. Hyperbranched Cationic Polysaccharide Derivatives for Efficient siRNA Delivery and Diabetic Wound Healing Enhancement. Int. J. Biol. Macromol. 2020, 154, 855–865. [Google Scholar] [CrossRef]
- Zou, W.; Lu, J.; Zhang, L.; Sun, D. Tetrahedral Framework Nucleic Acids for Improving Wound Healing. J. Nanobiotechnol. 2024, 22, 113. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Shi, R.; Lu, W.; Shi, S.; Chen, Y. Framework Nucleic Acids as Promising Reactive Oxygen Species Scavengers for Anti-Inflammatory Therapy. Nanoscale 2024, 16, 7363–7377. [Google Scholar] [CrossRef]
- Zhang, T.; Cui, W.; Tian, T.; Shi, S.; Lin, Y. Progress in Biomedical Applications of Tetrahedral Framework Nucleic Acid-Based Functional Systems. ACS Appl. Mater. Interfaces 2020, 12, 47115–47126. [Google Scholar] [CrossRef]
- Sun, J.; Chen, X.; Lin, Y.; Cai, X. MicroRNA-29c-Tetrahedral Framework Nucleic Acids: Towards Osteogenic Differentiation of Mesenchymal Stem Cells and Bone Regeneration in Critical-Sized Calvarial Defects. Cell Prolif. 2024, 57, e13624. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Tian, T.; Zhang, T.; Lin, S.; Zhou, M.; Zhang, X.; Lin, Y.; Cai, X. Bioswitchable Delivery of microRNA by Framework Nucleic Acids: Application to Bone Regeneration. Small 2021, 17, 2104359. [Google Scholar] [CrossRef]
- Lyu, X.; Wu, H.; Xu, M.; Chen, Y.; Liu, Z.; Zhang, M.; Tian, T.; Lin, Y.; Li, S.; Cai, X. A Bioswitchable MiRNA Delivery System: Tetrahedral Framework DNA-Based miRNA Delivery System for Applications in Wound Healing. ACS Appl. Mater. Interfaces 2024, 16, 33192–33204. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Li, Q.; Wang, L.; Guo, Q.; Liu, S.; Zhu, S.; Sun, Y.; Fan, Y.; Sun, Y.; Li, H.; et al. Advances in Regenerative Medicine Applications of Tetrahedral Framework Nucleic Acid-Based Nanomaterials: An Expert Consensus Recommendation. Int. J. Oral Sci. 2022, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yan, R.; Shi, S.; Lin, Y. Recent Progress and Application of the Tetrahedral Framework Nucleic Acid Materials on Drug Delivery. Expert Opin. Drug Deliv. 2023, 20, 1511–1530. [Google Scholar] [CrossRef] [PubMed]
- Qingxin, S.; Kai, J.; Dandan, Z.; Linyu, J.; Xiuyuan, C.; Yubo, F.; Kun, W.; Yingchao, H.; Hao, C.; Jie, S.; et al. Programmable DNA Hydrogel Provides Suitable Microenvironment for Enhancing Autophagy-Based Therapies in Intervertebral Disc Degeneration Treatment. J. Nanobiotechnol. 2023, 21, 350. [Google Scholar] [CrossRef]
- Galitsyna, E.V.; Buianova, A.A.; Kozhukhov, V.I.; Domogatsky, S.P.; Bukharova, T.B.; Goldshtein, D.V. Cytocompatibility and Osteoinductive Properties of Collagen-Fibronectin Hydrogel Impregnated with siRNA Targeting Glycogen Synthase Kinase 3β: In Vitro Study. Biomedicines 2023, 11, 2363. [Google Scholar] [CrossRef]
- Khorsand, B.; Acri, T.M.; Do, A.-V.; Femino, J.E.; Petersen, E.; Fredericks, D.C.; Salem, A.K. A Multi-Functional Implant Induces Bone Formation in a Diabetic Model. Adv. Healthc. Mater. 2020, 9, e2000770. [Google Scholar] [CrossRef]
- Xiang, L.; Liang, J.; Wang, Z.; Lin, F.; Zhuang, Y.; Saiding, Q.; Wang, F.; Deng, L.; Cui, W. Motion Lubrication Suppressed Mechanical Activation via Hydrated Fibrous Gene Patch for Tendon Healing. Sci. Adv. 2023, 9, eadc9375. [Google Scholar] [CrossRef]
- Wang, S.Y.; Kim, H.; Kwak, G.; Jo, S.D.; Cho, D.; Yang, Y.; Kwon, I.C.; Jeong, J.H.; Kim, S.H. Development of microRNA-21 Mimic Nanocarriers for the Treatment of Cutaneous Wounds. Theranostics 2020, 10, 3240–3253. [Google Scholar] [CrossRef]
- Fu, Z.; Lai, Y.; Zhuang, Y.; Lin, F. Injectable Heat-Sensitive Nanocomposite Hydrogel for Regulating Gene Expression in the Treatment of Alcohol-Induced Osteonecrosis of the Femoral Head. APL Bioeng. 2023, 7, 016107. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Ge, X.; Chen, X.; Xu, Y.; Yuan, W.-E.; Ouyang, Y. Enhancement of Sciatic Nerve Regeneration with Dual Delivery of Vascular Endothelial Growth Factor and Nerve Growth Factor Genes. J. Nanobiotechnol. 2020, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.G.; Park, M.R.; Choi, Y.H.; Choi, J.S.; Ahn, H.-J.; Kwon, S.K.; Lee, J.H. Regeneration of Paralyzed Vocal Fold by the Injection of Plasmid DNA Complex-Loaded Hydrogel Bulking Agent. ACS Biomater. Sci. Eng. 2019, 5, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.-W.; Wang, H.-Y.; Li, C.; Wang, H.-F.; Sun, Y.-X.; Feng, J.; Zhang, X.-Z.; Zhuo, R.-X. PEGylated PEI-Based Biodegradable Polymers as Non-Viral Gene Vectors. Acta Biomater. 2010, 6, 4285–4295. [Google Scholar] [CrossRef]
- Chung, C.-Y.; Yang, J.-T.; Kuo, Y.-C. Polybutylcyanoacrylate Nanoparticle-Mediated Neurotrophin-3 Gene Delivery for Differentiating iPS Cells into Neurons. Biomaterials 2013, 34, 5562–5570. [Google Scholar] [CrossRef]
- Qu, M.; Kim, H.-J.; Zhou, X.; Wang, C.; Jiang, X.; Zhu, J.; Xue, Y.; Tebon, P.; Sarabi, S.A.; Ahadian, S.; et al. Biodegradable Microneedle Patch for Transdermal Gene Delivery. Nanoscale 2020, 12, 16724–16729. [Google Scholar] [CrossRef]
- Gwak, S.-J.; Macks, C.; Jeong, D.U.; Kindy, M.; Lynn, M.; Webb, K.; Lee, J.S. RhoA Knockdown by Cationic Amphiphilic Copolymer/siRhoA Polyplexes Enhances Axonal Regeneration in Rat Spinal Cord Injury Model. Biomaterials 2017, 121, 155–166. [Google Scholar] [CrossRef]
- Yu, H.; Pan, H.M.; Evalin; Trau, D.; Patzel, V. Capsule-like Safe Genetic Vectors-Cell-Penetrating Core-Shell Particles Selectively Release Functional Small RNA and Entrap Its Encoding DNA. ACS Appl. Mater. Interfaces 2018, 10, 21113–21124. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, C.; Wu, Y.F.; Zhang, L.; Tang, J.B. Effective Modulation of Transforming Growth Factor-β1 Expression through Engineered microRNA-Based Plasmid-Loaded Nanospheres. Cytotherapy 2015, 17, 320–329. [Google Scholar] [CrossRef]
- Xiao, B.; Chen, Q.; Zhang, Z.; Wang, L.; Kang, Y.; Denning, T.; Merlin, D. TNFα Gene Silencing Mediated by Orally Targeted Nanoparticles Combined with Interleukin-22 for Synergistic Combination Therapy of Ulcerative Colitis. J. Control. Release Off. J. Control. Release Soc. 2018, 287, 235–246. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Yang, Q.Q.; Yan, Y.Y.; Zhu, C.; Zhang, L.; Tang, J.B. Localized Delivery of miRNAs Targets Cyclooxygenases and Reduces Flexor Tendon Adhesions. Acta Biomater. 2018, 70, 237–248. [Google Scholar] [CrossRef]
- Chis, A.A.; Dobrea, C.M.; Rus, L.-L.; Frum, A.; Morgovan, C.; Butuca, A.; Totan, M.; Juncan, A.M.; Gligor, F.G.; Arseniu, A.M. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021, 26, 5976. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, H.; Zhu, Y.; Zhao, C.; Wang, S.; Zheng, Y.; Xie, Z.; Jin, Y.; Song, H.; Yang, L.; et al. Injectable Self-Healing Hydrogel with siRNA Delivery Property for Sustained STING Silencing and Enhanced Therapy of Intervertebral Disc Degeneration. Bioact. Mater. 2022, 9, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Zhang, C.; Zhong, Z.; Wang, Y.; He, X.; Zhu, D.; Qian, Z.; Yu, B.; Kang, X. siRNA Incorporated in Slow-Release Injectable Hydrogel Continuously Silences DDIT4 and Regulates Nucleus Pulposus Cell Pyroptosis through the ROS/TXNIP/NLRP3 Axis to Alleviate Intervertebral Disc Degeneration. Bone Jt. Res. 2024, 13, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.L.; Pandita, D.; Rodrigues, J.; Pêgo, A.P.; Granja, P.L.; Balian, G.; Tomás, H. Receptor-Mediated Gene Delivery Using PAMAM Dendrimers Conjugated with Peptides Recognized by Mesenchymal Stem Cells. Mol. Pharm. 2010, 7, 763–774. [Google Scholar] [CrossRef]
- Bae, Y.; Lee, S.; Green, E.S.; Park, J.H.; Ko, K.S.; Han, J.; Choi, J.S. Characterization of Basic Amino Acids-Conjugated PAMAM Dendrimers as Gene Carriers for Human Adipose-Derived Mesenchymal Stem Cells. Int. J. Pharm. 2016, 501, 75–86. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, Z.; Dang, M.; Zhang, X.; Doleyres, Y.; Song, Y.; Chen, D.; Ma, P.X. Injectable Nanofibrous Spongy Microspheres for NR4A1 Plasmid DNA Transfection to Reverse Fibrotic Degeneration and Support Disc Regeneration. Biomaterials 2017, 131, 86. [Google Scholar] [CrossRef]
- Oba, M.; Fukushima, S.; Kanayama, N.; Aoyagi, K.; Nishiyama, N.; Koyama, H.; Kataoka, K. Cyclic RGD Peptide-Conjugated Polyplex Micelles as a Targetable Gene Delivery System Directed to Cells Possessing Alphavbeta3 and Alphavbeta5 Integrins. Bioconjug. Chem. 2007, 18, 1415–1423. [Google Scholar] [CrossRef]
- Feng, G.; Chen, H.; Li, J.; Huang, Q.; Gupte, M.J.; Liu, H.; Song, Y.; Ge, Z. Gene Therapy for Nucleus Pulposus Regeneration by Heme Oxygenase-1 Plasmid DNA Carried by Mixed Polyplex Micelles with Thermo-Responsive Heterogeneous Coronas. Biomaterials 2015, 52, 1–13. [Google Scholar] [CrossRef]
- Shtykalova, S.; Deviatkin, D.; Freund, S.; Egorova, A.; Kiselev, A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life Basel Switz. 2023, 13, 903. [Google Scholar] [CrossRef]
- Moreira, L.; Guimarães, N.M.; Santos, R.S.; Loureiro, J.A.; Pereira, M.C.; Azevedo, N.F. Promising Strategies Employing Nucleic Acids as Antimicrobial Drugs. Mol. Ther. Nucleic Acids 2024, 35, 102122. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, M.; Eltohamy, M.; Yun, Y.-R.; Jang, J.-H.; Kim, H.-W. Efficacy of mesoporous silica nanoparticles in delivering BMP-2 Plasmid DNA for in Vitro Osteogenic Stimulation of Mesenchymal Stem Cells. J. Biomed. Mater. Res. A 2013, 101, 1651–1660. [Google Scholar] [CrossRef]
- Suwalski, A.; Dabboue, H.; Delalande, A.; Bensamoun, S.F.; Canon, F.; Midoux, P.; Saillant, G.; Klatzmann, D.; Salvetat, J.-P.; Pichon, C. Accelerated Achilles Tendon Healing by PDGF Gene Delivery with Mesoporous Silica Nanoparticles. Biomaterials 2010, 31, 5237–5245. [Google Scholar] [CrossRef] [PubMed]
- Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.-W.; Lin, V.S.-Y. Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278–1288. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, X.; Jin, R.; Chen, L.; Dang, M.; Cao, H.; Dong, Y.; Cai, B.; Bai, G.; Gooding, J.J.; et al. Injectable Hydrogel with MSNs/microRNA-21-5p Delivery Enables Both Immunomodification and Enhanced Angiogenesis for Myocardial Infarction Therapy in Pigs. Sci. Adv. 2021, 7, eabd6740. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Liu, Z.; Yuan, P.; Jin, R.; Wang, X.; Jiang, T.; Chen, X. Injectable Colloidal Hydrogel with Mesoporous Silica Nanoparticles for Sustained Co-Release of microRNA-222 and Aspirin to Achieve Innervated Bone Regeneration in Rat Mandibular Defects. J. Mater. Chem. B 2019, 7, 2722–2735. [Google Scholar] [CrossRef]
- Yang, J.; Shuai, J.; Siow, L.; Lu, J.; Sun, M.; An, W.; Yu, M.; Wang, B.; Chen, Q. MicroRNA-146a-Loaded Magnesium Silicate Nanospheres Promote Bone Regeneration in an Inflammatory Microenvironment. Bone Res. 2024, 12, 2. [Google Scholar] [CrossRef]
- Liu, J.; Cui, Y.; Kuang, Y.; Xu, S.; Lu, Q.; Diao, J.; Zhao, N. Hierarchically Porous Calcium-Silicon Nanosphere-Enabled Co-Delivery of microRNA-210 and Simvastatin for Bone Regeneration. J. Mater. Chem. B 2021, 9, 3573–3583. [Google Scholar] [CrossRef]
- Nor Azlan, A.Y.H.; Katas, H.; Mohamad Zin, N.; Fauzi, M.B. Dual Action Gels Containing DsiRNA Loaded Gold Nanoparticles: Augmenting Diabetic Wound Healing by Promoting Angiogenesis and Inhibiting Infection. Eur. J. Pharm. Biopharm. 2021, 169, 78–90. [Google Scholar] [CrossRef]
- Wan, J.; Liu, H.; Li, J.; Zeng, Y.; Ren, H.; Hu, Y. PEG-SH-GNPs-SAPNS@miR-29a Delivery System Promotes Neural Regeneration and Recovery of Motor Function after Spinal Cord Injury. J. Biomater. Sci. Polym. Ed. 2023, 34, 2107–2123. [Google Scholar] [CrossRef]
- Pan, T.; Song, W.; Xin, H.; Yu, H.; Wang, H.; Ma, D.; Cao, X.; Wang, Y. MicroRNA-Activated Hydrogel Scaffold Generated by 3D Printing Accelerates Bone Regeneration. Bioact. Mater. 2022, 10, 1–14. [Google Scholar] [CrossRef]
- Kim, S.J.; Ko, W.-K.; Han, G.H.; Lee, D.; Cho, M.J.; Sheen, S.H.; Sohn, S. Axon Guidance Gene-Targeted siRNA Delivery System Improves Neural Stem Cell Transplantation Therapy after Spinal Cord Injury. Biomater. Res. 2023, 27, 101. [Google Scholar] [CrossRef]
- Stager, M.A.; Bardill, J.; Raichart, A.; Osmond, M.; Niemiec, S.; Zgheib, C.; Seal, S.; Liechty, K.W.; Krebs, M.D. Photopolymerized Zwitterionic Hydrogels with a Sustained Delivery of Cerium Oxide Nanoparticle-miR146a Conjugate Accelerate Diabetic Wound Healing. ACS Appl. Bio Mater. 2022, 5, 1092–1103. [Google Scholar] [CrossRef]
- Hirst, S.M.; Karakoti, A.; Singh, S.; Self, W.; Tyler, R.; Seal, S.; Reilly, C.M. Bio-Distribution and in Vivo Antioxidant Effects of Cerium Oxide Nanoparticles in Mice. Environ. Toxicol. 2013, 28, 107–118. [Google Scholar] [CrossRef]
- Chen, B.-H.; Stephen Inbaraj, B. Various Physicochemical and Surface Properties Controlling the Bioactivity of Cerium Oxide Nanoparticles. Crit. Rev. Biotechnol. 2018, 38, 1003–1024. [Google Scholar] [CrossRef] [PubMed]
- Sener, G.; Hilton, S.A.; Osmond, M.J.; Zgheib, C.; Newsom, J.P.; Dewberry, L.; Singh, S.; Sakthivel, T.S.; Seal, S.; Liechty, K.W.; et al. Injectable, Self-Healable Zwitterionic Cryogels with Sustained microRNA—Cerium Oxide Nanoparticle Release Promote Accelerated Wound Healing. Acta Biomater. 2020, 101, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Ji, Y.; Li, G.; Xu, X.; Zhang, C.; Zhong, W.; Xu, S.; Yin, Y.; Song, J. MicroRNA-29b/Graphene Oxide-Polyethyleneglycol-Polyethylenimine Complex Incorporated within Chitosan Hydrogel Promotes Osteogenesis. Front. Chem. 2022, 10, 958561. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Liu, J.; Wei, J.; Du, Y.; Zou, K.; Yan, Y.; Wang, Z.; Zhang, L.; Zhang, T.; Lu, H.; et al. Silica Nanoparticles Induce Unfolded Protein Reaction Mediated Apoptosis in Spermatocyte Cells. Toxicol. Res. 2020, 9, 454–460. [Google Scholar] [CrossRef]
- Bayda, S.; Hadla, M.; Palazzolo, S.; Riello, P.; Corona, G.; Toffoli, G.; Rizzolio, F. Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic. Curr. Med. Chem. 2018, 25, 4269–4303. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Q.; Fan, X.; Yang, L.; Zou, L.; Liu, Q.; Shi, G.; Yang, X.; Tang, K. Study on Chitosan/Gelatin Hydrogels Containing Ceria Nanoparticles for Promoting the Healing of Diabetic Wound. J. Biomed. Mater. Res. A 2024, 112, 1532–1547. [Google Scholar] [CrossRef]
- Huang, X.; Huang, Z.; Gao, W.; Gao, W.; He, R.; Li, Y.; Crawford, R.; Zhou, Y.; Xiao, L.; Xiao, Y. Current Advances in 3D Dynamic Cell Culture Systems. Gels 2022, 8, 829. [Google Scholar] [CrossRef]
- Hoefner, C.; Muhr, C.; Horder, H.; Wiesner, M.; Wittmann, K.; Lukaszyk, D.; Radeloff, K.; Winnefeld, M.; Becker, M.; Blunk, T.; et al. Human Adipose-Derived Mesenchymal Stromal/Stem Cell Spheroids Possess High Adipogenic Capacity and Acquire an Adipose Tissue-like Extracellular Matrix Pattern. Tissue Eng. Part A 2020, 26, 915–926. [Google Scholar] [CrossRef]
- Wang, L.L.; Liu, Y.; Chung, J.J.; Wang, T.; Gaffey, A.C.; Lu, M.; Cavanaugh, C.A.; Zhou, S.; Kanade, R.; Atluri, P.; et al. Local and Sustained miRNA Delivery from an Injectable Hydrogel Promotes Cardiomyocyte Proliferation and Functional Regeneration after Ischemic Injury. Nat. Biomed. Eng. 2017, 1, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Chung, J.J.; Li, E.C.; Uman, S.; Atluri, P.; Burdick, J.A. Injectable and Protease-Degradable Hydrogel for siRNA Sequestration and Triggered Delivery to the Heart. J. Control. Release Off. J. Control. Release Soc. 2018, 285, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Wang, L.L.; Chung, J.J.; Kim, Y.-H.; Atluri, P.; Burdick, J.A. Methods To Assess Shear-Thinning Hydrogels for Application as Injectable Biomaterials. ACS Biomater. Sci. Eng. 2017, 3, 3146–3160. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, H.; Zheng, D.; Zhang, H.; Deng, L.; Cui, W.; Zhang, Y.; Santos, H.A.; Shen, H. Gene-Hydrogel Microenvironment Regulates Extracellular Matrix Metabolism Balance in Nucleus Pulposus. Adv. Sci. 2020, 7, 1902099. [Google Scholar] [CrossRef]
- Gan, M.; Zhou, Q.; Ge, J.; Zhao, J.; Wang, Y.; Yan, Q.; Wu, C.; Yu, H.; Xiao, Q.; Wang, W.; et al. Precise In-Situ Release of microRNA from an Injectable Hydrogel Induces Bone Regeneration. Acta Biomater. 2021, 135, 289–303. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, H.; Xia, J.; Zhu, Y.; Xia, C.; Hu, Z.; Jin, Y.; Wang, J.; He, Y.; Dai, J.; et al. High-Performance Multi-Dynamic Bond Cross-Linked Hydrogel with Spatiotemporal siRNA Delivery for Gene–Cell Combination Therapy of Intervertebral Disc Degeneration. Adv. Sci. 2023, 10, 2206306. [Google Scholar] [CrossRef]
- Feng, G.; Zha, Z.; Huang, Y.; Li, J.; Wang, Y.; Ke, W.; Chen, H.; Liu, L.; Song, Y.; Ge, Z. Sustained and Bioresponsive Two-Stage Delivery of Therapeutic miRNA via Polyplex Micelle-Loaded Injectable Hydrogels for Inhibition of Intervertebral Disc Fibrosis. Adv. Healthc. Mater. 2018, 7, e1800623. [Google Scholar] [CrossRef]
- Yin, Z.; Qin, C.; Pan, S.; Shi, C.; Wu, G.; Feng, Y.; Zhang, J.; Yu, Z.; Liang, B.; Gui, J. Injectable Hyperbranched PEG Crosslinked Hyaluronan Hydrogel Microparticles Containing Mir-99a-3p Modified Subcutaneous ADSCs-Derived Exosomes Was Beneficial for Long-Term Treatment of Osteoarthritis. Mater. Today Bio 2023, 23, 100813. [Google Scholar] [CrossRef]
- Wei, Q.; Su, J.; Meng, S.; Wang, Y.; Ma, K.; Li, B.; Chu, Z.; Huang, Q.; Hu, W.; Wang, Z.; et al. MiR-17-5p-Engineered sEVs Encapsulated in GelMA Hydrogel Facilitated Diabetic Wound Healing by Targeting PTEN and P21. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2024, 11, e2307761. [Google Scholar] [CrossRef]
- Kuang, H.; Ma, J.; Chi, X.; Fu, Q.; Zhu, Q.; Cao, W.; Zhang, P.; Xie, X. Integrated Osteoinductive Factors—Exosome@MicroRNA-26a Hydrogel Enhances Bone Regeneration. ACS Appl. Mater. Interfaces 2023, 15, 22805–22816. [Google Scholar] [CrossRef]
- Saleh, B.; Dhaliwal, H.K.; Portillo-Lara, R.; Shirzaei Sani, E.; Abdi, R.; Amiji, M.M.; Annabi, N. Local Immunomodulation Using an Adhesive Hydrogel Loaded with miRNA-Laden Nanoparticles Promotes Wound Healing. Small Weinh. Bergstr. Ger. 2019, 15, e1902232. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, K.; Wu, S.; Wu, J.; Zhang, J.; Li, J.; Lei, S.; Duan, X.; Men, K. Injectable and Photocurable Gene Scaffold Facilitates Efficient Repair of Spinal Cord Injury. ACS Appl. Mater. Interfaces 2024, 16, 4375–4394. [Google Scholar] [CrossRef]
- Cui, Z.-K.; Fan, J.; Kim, S.; Bezouglaia, O.; Fartash, A.; Wu, B.M.; Aghaloo, T.; Lee, M. Delivery of siRNA via Cationic Sterosomes to Enhance Osteogenic Differentiation of Mesenchymal Stem Cells. J. Control. Release 2015, 217, 42–52. [Google Scholar] [CrossRef]
- Wang, Y.; Malcolm, D.W.; Benoit, D.S.W. Controlled and Sustained Delivery of siRNA/NPs from Hydrogels Expedites Bone Fracture Healing. Biomaterials 2017, 139, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Song, W.; Teng, L.; Huang, Y.; Liu, J.; Peng, Y.; Lu, X.; Yuan, J.; Zhao, X.; Zhao, Q.; et al. MiRNA 24-3p-Rich Exosomes Functionalized DEGMA-Modified Hyaluronic Acid Hydrogels for Corneal Epithelial Healing. Bioact. Mater. 2023, 25, 640–656. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, Z.; Wang, Y.; Li, L.; Wang, D.; Zhang, W.; Liu, L.; Jiang, H.; Yang, J.; Cheng, J. Overexpression of miR-29b Reduces Collagen Biosynthesis by Inhibiting Heat Shock Protein 47 during Skin Wound Healing. Transl. Res. J. Lab. Clin. Med. 2016, 178, 38–53.e6. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Niu, Y.; Wu, B.; Cao, X.; Gong, T.; Zhang, Z.-R.; Fu, Y. Extended-Release of Therapeutic microRNA via a Host-Guest Supramolecular Hydrogel to Locally Alleviate Renal Interstitial Fibrosis. Biomaterials 2021, 275, 120902. [Google Scholar] [CrossRef]
- Zeng, Z.; Xia, L.; Fan, X.; Ostriker, A.C.; Yarovinsky, T.; Su, M.; Zhang, Y.; Peng, X.; Xie, Y.; Pi, L.; et al. Platelet-Derived miR-223 Promotes a Phenotypic Switch in Arterial Injury Repair. J. Clin. Investig. 2019, 129, 1372–1386. [Google Scholar] [CrossRef]
- Chen, K.; Ding, L.; Shui, H.; Liang, Y.; Zhang, X.; Wang, T.; Li, L.; Liu, S.; Wu, H. MiR-615 Agomir Encapsulated in Pluronic F-127 Alleviates Neuron Damage and Facilitates Function Recovery After Brachial Plexus Avulsion. J. Mol. Neurosci. 2022, 72, 136–148. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Urabe, G.; Shirasu, T.; Guo, L.-W.; Kent, K.C. PERK Inhibition Promotes Post-Angioplasty Re-Endothelialization via Modulating SMC Phenotype Changes. J. Surg. Res. 2021, 257, 294–305. [Google Scholar] [CrossRef]
- Wu, H.-F.; Cen, J.-S.; Zhong, Q.; Chen, L.; Wang, J.; Deng, D.Y.B.; Wan, Y. The Promotion of Functional Recovery and Nerve Regeneration after Spinal Cord Injury by Lentiviral Vectors Encoding Lingo-1 shRNA Delivered by Pluronic F-127. Biomaterials 2013, 34, 1686–1700. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.-G.; Jiang, X.-J.; Li, X.-Y.; Zhang, C.; Yi, X.; Ren, S.; Zhang, X.-Z. Enhanced Cardioprotective Effects Mediated by Plasmid Containing the Short-Hairpin RNA of Angiotensin Converting Enzyme with a Biodegradable Hydrogel after Myocardial Infarction. J. Biomed. Mater. Res. A 2014, 102, 3452–3458. [Google Scholar] [CrossRef] [PubMed]
- Ka, M.; Ce, M. Sustained miRNA Release Regenerates the Heart. Nat. Biomed. Eng. 2017, 1, 931–933. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, S.; Qi, Y.; Gong, Z.; Zhang, H.; Liang, K.; Shen, P.; Huang, Y.-Y.; Zhang, Z.; Ye, W.; et al. Stem Cell–Homing Hydrogel-Based miR-29b-5p Delivery Promotes Cartilage Regeneration by Suppressing Senescence in an Osteoarthritis Rat Model. Sci. Adv. 2022, 8, eabk0011. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, S.; Zhang, M.; Hong, X.; Zhao, M.; Xu, S.; Ji, J.; Ren, K.; Fu, G.; Fu, J. Adventitial Delivery of miR-145 to Treat Intimal Hyperplasia Post Vascular Injuries through Injectable and in-Situ Self-Assembling Peptide Hydrogels. Acta Biomater. 2024, 173, 247–260. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, Z.; Li, Z.; Li, X.; Huang, B.; Lu, X.; Dai, S.; Li, S.; Man, Z.; Li, W. Attenuation of Osteoarthritis Progression via Locoregional Delivery of Klotho-Expressing Plasmid DNA and Tanshinon IIA through a Stem Cell-Homing Hydrogel. J. Nanobiotechnol. 2024, 22, 325. [Google Scholar] [CrossRef]
- Zheng, S.-S.; Zhao, J.; Chen, J.-W.; Shen, X.-H.; Hong, X.-L.; Fu, G.-S.; Fu, J.-Y. Inhibition of Neointimal Hyperplasia in Balloon-Induced Vascular Injuries in a Rat Model by miR-22 Loading Laponite Hydrogels. Biomater. Adv. 2022, 142, 213140. [Google Scholar] [CrossRef]
- Han, C.; Zhou, J.; Liu, B.; Liang, C.; Pan, X.; Zhang, Y.; Zhang, Y.; Wang, Y.; Shao, L.; Zhu, B.; et al. Delivery of miR-675 by Stem Cell-Derived Exosomes Encapsulated in Silk Fibroin Hydrogel Prevents Aging-Induced Vascular Dysfunction in Mouse Hindlimb. Mater. Sci. Eng. C 2019, 99, 322–332. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; He, D.; Ma, Z.; Xue, K.; Li, H. 45S5 Bioglass® Works Synergistically with siRNA to Downregulate the Expression of Matrix Metalloproteinase-9 in Diabetic Wounds. Acta Biomater. 2022, 145, 372–389. [Google Scholar] [CrossRef]
- Li, Y.; Song, W.; Kong, L.; He, Y.; Li, H. Injectable and Microporous Microgel-Fiber Granular Hydrogel Loaded with Bioglass and siRNA for Promoting Diabetic Wound Healing. Small Weinh. Bergstr. Ger. 2024, 20, e2309599. [Google Scholar] [CrossRef]
- Pan, S.; Yin, Z.; Shi, C.; Xiu, H.; Wu, G.; Heng, Y.; Zhu, Z.; Zhang, J.; Gui, J.; Yu, Z.; et al. Multifunctional Injectable Hydrogel Microparticles Loaded with miR-29a Abundant BMSCs Derived Exosomes Enhanced Bone Regeneration by Regulating Osteogenesis and Angiogenesis. Small Weinh. Bergstr. Ger. 2024, 20, e2306721. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, M.G.; Holeiter, M.; Brauchle, E.; Layland, S.L.; Lu, Y.; Deb, A.; Pandit, A.; Nsair, A.; Schenke-Layland, K. Exogenous miR-29B Delivery Through a Hyaluronan-Based Injectable System Yields Functional Maintenance of the Infarcted Myocardium. Tissue Eng. Part A 2018, 24, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yang, Z.; Luo, Y.; Zhao, X.; Tian, M.; Kang, P. Delivery of MiR335-5p-Pendant Tetrahedron DNA Nanostructures Using an Injectable Heparin Lithium Hydrogel for Challenging Bone Defects in Steroid-Associated Osteonecrosis. Adv. Healthc. Mater. 2022, 11, 2101412. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.Y.; Yap, Z.L.; Seet, L.F.; Chan, H.H.; Toh, L.Z.; Chu, S.W.L.; Lee, Y.S.; Wong, T.T.; Tan, T.T.Y. Positive-Charge Tuned Gelatin Hydrogel-siSPARC Injectable for siRNA Anti-Scarring Therapy in Post Glaucoma Filtration Surgery. Sci. Rep. 2021, 11, 1470. [Google Scholar] [CrossRef]
- Schek, R.M.; Hollister, S.J.; Krebsbach, P.H. Delivery and Protection of Adenoviruses Using Biocompatible Hydrogels for Localized Gene Therapy. Mol. Ther. J. Am. Soc. Gene Ther. 2004, 9, 130–138. [Google Scholar] [CrossRef]
- Sui, L.; Wang, M.; Han, Q.; Yu, L.; Zhang, L.; Zheng, L.; Lian, J.; Zhang, J.; Valverde, P.; Xu, Q.; et al. A Novel Lipidoid-MicroRNA Formulation Promotes Calvarial Bone Regeneration. Biomaterials 2018, 177, 88–97. [Google Scholar] [CrossRef]
- Pandey, R.; Velasquez, S.; Durrani, S.; Jiang, M.; Neiman, M.; Crocker, J.S.; Benoit, J.B.; Rubinstein, J.; Paul, A.; Ahmed, R.P. MicroRNA-1825 Induces Proliferation of Adult Cardiomyocytes and Promotes Cardiac Regeneration Post Ischemic Injury. Am. J. Transl. Res. 2017, 9, 3120–3137. [Google Scholar]
- Huynh, C.T.; Zheng, Z.; Nguyen, M.K.; McMillan, A.; Yesilbag Tonga, G.; Rotello, V.M.; Alsberg, E. Cytocompatible Catalyst-Free Photodegradable Hydrogels for Light-Mediated RNA Release to Induce hMSC Osteogenesis. ACS Biomater. Sci. Eng. 2017, 3, 2011–2023. [Google Scholar] [CrossRef]
- Huynh, C.T.; Nguyen, M.K.; Naris, M.; Tonga, G.Y.; Rotello, V.M.; Alsberg, E. Light-Triggered RNA Release and Induction of hMSC Osteogenesis via Photodegradable, Dual-Crosslinked Hydrogels. Nanomed 2016, 11, 1535. [Google Scholar] [CrossRef]
- Huynh, C.T.; Nguyen, M.K.; Tonga, G.Y.; Longé, L.; Rotello, V.M.; Alsberg, E. Photocleavable Hydrogels for Light-Triggered siRNA Release. Adv. Healthc. Mater. 2016, 5, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Hiltebrandt, K.; Elies, K.; D’hooge, D.R.; Blinco, J.P.; Barner-Kowollik, C. A Light-Activated Reaction Manifold. J. Am. Chem. Soc. 2016, 138, 7048–7054. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Hu, J.; Wang, X.; Huang, L.; Chen, Y.; Wang, W.; Li, J.; Zhang, Y. A Dual-Functional Supramolecular Hydrogel Based on a Spiropyran-Galactose Conjugate for Target-Mediated and Light-Controlled Delivery of microRNA into Cells. Chem. Commun. Camb. Engl. 2016, 52, 12517–12520. [Google Scholar] [CrossRef]
- Zhou, Z.; Yi, Q.; Xia, T.; Yin, W.; Kadi, A.A.; Li, J.; Zhang, Y. A Photo-Degradable Supramolecular Hydrogel for Selective Delivery of microRNA into 3D-Cultured Cells. Org. Biomol. Chem. 2017, 15, 2191–2198. [Google Scholar] [CrossRef]
- Yan, R.; Liu, X.; Xiong, J.; Feng, Q.; Xu, J.; Wang, H.; Xiao, K. pH-Responsive Hyperbranched Polypeptides Based on Schiff Bases as Drug Carriers for Reducing Toxicity of Chemotherapy. RSC Adv. 2020, 10, 13889–13899. [Google Scholar] [CrossRef]
- Nichol, J.W.; Koshy, S.; Bae, H.; Hwang, C.M.; Yamanlar, S.; Khademhosseini, A. Cell-Laden Microengineered Gelatin Methacrylate Hydrogels. Biomaterials 2010, 31, 5536. [Google Scholar] [CrossRef]
- Choi, B.; Cui, Z.-K.; Kim, S.; Fan, J.; Wu, B.M.; Lee, M. Glutamine-Chitosan Modified Calcium Phosphate Nanoparticles for Efficient siRNA Delivery and Osteogenic Differentiation. J. Mater. Chem. B 2015, 3, 6448–6455. [Google Scholar] [CrossRef]
- Shriky, B.; Kelly, A.; Isreb, M.; Babenko, M.; Mahmoudi, N.; Rogers, S.; Shebanova, O.; Snow, T.; Gough, T. Pluronic F127 Thermosensitive Injectable Smart Hydrogels for Controlled Drug Delivery System Development. J. Colloid Interface Sci. 2020, 565, 119–130. [Google Scholar] [CrossRef]
- Yang, H.-Y.; van Ee, R.J.; Timmer, K.; Craenmehr, E.G.M.; Huang, J.H.; Öner, F.C.; Dhert, W.J.A.; Kragten, A.H.M.; Willems, N.; Grinwis, G.C.M.; et al. A Novel Injectable Thermoresponsive and Cytocompatible Gel of Poly(N-Isopropylacrylamide) with Layered Double Hydroxides Facilitates siRNA Delivery into Chondrocytes in 3D Culture. Acta Biomater. 2015, 23, 214–228. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, H.; Hao, C.; Guo, L.; Bai, L.; Gu, J.; Yan, N. Bio-Based pH-Responsive Microcapsules Derived from Schiff Base Structures for Acid Rain Protection. Compos. Part B Eng. 2024, 274, 111289. [Google Scholar] [CrossRef]
- Lin, X.; Xie, J.; Zhu, L.; Lee, S.; Niu, G.; Ma, Y.; Kim, K.; Chen, X. Hybrid Ferritin Nanoparticles as Activatable Probes for Tumor Imaging. Angew. Chem. Int. Ed. Engl. 2011, 50, 1569–1572. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-W.; Yu, K.-X.; Ji, X.-Y.; Bai, H.; Zhang, W.-H.; Hu, X.; Tang, G. Structural Insights into the Host-Guest Complexation between β-Cyclodextrin and Bio-Conjugatable Adamantane Derivatives. Mol. Basel Switz. 2021, 26, 2412. [Google Scholar] [CrossRef] [PubMed]
- Habibi, N.; Kamaly, N.; Memic, A.; Shafiee, H. Self-Assembled Peptide-Based Nanostructures: Smart Nanomaterials toward Targeted Drug Delivery. Nano Today 2016, 11, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, X.; Horii, A.; Wang, X.; Qiao, L.; Zhang, S.; Cui, F.-Z. In Vivo Studies on Angiogenic Activity of Two Designer Self-Assembling Peptide Scaffold Hydrogels in the Chicken Embryo Chorioallantoic Membrane. Nanoscale 2012, 4, 2720–2727. [Google Scholar] [CrossRef]
- Sieminski, A.L.; Semino, C.E.; Gong, H.; Kamm, R.D. Primary Sequence of Ionic Self-Assembling Peptide Gels Affects Endothelial Cell Adhesion and Capillary Morphogenesis. J. Biomed. Mater. Res. A 2008, 87, 494–504. [Google Scholar] [CrossRef]
- Zhang, N.; Lin, J.; Lin, V.P.H.; Milbreta, U.; Chin, J.S.; Chew, E.G.Y.; Lian, M.M.; Foo, J.N.; Zhang, K.; Wu, W.; et al. A 3D Fiber-Hydrogel Based Non-Viral Gene Delivery Platform Reveals That microRNAs Promote Axon Regeneration and Enhance Functional Recovery Following Spinal Cord Injury. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2021, 8, e2100805. [Google Scholar] [CrossRef]
- Zhou, F.; Jia, X.; Yang, Y.; Yang, Q.; Gao, C.; Hu, S.; Zhao, Y.; Fan, Y.; Yuan, X. Nanofiber-Mediated microRNA-126 Delivery to Vascular Endothelial Cells for Blood Vessel Regeneration. Acta Biomater. 2016, 43, 303–313. [Google Scholar] [CrossRef]
- Milbreta, U.; Lin, J.; Pinese, C.; Ong, W.; Chin, J.S.; Shirahama, H.; Mi, R.; Williams, A.; Bechler, M.E.; Wang, J.; et al. Scaffold-Mediated Sustained, Non-Viral Delivery of miR-219/miR-338 Promotes CNS Remyelination. Mol. Ther. J. Am. Soc. Gene Ther. 2019, 27, 411–423. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Ong, W.; Wang, K.; Wang, M.; Nizetic, D.; Chew, S.Y. Effects of miR-219/miR-338 on Microglia and Astrocyte Behaviors and Astrocyte-Oligodendrocyte Precursor Cell Interactions. Neural Regen. Res. 2020, 15, 739–747. [Google Scholar] [CrossRef]
- Zhao, R.; Deng, X.; Dong, J.; Liang, C.; Yang, X.; Tang, Y.; Du, J.; Ge, Z.; Wang, D.; Shen, Y.; et al. Highly Bioadaptable Hybrid Conduits with Spatially Bidirectional Structure for Precision Nerve Fiber Regeneration via Gene Therapy. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2024, 11, e2309306. [Google Scholar] [CrossRef]
- Acri, T.M.; Laird, N.Z.; Jaidev, L.R.; Meyerholz, D.K.; Salem, A.K.; Shin, K. Nonviral Gene Delivery Embedded in Biomimetically Mineralized Matrices for Bone Tissue Engineering. Tissue Eng. Part A 2021, 27, 1074–1083. [Google Scholar] [CrossRef]
- D’Mello, S.R.; Elangovan, S.; Hong, L.; Ross, R.D.; Sumner, D.R.; Salem, A.K. A Pilot Study Evaluating Combinatorial and Simultaneous Delivery of Polyethylenimine-Plasmid DNA Complexes Encoding for VEGF and PDGF for Bone Regeneration in Calvarial Bone Defects. Curr. Pharm. Biotechnol. 2015, 16, 655–660. [Google Scholar] [CrossRef]
- Walsh, D.P.; Raftery, R.M.; Murphy, R.; Chen, G.; Heise, A.; O’Brien, F.J.; Cryan, S.A. Gene Activated Scaffolds Incorporating Star-Shaped Polypeptide-pDNA Nanomedicines Accelerate Bone Tissue Regeneration in Vivo. Biomater. Sci. 2021, 9, 4984–4999. [Google Scholar] [CrossRef] [PubMed]
- Elangovan, S.; D’Mello, S.R.; Hong, L.; Ross, R.D.; Allamargot, C.; Dawson, D.V.; Stanford, C.M.; Johnson, G.K.; Sumner, D.R.; Salem, A.K. The Enhancement of Bone Regeneration by Gene Activated Matrix Encoding for Platelet Derived Growth Factor. Biomaterials 2014, 35, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Raftery, R.M.; Mencía Castaño, I.; Chen, G.; Cavanagh, B.; Quinn, B.; Curtin, C.M.; Cryan, S.A.; O’Brien, F.J. Translating the Role of Osteogenic-Angiogenic Coupling in Bone Formation: Highly Efficient Chitosan-pDNA Activated Scaffolds Can Accelerate Bone Regeneration in Critical-Sized Bone Defects. Biomaterials 2017, 149, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Itaka, K.; Ohba, S.; Miyata, K.; Kawaguchi, H.; Nakamura, K.; Takato, T.; Chung, U.-I.; Kataoka, K. Bone Regeneration by Regulated in Vivo Gene Transfer Using Biocompatible Polyplex Nanomicelles. Mol. Ther. J. Am. Soc. Gene Ther. 2007, 15, 1655–1662. [Google Scholar] [CrossRef]
- Badieyan, Z.S.; Berezhanskyy, T.; Utzinger, M.; Aneja, M.K.; Emrich, D.; Erben, R.; Schüler, C.; Altpeter, P.; Ferizi, M.; Hasenpusch, G.; et al. Transcript-Activated Collagen Matrix as Sustained mRNA Delivery System for Bone Regeneration. J. Control. Release Off. J. Control. Release Soc. 2016, 239, 137–148. [Google Scholar] [CrossRef]
- Schek, R.M.; Wilke, E.N.; Hollister, S.J.; Krebsbach, P.H. Combined Use of Designed Scaffolds and Adenoviral Gene Therapy for Skeletal Tissue Engineering. Biomaterials 2006, 27, 1160–1166. [Google Scholar] [CrossRef]
- Tao, S.C.; Huang, J.Y.; Li, Z.X.; Zhan, S.; Guo, S.C. Small Extracellular Vesicles with LncRNA H19 “Overload”: YAP Regulation as a Tendon Repair Therapeutic Tactic. iScience 2021, 24, 102200. [Google Scholar] [CrossRef]
- Zhong, C.; He, S.; Huang, Y.; Yan, J.; Wang, J.; Liu, W.; Fang, J.; Ren, F. Scaffold-Based Non-Viral CRISPR Delivery Platform for Efficient and Prolonged Gene Activation to Accelerate Tissue Regeneration. Acta Biomater. 2024, 173, 283–297. [Google Scholar] [CrossRef]
- Lei, H.; Fan, D. A Combination Therapy Using Electrical Stimulation and Adaptive, Conductive Hydrogels Loaded with Self-Assembled Nanogels Incorporating Short Interfering RNA Promotes the Repair of Diabetic Chronic Wounds. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2022, 9, e2201425. [Google Scholar] [CrossRef]
- Martin, J.R.; Nelson, C.E.; Gupta, M.K.; Yu, F.; Sarett, S.M.; Hocking, K.M.; Pollins, A.C.; Nanney, L.B.; Davidson, J.M.; Guelcher, S.A.; et al. Local Delivery of PHD2 siRNA from ROS-Degradable Scaffolds to Promote Diabetic Wound Healing. Adv. Healthc. Mater. 2016, 5, 2751–2757. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, K.; Song, W.; Xu, H.; An, R.; Zhao, L.; Liu, B.; Zhang, Y. Chitosan/siCkip-1 Biofunctionalized Titanium Implant for Improved Osseointegration in the Osteoporotic Condition. Sci. Rep. 2015, 5, 10860. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, H.; Bu, Z.; Liu, Z.; Lv, F.; Pan, M.; Huang, X.; Cheng, L. Small Extracellular Vesicles Released from Bioglass/Hydrogel Scaffold Promote Vascularized Bone Regeneration by Transferring miR-23a-3p. Int. J. Nanomed. 2022, 17, 6201–6220. [Google Scholar] [CrossRef]
- Meng, Y.; Li, X.; Li, Z.; Liu, C.; Zhao, J.; Wang, J.; Liu, Y.; Yuan, X.; Cui, Z.; Yang, X. Surface Functionalization of Titanium Alloy with miR-29b Nanocapsules to Enhance Bone Regeneration. ACS Appl. Mater. Interfaces 2016, 8, 5783–5793. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, K.; Arjunan, P.; Marepally, S.; Madhuri, V. Controlled Differentiation of Mesenchymal Stem Cells into Hyaline Cartilage in miR-140-Activated Collagen Hydrogel. Cartilage 2021, 13, 571S–581S. [Google Scholar] [CrossRef] [PubMed]
- Castaño, I.M.; Raftery, R.M.; Chen, G.; Cavanagh, B.; Quinn, B.; Duffy, G.P.; O’Brien, F.J.; Curtin, C.M. Rapid Bone Repair with the Recruitment of CD206+M2-like Macrophages Using Non-Viral Scaffold-Mediated miR-133a Inhibition of Host Cells. Acta Biomater. 2020, 109, 267–279. [Google Scholar] [CrossRef]
- Yang, X.; Gao, J.; Yang, S.; Wu, Y.; Liu, H.; Su, D.; Li, D. Pore Size-Mediated Macrophage M1 to M2 Transition Affects Osseointegration of 3D-Printed PEEK Scaffolds. Int. J. Bioprinting 2023, 9, 755. [Google Scholar] [CrossRef]
- Keeney, M.; Onyiah, S.; Zhang, Z.; Tong, X.; Han, L.-H.; Yang, F. Modulating Polymer Chemistry to Enhance Non-Viral Gene Delivery inside Hydrogels with Tunable Matrix Stiffness. Biomaterials 2013, 34, 9657–9665. [Google Scholar] [CrossRef]
- Wang, L.; Feng, M.; Zhao, Y.; Chen, B.; Zhao, Y.; Dai, J. Biomimetic Scaffold-Based Stem Cell Transplantation Promotes Lung Regeneration. Bioeng. Transl. Med. 2023, 8, e10535. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, X.; Li, Y.; Liu, X.; Wang, S.; Lu, M.; Yan, X.; Deng, L.; Liu, S.; Wang, F.; et al. Self-Healing Hydrogel Embodied with Macrophage-Regulation and Responsive-Gene-Silencing Properties for Synergistic Prevention of Peritendinous Adhesion. Adv. Mater. Deerfield Beach Fla. 2022, 34, e2106564. [Google Scholar] [CrossRef]
- Luo, Z.; Li, J.; Qu, J.; Sheng, W.; Yang, J.; Li, M. Cationized Bombyx Mori Silk Fibroin as a Delivery Carrier of the VEGF165-Ang-1 Coexpression Plasmid for Dermal Tissue Regeneration. J. Mater. Chem. B 2019, 7, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Xu, S.; Ma, L.; Huang, A.; Gao, C. Enhanced Angiogenesis of Gene-Activated Dermal Equivalent for Treatment of Full Thickness Incisional Wounds in a Porcine Model. Biomaterials 2010, 31, 7308–7320. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.-C.; Rui, B.-Y.; Wang, Q.-Y.; Zhou, D.; Zhang, Y.; Guo, S.-C. Extracellular Vesicle-Mimetic Nanovesicles Transport LncRNA-H19 as Competing Endogenous RNA for the Treatment of Diabetic Wounds. Drug Deliv. 2018, 25, 241–255. [Google Scholar] [CrossRef]
- Mo, Y.; Guo, R.; Zhang, Y.; Xue, W.; Cheng, B.; Zhang, Y. Controlled Dual Delivery of Angiogenin and Curcumin by Electrospun Nanofibers for Skin Regeneration. Tissue Eng. Part A 2017, 23, 597–608. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Huang, Z.; Yang, B.; Mu, N.; Yang, Z.; Deng, M.; Liao, X.; Yin, G.; Nie, Y.; et al. Gene Delivery of Chitosan-Graft-Polyethyleneimine Vectors Loaded on Scaffolds for Nerve Regeneration. Carbohydr. Polym. 2022, 290, 119499. [Google Scholar] [CrossRef]
- Chen, F.; Wan, H.; Xia, T.; Guo, X.; Wang, H.; Liu, Y.; Li, X. Promoted Regeneration of Mature Blood Vessels by Electrospun Fibers with Loaded Multiple pDNA-Calcium Phosphate Nanoparticles. Eur. J. Pharm. Biopharm. 2013, 85, 699–710. [Google Scholar] [CrossRef]
- Castleberry, S.A.; Golberg, A.; Sharkh, M.A.; Khan, S.; Almquist, B.D.; Austen, W.G.; Yarmush, M.L.; Hammond, P.T. Nanolayered siRNA Delivery Platforms for Local Silencing of CTGF Reduce Cutaneous Scar Contraction in Third-Degree Burns. Biomaterials 2016, 95, 22–34. [Google Scholar] [CrossRef]
- Mandapalli, P.K.; Labala, S.; Jose, A.; Bhatnagar, S.; Janupally, R.; Sriram, D.; Venuganti, V.V.K. Layer-by-Layer Thin Films for Co-Delivery of TGF-β siRNA and Epidermal Growth Factor to Improve Excisional Wound Healing. AAPS PharmSciTech 2017, 18, 809–820. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, Y.; Ye, Y.; DiSanto, R.; Sun, W.; Ranson, D.; Ligler, F.S.; Buse, J.B.; Gu, Z. Microneedle-Array Patches Loaded with Hypoxia-Sensitive Vesicles Provide Fast Glucose-Responsive Insulin Delivery. Proc. Natl. Acad. Sci. USA. 2015, 112, 8260–8265. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, J.; Zhang, Y.; Chen, G.; Mao, W.; Ye, Y.; Kahkoska, A.R.; Buse, J.B.; Langer, R.; Gu, Z. Glucose-Responsive Insulin Patch for the Regulation of Blood Glucose in Mice and Minipigs. Nat. Biomed. Eng. 2020, 4, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xie, Y.; Ma, K.; Wei, Z.; Ran, X.; Fu, X.; Zhang, C.; Zhao, C. Electrospun Nanofibrous Membranes Meet Antibacterial Nanomaterials: From Preparation Strategies to Biomedical Applications. Bioact. Mater. 2024, 42, 478–518. [Google Scholar] [CrossRef]
- Castleberry, S.A.; Almquist, B.D.; Li, W.; Reis, T.; Chow, J.; Mayner, S.; Hammond, P.T. Self-Assembled Wound Dressings Silence MMP-9 and Improve Diabetic Wound Healing In Vivo. Adv. Mater. Deerfield Beach Fla. 2016, 28, 1809–1817. [Google Scholar] [CrossRef]
- Dirisala, A.; Uchida, S.; Li, J.; Van Guyse, J.F.R.; Hayashi, K.; Vummaleti, S.V.C.; Kaur, S.; Mochida, Y.; Fukushima, S.; Kataoka, K. Effective mRNA Protection by Poly(l-Ornithine) Synergizes with Endosomal Escape Functionality of a Charge-Conversion Polymer toward Maximizing mRNA Introduction Efficiency. Macromol. Rapid Commun. 2022, 43, 2100754. [Google Scholar] [CrossRef]
- Hujaya, S.D.; Marchioli, G.; Roelofs, K.; van Apeldoorn, A.A.; Moroni, L.; Karperien, M.; Paulusse, J.M.J.; Engbersen, J.F.J. Poly(Amido Amine)-Based Multilayered Thin Films on 2D and 3D Supports for Surface-Mediated Cell Transfection. J. Control. Release Off. J. Control. Release Soc. 2015, 205, 181–189. [Google Scholar] [CrossRef]
- Johnson, N.R.; Kruger, M.; Goetsch, K.P.; Zilla, P.; Bezuidenhout, D.; Wang, Y.; Davies, N.H. Coacervate Delivery of Growth Factors Combined with a Degradable Hydrogel Preserves Heart Function after Myocardial Infarction. ACS Biomater. Sci. Eng. 2015, 1, 753–759. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, A.R.; Bhattacharya, M.; Lee, S.-S.; Chakraborty, C. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Mol. Ther. J. Am. Soc. Gene Ther. 2021, 29, 571–586. [Google Scholar] [CrossRef]
- Yin, W.; Chen, X.; Bai, L.; Li, Y.; Chen, W.; Jiang, Y.; He, Y.; Yang, Y.; Lin, Y.; Tian, T.; et al. BBPs-Functionalized Tetrahedral Framework Nucleic Acid Hydrogel Scaffold Captures Endogenous BMP-2 to Promote Bone Regeneration. Biomaterials 2025, 319, 123194. [Google Scholar] [CrossRef]
- Dirisala, A.; Uchida, S.; Toh, K.; Li, J.; Liu, X.; Wen, P.; Fukushima, S.; Kataoka, K. Structural Stability and RNase Resistance of mRNA Polyplex Micelles for Systemic Delivery. J. Control. Release Off. J. Control. Release Soc. 2025, 384, 113935. [Google Scholar] [CrossRef]
- Li, F.; Wu, J.; Li, D.; Hao, L.; Li, Y.; Yi, D.; Yeung, K.W.K.; Chen, D.; Lu, W.W.; Pan, H.; et al. Engineering Stem Cells to Produce Exosomes with Enhanced Bone Regeneration Effects: An Alternative Strategy for Gene Therapy. J. Nanobiotechnology 2022, 20, 135. [Google Scholar] [CrossRef]
- Pang, J.-L.; Shao, H.; Xu, X.-G.; Lin, Z.-W.; Chen, X.-Y.; Chen, J.-Y.; Mou, X.-Z.; Hu, P.-Y. Targeted Drug Delivery of Engineered Mesenchymal Stem/Stromal-Cell-Derived Exosomes in Cardiovascular Disease: Recent Trends and Future Perspectives. Front. Bioeng. Biotechnol. 2024, 12, 1363742. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.G.; Shen, J.; Yang, J.; Wang, J.W.; Zhao, R.C.; Zhang, T.L.; Guo, J.; Zhang, X. Nucleic Acid Drug Vectors for Diagnosis and Treatment of Brain Diseases. Signal Transduct. Target. Ther. 2023, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Nam, M.; Lee, J.W.; Cha, G.D. Biomedical Application of Enzymatically Crosslinked Injectable Hydrogels. Gels 2024, 10, 640. [Google Scholar] [CrossRef]
- Jahangiri, S.; Rahimnejad, M.; Nasrollahi Boroujeni, N.; Ahmadi, Z.; Motamed Fath, P.; Ahmadi, S.; Safarkhani, M.; Rabiee, N. Viral and Non-Viral Gene Therapy Using 3D (Bio)Printing. J. Gene Med. 2022, 24, e3458. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.K.; Chang, Y.-H.; Truong, V.A.; Hsu, M.-N.; Pham, N.N.; Chang, C.-W.; Wu, Y.-H.; Chang, Y.-H.; Li, H.; Hu, Y.-C. CRISPR Activation of Long Non-Coding RNA DANCR Promotes Bone Regeneration. Biomaterials 2021, 275, 120965. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, C.; Lin, S.; Wang, Y.; Liu, L.; Wang, Z.; Zhu, Y.; Xu, T. A Closed-Loop Minimally Invasive 3D Printing Strategy with Robust Trocar Identification and Adaptive Alignment. Addit. Manuf. 2023, 73, 103701. [Google Scholar] [CrossRef]
Design | DNA/RNA | Target Sites/ Additive Fragments | Vectors | Scaffold Materials | Application | Reference |
---|---|---|---|---|---|---|
Light-responsive release | miR-26a-5p | N/A | Cholesterol | PEG | Calvarial bone defect | [148] |
PH-responsive release | miR-21-5p | SPRY1 | MSNs | α-CD, PEG-CHO | Myocardial infarction | [126] |
siRNA | STING | PAMAM | HA-CHO | Intervertebral disc degeneration | [114] | |
siRNA | P65 | G5 PAMAM-PBA | OG, ADH-GCA | Intervertebral disc degeneration | [149] | |
Enzyme-responsive release | miR-29a | Col I/Col III/TGF-β | polyplex micelles | Peptide CGPLGVRGC, eight-arm PEG Maleimide (hexaglycerol) | Intervertebral disc fibrosis | [150] |
miR-99a-3p | ADAMTS4 | ADSCs exosome | PEG-HA | Osteoarthritis | [151] | |
siRNA | MMP2 | Cholesterol | HA | Myocardial infarction | [145] | |
Photosensitive hydrogel | miR-17-5p | PTEN/p21 | hUC-MSCs sEVs | GelMA | Diabetic wound healing | [152] |
miR-26a | Tob | rats BMSCs exosome | GelMA-CSMA | Calvarial bone defect | [153] | |
miR-146a | TRAF6/NF-κB | MSNs | GelMA | Mandibular defect | [128] | |
miR-146a | N/A | CNPs | SBMA, HEMA, PEGDMA | Diabetic wound healing | [134] | |
miRNA-223 | N/A | HA | GelMA | Wound healing | [154] | |
siRNA | VEGFa | LNPs | GelMA | Cartilage regeneration | [60] | |
siRNA | PTEN/MIF | LNPs | GelMA | Spinal cord injury | [155] | |
siRNA | noggin | SA/Chol sterosome | MeGC | Calvarial bone defect | [156] | |
siRNA | Wwp1 | pDMAEMA-b-p(DMAEMA-co-PAA-co-BMA) | PEG-PLA-DM | Bone fracture | [157] | |
Temperature-sensitive hydrogel | miRNA-24-3p | N/A | rabbit ADSCs exo | DEGMA-HA | Corneal epithelium | [158] |
miR-26a | N/A | RALA | Cs-g-PNIPAAm | Calvarial bone defect | [68] | |
miR-29b | PDGFRβ | Lentiviral vectors | Matrigel | Skin wound healing | [159] | |
miR-29b | N/A | BSA | PF-127 | Renal interstitial fibrosis | [160] | |
miR-222 | NLK | MSNs | PEG–PLGA–PNIPAM tri-block polymer | Mandibular defect | [127] | |
miR-223 | PDGFRβ | Cholesterol | Pluronic gel | Arterial injury | [161] | |
miR-615 | LINGO-1 | N/A | PF-127 | Neuron damage | [162] | |
siRNA | PERK | Lentiviral vectors | PLGA–PEG–PLGA tri-block polymer | Post-angioplasty reendothelialization | [163] | |
siRNA | PPARc | bPEI | PLGA–PEG–PLGA tri-block polymer | Alcohol-induced osteonecrosis | [102] | |
shRNA | LINGO-1 | Lentiviral vectors | PF-127 | Ventral root avulsion | [20] | |
shRNA | LINGO-1 | Lentiviral vectors | PF-127 | Spinal cord injury | [164] | |
shRNA | ACE | Lipofectamine 2000 | Dex-PCLHEMA/PNIPAAm | Myocardial infarction | [165] | |
pDNA | BMP-2 | Chitosan nanoparticles | Chitosan | Calvarial bone defect | [84] | |
pDNA | BMP-2 | Chitosan nanoparticles | Chitosan | Endogenous repair of the periodontium | [81] | |
Host–guest self-assembling hydrogels | miR-302 | Mst1/Lats2/Mob1 | Cholesterol | HA | Myocardial infarction | [144] |
miR-302 | Hippo | Cholesterol | Adamantane-HA, cyclodextrin-HA | Myocardial infarction | [166] | |
Peptide self-assembling hydrogels | miR-29b-5p | N/A | N/A | SAP hydrogel-conjugated peptide SKPPGTSS | Cartilage | [167] |
miR-145 | N/A | N/A | Self-assembling RAD peptide hydrogel | Intimal hyperplasia post-vascular injuries | [168] | |
pDNA | Klotho | Peptide NPs | KLDL hydrogel-conjugated peptide PFSSTKT | Osteoarthritis | [169] | |
Physical cross-linking | miR-22 | MECP2 | N/A | Laponite hydrogels | Vascular injuries | [170] |
miR-126/miR-146a | SPRED-1(miR-126), IRAK-1/TRAF6(miR-146a) | ADSCs exosome | Sodium alginate | Myocardial Infarction | [53] | |
miR-146a | N/A | CNPs | CBMA or SBMA, HEMA | Diabetic wound healing | [137] | |
miR-675 | TGF-β1 | hUC-MSCs exosome | Silk fibroin | Aging-induced vascular dysfunction | [171] | |
siRNA | CAPG | Lipofectamine RNAiMAX | dECM | Cardiac fibroblast | [64] | |
siRNA | MMP9 | chitosan nanoparticles | Sodium alginate, 45S5 Bioglass® powder | Diabetic wound healing | [172] | |
siRNA | MMP9 | N/A | HA, SA | Diabetic wound healing | [173] | |
DNA | PDGF-B | adenovirus vectors | Collagen, polyvinyl alcohol sponge | Soft tissue repair | [38] | |
pDNA | bFGF | PEI-PEG | alginate, HA | Vocal fold | [104] | |
Chemical cross-linking | miR-26a-5p | N/A | EC-Exosome | HA | Bone fracture | [54] |
miR-29a | HDAC4 | mice BMSCs exosome | HB-PEGDA, SH-HA | Bone fracture | [174] | |
miR-29b | N/A | N/A | SH-HA-PEGDA | Myocardial infarction | [175] | |
miRNA-199a-3p | HOMER1/CLIC5 | DSPE-PEG, TAT-peptide | ELP-HYD, HA-ALD | Myocardial infarction | [39] | |
miR335-5p | DKK1 | Tetrahedral DNA | Li-hep-gel | Steroid-associated osteonecrosis | [176] | |
miR-5590 | DDX5 | SNAs | DNA hydrogel | Disc | [97] | |
miRNA | COX | PLGA | HA | Tendon | [112] | |
mRNA | VEGF-A/BMP-2 | hAD-MSCs sEVs | PEGS-A | Femur critical-size defects | [55] | |
siRNA | SPARC | N/A | Gelatin-tyramine (Gtn-Tyr) hydrogel | Anti-scarring therapy | [177] | |
siRNA | Mstn | Invivofectamine® 3.0 | Silk fibroin | Skeletal muscle | [63] | |
siRNA | DDIT4 | G5-PAMAM | HA | Disc | [115] | |
lncRNA HAR1B | KLF4 | HUVECs exo | β-cyclodextrin derivatives, gelatin, chitosan | Diabetic wound healing | [24] | |
Physical and chemical cross-linking | DNA | BMP-7 | Adenovirus vectors | Collagen, fibrinogen | Bone defects | [178] |
Others | miR-335-5p | DKK1 | LNPs | Silk fibroin | Calvarial bone defects | [179] |
miR-1825 | NDUFA10 | AAV vectors | Gelatin, silicate | Myocardial infarction | [180] | |
siRNA | Rb1/Meis | Liposomes | Gelatin, silicate | Myocardial infarction | [65] |
Design | DNA/RNA | Target Sites/ Additive Fragments | Vectors | Scaffold materials | Application | Reference |
---|---|---|---|---|---|---|
3D scaffolds with bionic structure | miR-132/miR-222/miR-431 | Rasa1 (miR-132) | TransiT-TKO | Collagen, PCL | Spinal cord injury | [198] |
PTEN (miR-222) | ||||||
Kremen1 (miR-431) | ||||||
miRNA-126 | SPRED-1 | N/A | PELCL, PCL, gelatin | Angiogenesis | [199] | |
miR-219/miR-338 | N/A | TransiT-TKO | PCLEEP, collagen | Central Nervous System Remyelination | [200] | |
miR-219/miR-338 | TNF-α, GFAP | TransiT-TKO | PCLEEP, collagen | Central Nervous System Remyelination | [201] | |
pDNA | BMP-2, FGF-2 | PEI | Collagen matrix, fibrin gel | Bone Formation in a Diabetic Model | [99] | |
pDNA | TGF-β, NMNAT2 | HA-GMA/PEI | PCL/HA-GMA | Sciatic nerve regeneration | [202] | |
pDNA | BMP-2, FGF-2 | PEI | Collaplugs | Calvarial bone defect | [203] | |
Non-3D-printed scaffolds for filling | pDNA | VEGF, PDGF | PEI | Collagen | Calvarial bone defect | [204] |
pDNA | BMP-2, VEGF | star-PLLs | Collagen, hydroxyapatite | Calvarial bone defect | [205] | |
pDNA | BMP-2, VEGF | GET peptide | Collagen, hydroxyapatite | Calvarial bone defect | [72] | |
pDNA | PDGF-B, VEGF | PEI | Collagen | Calvarial bone defect | [206] | |
pDNA | BMP-2, VEGF | Chitosan | CHA | Calvarial bone defect | [207] | |
pDNA | caALK6, Runx2 | PEG-b-P[Asp-(DET)] | Calcium phosphate cement | Calvarial bone defect | [208] | |
mRNA | hBMP-2 | Cationic liposomes | Collagen | Femoral defect | [209] | |
DNA fragment | BMP-7 | Adenovirus | Hydroxyapatite, PPF/TCP, PLA Sponge, fibrin gel | Skeletal tissue engineering | [210] | |
CRISPR/Cas9 LncRNA H19 | YAP | TSPCs-sEVs | Sodium alginate | Tendon tepair | [211] | |
CRISPR/Cas9 | VEGF | PDA-coated PCL NF | SA-HA | Wound healing | [212] | |
siRNA | MMP9 | TA | PVA, HLC, TA | Diabetic chronic wounds | [213] | |
siRNA | PHD2 | 2-DMAEMA, 2-PAA, BMA | PTK-UR | Diabetic wound healing | [214] | |
siRNA | Ckip-1 | Chitosan | Ti | Osseointegration in the osteoporotic condition | [215] | |
miR-146a-5p | ERK/Akt | PEI-MSN, YIGSR | Gelatin sponge | Angiogenesis | [40] | |
3D-printed porous braided scaffolds | miR-23a-3p | PTEN/AKT | hUC-MSCs-sEVs | Gelma/nanoclay | Vascularized bone regeneration | [216] |
miR-210 | VEGF | Calcium–silicon nanosphere | β-tricalcium phosphate | Calvarial bone defect | [129] | |
In vivo 3D print | pDNA | PDGF-B, BMP-2 | Chitosan-NPs | Chitosan, collagen | Calvarial bone defect | [83] |
Others | miR-29b | Wnt | CMCS | Titanium alloy | Tibial defects | [217] |
Design | DNA/RNA | Target Sites/ Additive Fragments | Vectors | Scaffold Materials | Application | Reference |
---|---|---|---|---|---|---|
Bioactive matrix films | miR-126-3p | N/A | SMSCs-exo | Chitosan | Heal full-thickness skin defects | [52] |
siRNA | Smad3 | G5-GBA, GelMA | HA | Prevention of peritendinous adhesion | [223] | |
pDNA | VEGF165, Ang-1 | PEI | Cationized Bombyx mori silk fibroin | Dermal tissue regeneration | [224] | |
pDNA | VEGF165, Ang-1 | N, N, N-trimethyl chitosan chloride | Collagen, chitosan, silicone membrane | Skin regeneration | [225] | |
lncRNA H19 | PI3K-Akt | Extracellular vesicle-mimetic nanovesicles | Alginate | Diabetic wounds | [226] | |
Polymer fiber films | pDNA | ANG | PEI-CMCS | PLGA/CNCs | Skin regeneration | [227] |
pDNA | C-Jun | Chitosan-graft-polyethyleneimine | Polyglutamic acid-coated polylactic acid/silk fibroin parallel fiber film | Nerve regeneration | [228] | |
pDNA | BMP-2 | Chitosan | PCL | Calvarial bone defect | [86] | |
pDNA | VEGF, bFGF | Calcium phosphate nanoparticles | Poly(DL-lactide)-poly(ethylene glycol) | Regeneration of mature blood vessels | [229] | |
siRNA | FKBPL | Arginine-rich amphipathic peptide | Alginate/poly-(vinyl alcohol), chitosan/poly-(vinyl alcohol) | Wound repair | [69] | |
siRNA | ERK2 | PEI-PBA | Polyethylene glycol (PEG)-based polyester | Tendon healing | [100] | |
Layer-by-layer films | siRNA | CTGF | N/A | Ethicon 4-0 Perma-Hand Silk suture | To reduce cutaneous scar contraction | [230] |
siRNA | TGF-β | N/A | Chitosan, sodium alginate | Excisional wound healing | [231] |
Scaffold Type | Fabrication Method | Nucleic Acid Loaded | Release Mechanism | Advantages | Limitations | Applications |
---|---|---|---|---|---|---|
Injectable Hydrogels | Self-assembly, Michael addition, ionic cross-linking | miRNAs, siRNAs, pDNA | Stimuli-responsive (pH, enzyme, temperature, light), swelling, degradation | Minimally invasive, conforms to irregular cavities, localized delivery | Limited mechanical strength, potential premature gelation | Myocardial infarction, diabetic wounds, osteoarthritis |
3D-Printed Porous Scaffolds | Direct Ink Writing (DIW), Digital Light Processing (DLP) | miRNAs, pDNA | Porous structure diffusion, scaffold degradation | Tailored pore structure, high mechanical strength, precise geometry | Complex fabrication, limited cell penetration in small pores | Bone regeneration, spinal cord injury |
Non-Printed Padding Scaffolds | Lyophilization, chemical cross-linking | pDNA | Scaffold degradation, coating dissolution | Good biocompatibility, fills irregular defects | Insufficient mechanical strength for large/load-bearing bones | Bone tissue formation |
Fiber–Hydrogel Composites | Electrospinning, embedding fibers in hydrogel | miRNAs, neurotrophic factors | Sustained release via hydrogel degradation | Mimics native tissue structure, promotes cell alignment and growth | Complex preparation process, higher cost | Spinal cord repair, vascular tissue engineering |
Sheet-Like Hydrogels | Casting, cross-linking | miRNAs, siRNAs | Swelling, degradation, stimuli-responsive | Suitable for superficial wounds, provides physical barrier | Limited to shallow tissues, potential scarring issues | Skin wound healing, diabetic ulcers |
Polymer Fiber Sheets | Electrospinning | pDNA, siRNAs | Enzyme degradation, fiber breakdown | Large surface area, supports cell growth | May restrict cell penetration, limited to specific cell types | Nerve repair, skin tissue engineering |
Layer-by-Layer Thin Sheets | Alternate adsorption of charged materials | siRNAs, growth factors | Layer-by-layer degradation, electrostatic interaction disruption | Precise control of thickness/composition, protects nucleic acids | Complex fabrication, limited to superficial applications | Wound healing, epidermal repair |
Host–Guest Self-Assembling Hydrogels | Host–guest molecular recognition (β-CD and AD) | miRNAs | Hydrophobic interaction disruption, shear-thinning | Self-healing, shear-thinning property for injection | Limited by host–guest ratio and affinity, difficult precise regulation | Localized drug delivery in various tissues |
Peptide Self-Assembling Hydrogels | Peptide self-organization (e.g., RAD sequence) | Nucleic acids (via electrostatic/hydrogen bonds) | Peptide chain breakdown, electrostatic interaction disruption | Biocompatible, mimics ECM, promotes cell adhesion | Susceptible to enzymatic degradation, limited mechanical strength | Minimally invasive surgery, rapid tissue repair |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.-X.; De Isla, N.; Zhang, L. Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine. Int. J. Mol. Sci. 2025, 26, 7384. https://doi.org/10.3390/ijms26157384
Wu Q-X, De Isla N, Zhang L. Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine. International Journal of Molecular Sciences. 2025; 26(15):7384. https://doi.org/10.3390/ijms26157384
Chicago/Turabian StyleWu, Qi-Xiang, Natalia De Isla, and Lei Zhang. 2025. "Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine" International Journal of Molecular Sciences 26, no. 15: 7384. https://doi.org/10.3390/ijms26157384
APA StyleWu, Q.-X., De Isla, N., & Zhang, L. (2025). Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine. International Journal of Molecular Sciences, 26(15), 7384. https://doi.org/10.3390/ijms26157384