Sciatic Integrity Is Necessary for Fast and Efficient Scrapie Infection After Footpad Injection
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zerr, I.; Ladogana, A.; Mead, S.; Hermann, P.; Forloni, G.; Appleby, B.S. Creutzfeldt-Jakob disease and other prion diseases. Nat. Rev. Dis. Primers 2024, 10, 14. [Google Scholar] [CrossRef]
- Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216, 136–144. [Google Scholar] [CrossRef]
- Wells, C.; Brennan, S.; Keon, M.; Ooi, L. The role of amyloid oligomers in neurodegenerative pathologies. Int. J. Biol. Macromol. 2021, 181, 582–604. [Google Scholar] [CrossRef]
- Houston, F.; Andréoletti, O. Animal prion diseases: The risks to human health. Brain Pathol. 2019, 29, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, M.J.; Delgado, F.O. Animal prion diseases: A review of intraspecies transmission. Open Vet. J. 2021, 11, 707–723. [Google Scholar] [CrossRef] [PubMed]
- Bradley, R. Bovine spongiform encephalopathy. Update. Acta Neurobiol. Exp. (Wars) 2002, 62, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Will, R.G.; Ironside, J.W.; Zeidler, M.; Cousens, S.N.; Estibeiro, K.; Alperovitch, A.; Poser, S.; Pocchiari, M.; Hofman, A.; Smith, P.G. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 1996, 347, 921–925. [Google Scholar] [CrossRef]
- Budka, H.; Will, R.G. The end of the BSE saga: Do we still need surveillance for human prion diseases? Swiss Med. Wkly 2015, 145, w14212. [Google Scholar] [CrossRef]
- Tranulis, M.A.; Tryland, M. The Zoonotic Potential of Chronic Wasting Disease—A Review. Foods 2023, 12, 824. [Google Scholar] [CrossRef]
- Ayers, J.I.; Kincaid, A.E.; Bartz, J.C. Prion strain targeting independent of strain-specific neuronal tropism. J. Virol. 2009, 83, 81–87. [Google Scholar] [CrossRef]
- Bartz, J.C.; Kincaid, A.E.; Bessen, R.A. Retrograde transport of transmissible mink encephalopathy within descending motor tracts. J. Virol. 2002, 76, 5759–5768. [Google Scholar] [CrossRef]
- Glatzel, M.; Aguzzi, A. PrPC expression in the peripheral nervous system is a determinant of prion neuroinvasion. J. Gen. Virol. 2000, 81, 2813–2821. [Google Scholar] [CrossRef]
- Ingrosso, L.; Pisani, F.; Pocchiari, M. Transmission of the 263K scrapie strain by the dental route. J. Gen. Virol. 1999, 80, 3043–3047. [Google Scholar] [CrossRef]
- Kimberlin, R.H.; Hall, S.M.; Walker, C.A. Pathogenesis of mouse scrapie. Evidence for direct neural spread of infection to the CNS after injection of sciatic nerve. J. Neurol. Sci. 1983, 61, 315–325. [Google Scholar] [CrossRef]
- Scott, J.R.; Fraser, H. Enucleation after intraocular scrapie injection delays the spread of infection. Brain Res. 1989, 504, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Martinat, C.; Jarousse, N.; Prevost, M.C.; Brahic, M. The GDVII strain of Theiler’s virus spreads via axonal transport. J. Virol. 1999, 3, 6093–6098. [Google Scholar] [CrossRef]
- Ohka, S.; Yang, W.X.; Terada, E.; Iwasaki, K.; Nomoto, A. Retrograde transport of intact poliovirus through the axon via the fast transport system. Virology 1998, 250, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Tsiang, H.; Ceccaldi, P.E.; Lycke, E. Rabies virus infection and transport in human sensory dorsal root ganglia neurons. J. Gen. Virol. 1991, 72, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Tyler, K.L.; McPhee, D.A.; Fields, B.N. Distinct pathways of viral spread in the host determined by reovirus S1 gene segment. Science 1986, 233, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Vizzard, M.A.; Brisson, M.; de Groat, W.C. Transneuronal labeling of neurons in the adult rat central nervous system following inoculation of pseudorabies virus into the colon. Cell Tissue Res. 2000, 299, 9–26. [Google Scholar] [CrossRef]
- Scott, J.R. Scrapie pathogenesis. Br. Med. Bull. 1993, 49, 778–791. [Google Scholar] [CrossRef] [PubMed]
- Hainfellner, J.A.; Budka, H. Disease associated prion protein may deposit in the peripheral nervous system in human transmissible spongiform encephalopathies. Acta Neuropathol. 1999, 98, 458–460. [Google Scholar] [CrossRef]
- Follet, J.; Lemaire-Vieille, C.; Blanquet-Grossard, F.; Podevin-Dimster, V.; Lehmann, S.; Chauvin, J.P.; Decavel, J.P.; Varea, R.; Grassi, J.; Fontes, M.; et al. PrP expression and replication by Schwann cells: Implications in prion spreading. J. Virol. 2002, 76, 2434–2439. [Google Scholar] [CrossRef]
- Groschup, M.H.; Beekes, M.; McBride, P.A.; Hardt, M.; Hainfellner, J.A.; Budka, H. Deposition of disease-associated prion protein involves the peripheral nervous system in experimental scrapie. Acta Neuropathol. 1999, 98, 453–457. [Google Scholar] [CrossRef]
- Kratzel, C.; Mai, J.; Madela, K.; Beekes, M.; Krüger, D. Propagation of scrapie in peripheral nerves after footpad infection in normal and neurotoxin exposed hamsters. Vet. Res. 2007, 38, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Kunzi, V.; Glatzel, M.; Nakano, M.Y.; Greber, U.F.; Van Leuven, F.; Aguzzi, A. Unhampered prion neuroinvasion despite impaired fast axonal transport in transgenic mice overexpressing four-repeat tau. J. Neurosci. 2002, 22, 7471–7477. [Google Scholar] [CrossRef]
- Beekes, M.; Baldauf, E.; Diringer, H. Sequential appearance and accumulation of pathognomonic markers in the central nervous system of hamsters orally infected with scrapie. J. Gen. Virol. 1996, 77, 1925–1934. [Google Scholar] [CrossRef] [PubMed]
- Kimberlin, R.H.; Walker, C.A. Characteristics of a short incubation model of scrapie in the golden hamster. J. Gen. Virol. 1977, 34, 295–304. [Google Scholar] [CrossRef]
- Kimberlin, R.H.; Walker, C.A. Pathogenesis of scrapie (strain 263K) in hamsters infected intracerebrally, intraperitoneally or intraocularly. J. Gen. Virol. 1986, 67, 255–263. [Google Scholar] [CrossRef]
- Czub, M.; Braig, H.R.; Diringer, H. Pathogenesis of scrapie: Study of the temporal development of clinical symptoms, of infectivity titres and scrapie-associated fibrils in brains of hamsters infected intraperitoneally. J. Gen. Virol. 1986, 67, 2005–2009. [Google Scholar] [CrossRef]
- Guedes-Dias, P.; Holzbaur, E.L.F. Axonal transport: Driving synaptic function. Science 2019, 366, eaaw9997. [Google Scholar] [CrossRef]
- Kratzel, C.; Krüger, D.; Beekes, M. Prion propagation in a nerve conduit model containing segments devoid of axons. J. Gen. Virol. 2007, 88, 3479–3485. [Google Scholar] [CrossRef]
- Koshy, S.M.; Kincaid, A.E.; Bartz, J.C. Transport of Prions in the Peripheral Nervous System: Pathways, Cell Types, and Mechanisms. Viruses 2022, 14, 630. [Google Scholar] [CrossRef]
- Chen, B.; Soto, C.; Morales, R. Peripherally administrated prions reach the brain at sub-infectious quantities in experimental hamsters. FEBS Lett. 2014, 588, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Marshall, K.R.; Lachmann, R.H.; Efstathiou, S.; Rinaldi, A.; Preston, C.M. Long-term transgene expression in mice infected with a herpes simplex virus type 1 mutant severely impaired for immediate-early gene expression. J. Virol. 2000, 74, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Race, B.; Williams, K.; Baune, C.; Striebel, J.F.; Winkler, C.W.; Carroll, J.A.; Encalada, S.E.; Chesebro, B. Deletion of Kif5c does not alter prion disease tempo or spread in mouse brain. Viruses 2021, 13, 1391. [Google Scholar] [CrossRef]
- Bett, C.; Lawrence, J.; Kurt, T.D.; Orru, C.; Aguilar-Calvo, P.; Kincaid, A.E.; Surewicz, W.K.; Caughey, B.; Wu, C.; Sigurdson, C.J. Enhanced neuroinvasion by smaller, soluble prions. Acta Neuropathol. Commun. 2017, 5, 32. [Google Scholar] [CrossRef]
- Wadia, J.S.; Schaller, M.; Williamson, R.A.; Dowdy, S.F. Pathologic prion protein infects cells by lipid-raft dependent macropinocytosis. PLoS ONE 2008, 3, e3314. [Google Scholar] [CrossRef]
- Silveira, J.R.; Raymond, G.J.; Hughson, A.G.; Race, R.E.; Sim, V.L.; Hayes, S.F.; Caughey, B. The most infectious prion protein particles. Nature 2005, 437, 257–261. [Google Scholar] [CrossRef]
- Pocchiari, M.; Schmittinger, S.; Masullo, C. Amphotericin B delays the incubation period of scrapie in intracerebrally inoculated hamsters. J. Gen. Virol. 1987, 68, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Hafezparast, M.; Brandner, S.; Linehan, J.; Martin, J.E.; Collinge, J.; Fisher, E. Prion disease incubation time is not affected in mice heterozygous for a dynein mutation. Biochem. Biophys. Res. Commun. 2004, 326, 18–22. [Google Scholar] [CrossRef]
- Kratzel, C.; Krüger, D.; Beekes, M. Relevance of the regional lymph node in scrapie pathogenesis after peripheral infection of hamsters. BMC Vet. Res. 2007, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Aravamudhan, P.; Raghunathan, K.; Konopka-Anstadt, J.; Pathak, A.; Sutherland, D.M.; Carter, B.D.; Dermody, T.S. Reovirus uses macropinocytosis-mediated entry and fast axonal transport to infect neurons. PLoS Pathog. 2020, 16, e1008380. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Siddharthan, V.; Hall, J.O.; Morreya, J.D. West Nile virus preferentially transports along motor neuron axons after sciatic nerve injection of hamsters. J. Neurovirol. 2009, 15, 293–299. [Google Scholar] [CrossRef]
- Ehlers, B.; Diringer, H. Dextran sulphate 500 delays and prevents mouse scrapie by impairment of agent replication in spleen. J. Gen. Virol. 1984, 65, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, C.; Dickinson, A.; Bruce, M. Prophylactic potential of pentosan polysulphate in transmissible spongiform encephalopathies. Lancet 1999, 353, 117. [Google Scholar] [CrossRef]
- Ladogana, A.; Casaccia, P.; Ingrosso, L.; Cibati, M.; Salvatore, M.; Xi, Y.G.; Masullo, C.; Pocchiari, M. Sulphate polyanions prolong the incubation period of scrapie-infected hamsters. J. Gen. Virol. 1992, 73, 661–665. [Google Scholar] [CrossRef]
Animals with Short Incubation Periods (Days) | Animals with Intermediate Incubation Periods (Days) | Animals with Long Incubation Periods (Days) | |||||||
---|---|---|---|---|---|---|---|---|---|
Cut Time | n | Mean ± SD | Range | n | Mean ± SD | Range | n | Mean ± SD | Range |
CTRL − (5′) | 0 | - | - | 0 | - | - | 10 | 183.9 ± 25.0 | 145–217 |
1 day | 1 | 76 | - | 0 | - | - | 5 | 201.0 ± 36.1 | 159–248 |
2 day | 1 | 85 | - | 4 | 117.8 ± 12.4 | 106–129 | 4 | 167.5 ± 22.6 | 143–193 |
3 day | 3 | 82.3 ± 0.6 | 82–83 | 1 | 116 | - | 4 | 156.0 ± 18.0 | 143–182 |
5 day | 7 | 80.7 ± 2.6 | 77–83 | 1 | 125 | - | 1 | 214 | - |
7 day | 7 | 81.3 ± 3.1 | 77–85 | 1 | 90 | - | 1 | 139 | - |
CTRL + (no cut) | 21 | 81.1 ± 2.7 | 76–85 | 1 | 88 | - | 0 | - | - |
Route | Sciatic Cut | Cut Time | Affected/Inoculated | Incubation Periods (Mean ± SD) |
---|---|---|---|---|
Intrasciatic, popliteal cavity | no | - | 6/6 | 86.5 ± 0.5 |
yes | 5 min | 2/12 | 159.5 ± 103.9 | |
Drop, popliteal cavity | no | - | 4/6 | 176.5 ± 37.9 |
yes | 5 min | 3/12 | 219.3 ± 6.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardone, F.; Porreca, F.; Sbriccoli, M.; Poleggi, A.; Ladogana, A.; Lu, M.; Pocchiari, M.; Giamberardino, L.D. Sciatic Integrity Is Necessary for Fast and Efficient Scrapie Infection After Footpad Injection. Int. J. Mol. Sci. 2025, 26, 7273. https://doi.org/10.3390/ijms26157273
Cardone F, Porreca F, Sbriccoli M, Poleggi A, Ladogana A, Lu M, Pocchiari M, Giamberardino LD. Sciatic Integrity Is Necessary for Fast and Efficient Scrapie Infection After Footpad Injection. International Journal of Molecular Sciences. 2025; 26(15):7273. https://doi.org/10.3390/ijms26157273
Chicago/Turabian StyleCardone, Franco, Flavia Porreca, Marco Sbriccoli, Anna Poleggi, Anna Ladogana, Mei Lu, Maurizio Pocchiari, and Luigi Di Giamberardino. 2025. "Sciatic Integrity Is Necessary for Fast and Efficient Scrapie Infection After Footpad Injection" International Journal of Molecular Sciences 26, no. 15: 7273. https://doi.org/10.3390/ijms26157273
APA StyleCardone, F., Porreca, F., Sbriccoli, M., Poleggi, A., Ladogana, A., Lu, M., Pocchiari, M., & Giamberardino, L. D. (2025). Sciatic Integrity Is Necessary for Fast and Efficient Scrapie Infection After Footpad Injection. International Journal of Molecular Sciences, 26(15), 7273. https://doi.org/10.3390/ijms26157273