Time-Restricted Eating Improves Glycemic Control in Patients with Type 2 Diabetes: A Meta-Analysis and Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Data Sources and Search Strategy
2.3. Study Selection
2.3.1. Study Design
2.3.2. Participants
2.3.3. Interventions and Comparators
2.3.4. Outcome Measures
2.4. Data Extraction
2.5. Risk of Bias Assessment
2.6. Data Synthesis and Analysis
3. Results
3.1. Study Selection and Description
3.2. Study Population
3.3. Outcomes
3.3.1. Glucose AUC
3.3.2. Fasting Glucose
3.3.3. HbA1c
3.3.4. Time in Range (TIR)
3.3.5. Average (Mean) Glucose
3.4. Assessment for Risk of Bias
3.5. Meta-Analysis or Quantitative Analysis of the Include Articles
3.5.1. Fasting Glucose
3.5.2. ΔHbA1c
3.5.3. Time in Range (TIR)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area under the curve |
NSS | Not statistically significant |
IFG | Impaired fasting glucose |
T2DM | Type 2 diabetes mellitus |
TIR | Time in range |
References
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef]
- Banerjee, M.; Khursheed, R.; Yadav, A.K.; Singh, S.K.; Gulati, M.; Pandey, D.K.; Prabhakar, P.K.; Kumar, R.; Porwal, O.; Awasthi, A.; et al. A Systematic Review on Synthetic Drugs and Phytopharmaceuticals Used to Manage Diabetes. Curr. Diabetes Rev. 2020, 16, 340–356. [Google Scholar] [CrossRef]
- Kolb, H.; Martin, S. Environmental/Lifestyle Factors in the Pathogenesis and Prevention of Type 2 Diabetes. BMC Med. 2017, 15, 131. [Google Scholar] [CrossRef]
- Eckel, R.H.; Bornfeldt, K.E.; Goldberg, I.J. Cardiovascular Disease in Diabetes, beyond Glucose. Cell Metab. 2021, 33, 1519–1545. [Google Scholar] [CrossRef]
- Cummings, J.; Ortiz, A.; Castellino, J.; Kinney, J. Diabetes: Risk Factor and Translational Therapeutic Implications for Alzheimer’s Disease. Eur. J. Neurosci. 2022, 56, 5727–5757. [Google Scholar] [CrossRef]
- Lei, C.; Duan, J.; Ge, G.; Zhang, M. Association between Neonatal Hyperglycemia and Retinopathy of Prematurity: A Meta-Analysis. Eur. J. Pediatr. 2021, 180, 3433–3442. [Google Scholar] [CrossRef]
- Kozakova, M.; Palombo, C. Diabetes Mellitus, ArterialWall, and Cardiovascular Risk Assessment. Int. J. Env. Res. Public Health 2016, 13, 201. [Google Scholar] [CrossRef] [PubMed]
- Shikata, K.; Ninomiya, T.; Kiyohara, Y. Diabetes Mellitus and Cancer Risk: Review of the Epidemiological Evidence. Cancer Sci. 2013, 104, 9–14. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Cusi, K.; Das, S.R.; Gibbons, C.H.; et al. Summary of Revisions: Stand. Care Diabetes—2023. Diabetes Care 2023, 46, S5–S9. [Google Scholar] [CrossRef] [PubMed]
- Trends in the prevalence of diabetes, 2013–2022. Public Health Weekly Rep. 2024, 17, 1860–1861. [CrossRef]
- Termannsen, A.-D.; Varming, A.; Hansen, G.S.; Bjerre, N.; Persson, F.; Bagger, J.I.; Hansen, D.L.; Ewers, B.; Jørgensen, N.B.; Blond, M.B.; et al. Time-Restricted Eating Is a Feasible Dietary Strategy in the Treatment of Complicated Type 2 Diabetes: The RESET2 Pilot Study. J. Nutr. Educ. Behav. 2025, 000, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.J.; Turner, L.; Teong, X.T.; Zhao, L.; Variji, A.; Wittert, G.A.; Thompkins, S.; Vincent, A.D.; Grosser, L.; Young, M.J.; et al. Comparing the Effectiveness of Calorie Restriction with and without Time-Restricted Eating on the Circadian Regulation of Metabolism: Rationale and Protocol of a Three-Arm Randomised Controlled Trial in Adults at Risk of Type 2 Diabetes. Nutr. Res. 2025, 138, 33–44. [Google Scholar] [CrossRef]
- Dehghani, S.; Karimi, P.; Tarei, N.N.; Masoumvand, M.; Manesh, M.A.N.; Ramezani, E.; Askari, V.R. Comparison of the Effect of Intermittent Fasting with Mediterranean Diet on Glycemic, Lipid, and Anthropometric Indices in Type 2 Diabetes: A Review of Randomized Controlled Trials. Curr. Hypertens. Rev. 2025, 21, 1–12. [Google Scholar] [CrossRef]
- Lin, S.; Cienfuegos, S.; Ezpeleta, M.; Pavlou, V.; Corapi, S.; Runchey, M.-C.; Alexandria, S.J.; Tussing-Humphreys, L.; Varady, K.A. Time-Restricted Eating Versus Daily Calorie Restriction: Effects on Inflammatory Markers over 12 Months in Adults with Obesity. Nutrients 2025, 17, 1130. [Google Scholar] [CrossRef]
- Catenacci, V.A.; Ostendorf, D.M.; Pan, Z.; Kaizer, L.K.; Creasy, S.A.; Zaman, A.; Caldwell, A.E.; Dahle, J.; Swanson, B.; Breit, M.J.; et al. The Effect of 4:3 Intermittent Fasting on Weight Loss at 12 Months. Ann. Intern. Med. 2025, 178, 634–644. [Google Scholar] [CrossRef]
- Bravo-Garcia, A.P.; Radford, B.E.; Hall, R.C.; Broome, S.C.; Tee, N.; Arthur, B.; Janssens, K.; Johnston, R.D.; Halson, S.L.; Devlin, B.L.; et al. Combined Effects of Time-Restricted Eating and Exercise on Short-Term Blood Glucose Management in Individuals with Type 2 Diabetes Mellitus: The TREx Study, a Randomised Controlled Trial. Diabetes Res. Clin. Pract. 2025, 222, 112081. [Google Scholar] [CrossRef]
- Braun, L.; Haumann, H.; Polanc, A.; Koch, R.; Feil, E.; Klein, A.; Salm, C.; Peters-Klimm, F.; Hübner, G.; Thies, C.; et al. Time-Restricted Eating (TRE) for Obesity in General Practice: Study Protocol of a Controlled, Randomized Implementation Study (INDUCT) within the Research Practice Network Baden-Wuerttemberg (FoPraNet-BW). Nutr. J. 2025, 24, 36. [Google Scholar] [CrossRef]
- Huang, X.; Huang, G.; Wei, G. Intermittent Fasting for Glycemic Control in Patients with Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Nutr. Hosp. 2025, 42, 356–365. [Google Scholar] [CrossRef]
- Parr, E.B.; Steventon-Lorenzen, N.; Johnston, R.; Maniar, N.; Devlin, B.L.; Lim, K.H.C.; Hawley, J.A. Time-Restricted Eating Improves Measures of Daily Glycaemic Control in People with Type 2 Diabetes. Diabetes Res. Clin. Pract. 2023, 197, 110569. [Google Scholar] [CrossRef] [PubMed]
- Suthutvoravut, U.; Anothaisintawee, T.; Boonmanunt, S.; Pramyothin, S.; Siriyothin, S.; Attia, J.; McKay, G.J.; Reutrakul, S.; Thakkinstian, A. Efficacy of Time-Restricted Eating and Behavioral Economic Intervention in Reducing Fasting Plasma Glucose, HbA1c, and Cardiometabolic Risk Factors in Patients with Impaired Fasting Glucose: A Randomized Controlled Trial. Nutrients 2023, 15, 4233. [Google Scholar] [CrossRef]
- Andriessen, C.; Fealy, C.E.; Veelen, A.; van Beek, S.M.M.; Roumans, K.H.M.; Connell, N.J.; Mevenkamp, J.; Moonen-Kornips, E.; Havekes, B.; Schrauwen-Hinderling, V.B.; et al. Three Weeks of Time-Restricted Eating Improves Glucose Homeostasis in Adults with Type 2 Diabetes but Does Not Improve Insulin Sensitivity: A Randomised Crossover Trial. Diabetologia 2022, 65, 1710–1720. [Google Scholar] [CrossRef]
- Hegedus, E.; Vu, M.H.; Salvy, S.J.; Bakhsh, J.; Goran, M.I.; Raymond, J.K.; Espinoza, J.C.; Vidmar, A.P. Randomized Controlled Feasibility Trial of Late 8-Hour Time-Restricted Eating for Adolescents With Type 2 Diabetes. J. Acad. Nutr. Diet. 2024, 124, 1014–1028. [Google Scholar] [CrossRef]
- Quist, J.S.; Pedersen, H.E.; Jensen, M.M.; Clemmensen, K.K.B.; Bjerre, N.; Ekblond, T.S.; Uldal, S.; Størling, J.; Wewer Albrechtsen, N.J.; Holst, J.J.; et al. Effects of 3 Months of 10-h per-Day Time-Restricted Eating and 3 Months of Follow-up on Bodyweight and Cardiometabolic Health in Danish Individuals at High Risk of Type 2 Diabetes: The RESET Single-Centre, Parallel, Superiority, Open-Label, Randomised Controlled Trial. Lancet Healthy Longev. 2024, 5, e314–e325. [Google Scholar] [CrossRef]
- Pavlou, V.; Cienfuegos, S.; Lin, S.; Ezpeleta, M.; Ready, K.; Corapi, S.; Wu, J.; Lopez, J.; Gabel, K.; Tussing-Humphreys, L.; et al. Effect of Time-Restricted Eating on Weight Loss in Adults With Type 2 Diabetes. JAMA Netw. Open 2023, 6, e2339337. [Google Scholar] [CrossRef]
- Parr, E.B.; Radford, B.E.; Hall, R.C.; Steventon-Lorenzen, N.; Flint, S.A.; Siviour, Z.; Plessas, C.; Halson, S.L.; Brennan, L.; Kouw, I.W.K.; et al. Comparing the Effects of Time-Restricted Eating on Glycaemic Control in People with Type 2 Diabetes with Standard Dietetic Practice: A Randomised Controlled Trial. Diabetes Res. Clin. Pract. 2024, 217, 111893. [Google Scholar] [CrossRef]
- Regmi, P.; Heilbronn, L.K. Time-Restricted Eating: Benefits, Mechanisms, and Challenges in Translation. iScience 2020, 23, 101161. [Google Scholar] [CrossRef]
- Parr, E.B.; Devlin, B.L.; Hawley, J.A. Perspective: Time-Restricted Eating—Integrating the What with the When. Adv. Nutr. 2022, 13, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27, 1212–1221.e3. [Google Scholar] [CrossRef] [PubMed]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.W.; Bergenstal, R.M.; Riddlesworth, T.D.; Kollman, C.; Li, Z.; Brown, A.S.; Close, K.L. Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials. Diabetes Care 2019, 42, 400–405. [Google Scholar] [CrossRef]
Study (Author, Year) | TRE Group | Control Group | Duration |
---|---|---|---|
Evelyn B. Parr (2023) [19] | 9 h eating window (10:00–19:00), 4 weeks, after 2-week habitual monitoring | Normal meal | 4 weeks |
Bravo-Garcia AP (2025) [16] | Eating window: 10:00–18:00 + exercise (13 sessions) | Eating window: 08:00–20:00 + exercise (11 sessions) | 14 h |
Jonas Salling Quist (2024) [23] | Self-selected 10 h eating window between 06:00–20:00 | Habitual living for 3 months | 3 months |
Charlotte Andriessen (2022) [21] | Standardized meal at 16:40; fasting from 17:00 | Standardized meal at 20:40; fasting from 21:00 | 3 months |
Evelyn B. Parr (2024) [25] | Eating window: 10:00–19:00 as often as possible during intervention | Publicly available nutrition guidance + dietary discussion | 6 months |
Hegedus E (2024) [22] | Eating window: 12:00–20:00 (±1 h), 7 days/week | Eating window ≥ 12 h/day, 7 days/week | 12 weeks |
Pavlou V (2023) [24] | Eating window: 12:00–20:00 without calorie counting | (1) Caloric restriction (−25% baseline intake); (2) usual habits (weight maintenance, usual eating/exercise) | 6 months |
Suthutvoravut U (2023) [20] | Eating window: 08:00–17:00, 15 h fasting; with/without behavioral economics (BE) | Usual care (no TRE), no behavioral incentive or reminders | 12 weeks |
Author (Year) | Nation | Participants | Sample Size | Duration | Experimental Group (No. of Participants Analyzed) | Control Group (No. of Participants Analyzed) | Outcome Measures | Result of Experimental Group | Result of Control Group | Assessment |
---|---|---|---|---|---|---|---|---|---|---|
Evelyn B. Parr (2023) [19] | Australia | T2DM | 19 | 6 weeks | TRE (19) | Control (19) | (1) TIR (%) (2) TIR (hours) (3) blood glucose AUC (mmol/Lxh) (4) Fasting glucose(mmol/mol) | 10 ± 18% 2.5 ± 4.2h −0.7 ± 0.4 6.368 ± 1.794 | - - - 6.945 ± 1.987 | Positive |
Bravo-Garcia AP (2025) [16] | Australia | T2DM | 24 | 4 conditions × 2-day trials with 3- to 7-day washouts in between | TRE + exercise (13) | Control + exercise (11) | (1) Postprandial 2 h plasma glucose after lunch (mmol/Lx2h) (2) Postprandial 2 h plasma glucose after dinner (mmol/Lx2h) | −131 ± 129 −208 ± 124 | - - | Positive |
Jonas Salling Quist (2024) [23] | Denmark | T2DM | 92 | 3 months | TRE (46) | Control (46) | (1) Δ 3 months HbA1c (mmol/mol) (2) Δ 6 months HbA1c (mmol/mol) (3) Δ 3 months fasting glucose (mmol/L) (4) Δ 6 months fasting glucose (mmol/L) (5) Δ 3 months glucose AUC (mmol/min) | −1 (−1 to −0) 0 (−1 to 0) −0.1 (−0.2 to 0.0) 0.0 (−0.1 to 0.2) −66.7 (−101.2 to −321) | 0 (−0 to 1) 0 (−1 to 1) 0 (−0.1 to 0.1) 0.1 (−0.1 to 0.3) 2.1 (−31.1 to 35.2) | Positive |
Charlotte Andriessen (2022) [21] | The Netherlands | T2DM | 14 | 3 weeks | TRE (7) | Control (7) | Fasting glucose (mmol/mol) | 8.0 ± 0.3 | 8.9 ± 0.5 | Positive |
Evelyn B. Parr (2024) [25] | Australia | T2DM | 43 | 6 months | TRE (22) | Diet (21) | (1) ΔHbA1c (mmol/mol) (2) ΔHbA1c (%) (3) 1 month total AUC (4) 2 months total AUC (5) 4 months total AUC (6) 6 months total AUC (7) TIR (%) (8) Mean glucose level (mmol/L) | −5 (−8 to 0) −0.4 (−0.7 to 0.0) 7.8 ± 1.4 8.4 ± 1.8 8.2 ± 1.5 7.6 ± 1.4 60 ± 25 Δ −0.8 | −4 (−7 to 1) −0.3 (−0.6 to 0.1) 8.0 ± 1.7 7.7 ± 1.4 8.2 ± 1.6 8.3 ± 2.0 51 ± 29 | Positive |
Hegedus E (2024) [22] | USA | T2DM | 17 | 3 months | TRE (8) | Control (9) | (1) Δ Average glucose (mmol/L) (2) Δ TIR (%) (3) Fasting glucose (mmol/mol) | 0.067 (−1.167, 1.278) 3.6(−8, 15) 6.67 ± 1.2 | 0.056 (−0.833, 0.889) −1.7 (−0.2, 9) 6.48 ± 1.57 | NSD |
T2DM | 24 | 3 months | TRE (13) | Control (11) | (4) ΔHbA1c (%) | −0.5 (−0.9, −0.01) | −0.6 (−0.9, −0.2) | |||
Pavlou V (2023) [24] | USA | T2DM | 50 | 6 months | TRE (25) | Control (25) | (1) ΔHbA1C (%) (2) ΔTIR (%) (3) ΔMean glucose level (mmol/mol) | −0.72 (−1.25, −0.18) 4.78 (−3.52, 13.08) −0.612 (−1.381, 0.157) | 0.19 (−0.30, 0.68) −7.81 (−24.90, 9.27) 1.751 ( −130.252, 3.753) | Positive |
Suthutvoravut U (2023) [20] | Thailand | IFG | 46 | 3 months | TRE (24) | Control (22) | (1) Fasting plasma glucose (mmol/mol) (2) HbA1c (%) | −0.263 (−0.477, −0.050) † −0.24 (−0.457, −0.03) † | - - | Positive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, T.; Oh, H.; Kim, A.; Oh, Y. Time-Restricted Eating Improves Glycemic Control in Patients with Type 2 Diabetes: A Meta-Analysis and Systematic Review. Int. J. Mol. Sci. 2025, 26, 7310. https://doi.org/10.3390/ijms26157310
Nam T, Oh H, Kim A, Oh Y. Time-Restricted Eating Improves Glycemic Control in Patients with Type 2 Diabetes: A Meta-Analysis and Systematic Review. International Journal of Molecular Sciences. 2025; 26(15):7310. https://doi.org/10.3390/ijms26157310
Chicago/Turabian StyleNam, Taegwang, Hyeongbin Oh, Anna Kim, and Yongtaek Oh. 2025. "Time-Restricted Eating Improves Glycemic Control in Patients with Type 2 Diabetes: A Meta-Analysis and Systematic Review" International Journal of Molecular Sciences 26, no. 15: 7310. https://doi.org/10.3390/ijms26157310
APA StyleNam, T., Oh, H., Kim, A., & Oh, Y. (2025). Time-Restricted Eating Improves Glycemic Control in Patients with Type 2 Diabetes: A Meta-Analysis and Systematic Review. International Journal of Molecular Sciences, 26(15), 7310. https://doi.org/10.3390/ijms26157310