Spinal Cord Injury Remyelination: Pathways to Therapies
Abstract
1. Introduction
2. Pathology of Myelination in SCI
2.1. Impact of SCI on Myelin
2.1.1. Primary Injury
2.1.2. Secondary Injury
2.2. Progressive Myelin Loss
3. Molecular Pathways Governing Myelination and Remyelination
3.1. Role of Microglia in Inflammation and Myelin Debris Clearing
3.2. OPC Migration
3.3. OPC Proliferation
3.4. OPC Differentiation
3.5. Transcriptional Regulation
3.6. Role of Astrocytes in Myelination
3.7. Role of Lipid Metabolism and Turnover in Myelination
4. Challenges in Remyelination
4.1. Inhibitory Microenvironment
4.2. Impaired Recruitment and Differentiation of OPCs
4.3. Chronic Inflammation
4.4. Axonal Degeneration
4.5. Practical Challenges in Functional Recovery
4.5.1. Variability in Outcomes
4.5.2. Recovery and Long-Term Stability
5. Therapeutic Strategies for Promoting Remyelination in SCI
5.1. Pharmaceutical Therapies
5.2. Non-Pharmaceutical Therapies
5.3. Emerging Therapies
5.4. Therapeutic Markers of Remyelination
5.5. Translational Barriers in Remyelination Therapy
6. Future Directions
6.1. Alternative Pathways
6.2. Rehabilitation and Combinatorial Strategies
6.2.1. Physical Rehabilitation
6.2.2. Magnetic Stimulation
6.2.3. Combinatorial Approaches
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SCI | Spinal cord injury |
OPC | Oligodendrocyte progenitor cell |
OL | Oligodendrocyte |
CNS | Central nervous system |
GPCR | G protein-coupled receptor |
ROS | Reactive oxygen species |
MS | Multiple sclerosis |
Shh | Sonic hedgehog |
BDNF | Brain-derived neurotrophic factor |
IGF-1 | Insulin-like growth factor |
FGF | Fibroblast growth factor |
MBP | Myelin basic protein |
SC | Spinal cord |
RNS | Reactive nitrogen species |
TNF-α | Tumor necrosis factor-α |
MAI | Myelin-associated inhibitor |
MAG | Myelin-associated glycoprotein |
OMgp | Oligodendrocyte myelin glycoprotein |
BMP | Bone morphogenetic protein |
CSPG | Chondroitin sulfate proteoglycans |
RGMA | Repulsive guidance molecule A |
ROCK | Rho-associated kinase |
FES | Functional electrical stimulation |
NPrC | Neuronal precursor cell |
sNPC | Spinal neuronal progenitor cell |
TMS | Transcranial magnetic stimulation |
Gap43 | Growth-associated protein 43 |
AKT | Protein kinase B |
PI3K | Phosphoinositide 3-kinase |
cAMP | Cyclic adenosine monophosphate |
PKA | Protein kinase A |
EPAC | Exchange protein directly activated by cAMP |
CREB | cAMP response element-binding protein |
PDE | Phosphodiesterase |
Id | Inhibitors of differentiation |
ID | Inhibitor of DNA binding |
bHLH | Basic helix-loop-helix |
AIS | ASIA impairment scale |
CPG | Central pattern generator |
NPC | Neural progenitor cell |
MSC | Mesenchymal stromal/stem cell |
HDAC | Histone deacetylase |
DNMT | DNA methyltransferase |
siRNA | Small interfering RNA |
iPSC | Induced pluripotent stem cell |
EV | Extracellular vesicle |
Nrf2 | Nuclear erythroid 2-related factor |
GPX4 | Glutathione peroxidase 4 |
NF-κB | Nuclear factor kappa-B |
References
- Narine, M.; Colognato, H. Current Insights into Oligodendrocyte Metabolism and Its Power to Sculpt the Myelin Landscape. Front. Cell. Neurosci. 2022, 16, 892968. [Google Scholar] [CrossRef]
- Simons, M.; Nave, K.-A. Oligodendrocytes: Myelination and Axonal Support. Cold Spring Harb. Perspect. Biol. 2016, 8, a020479. [Google Scholar] [CrossRef] [PubMed]
- Hartline, D.K.; Colman, D.R. Rapid Conduction and the Evolution of Giant Axons and Myelinated Fibers. Curr. Biol. 2007, 17, R29–R35. [Google Scholar] [CrossRef] [PubMed]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Katz, L.C.; LaMantia, A.-S.; McNamara, J.O.; Williams, S.M. Increased Conduction Velocity as a Result of Myelination. In Neuroscience, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2001. [Google Scholar]
- Philips, T.; Rothstein, J.D. Oligodendroglia: Metabolic Supporters of Neurons. J. Clin. Investig. 2017, 127, 3271–3280. [Google Scholar] [CrossRef] [PubMed]
- Franklin, R.J.M.; Frisén, J.; Lyons, D.A. Revisiting Remyelination: Towards a Consensus on the Regeneration of CNS Myelin. Semin. Cell Dev. Biol. 2021, 116, 3–9. [Google Scholar] [CrossRef]
- Al Mamun, A.; Quan, Z.; Geng, P.; Wang, S.; Shao, C.; Xiao, J. Targeting Remyelination in Spinal Cord Injury: Insights and Emerging Therapeutic Strategies. CNS Neurosci. Ther. 2024, 30, 1–15. [Google Scholar] [CrossRef]
- McDonald, J.W.; Liu, X.-Z.; Qu, Y.; Liu, S.; Mickey, S.K.; Turetsky, D.; Gottlieb, D.I.; Choi, D.W. Transplanted Embryonic Stem Cells Survive, Differentiate and Promote Recovery in Injured Rat Spinal Cord. Nat. Med. 1999, 5, 1410–1412. [Google Scholar] [CrossRef]
- Nunes, G.D.-F.; Osso, L.A.; Haynes, J.A.; Conant, L.; Thornton, M.A.; Stockton, M.E.; Brassell, K.A.; Morris, A.; Corchado, Y.I.M.; Gaynes, J.A.; et al. Incomplete Remyelination via Therapeutically Enhanced Oligodendrogenesis Is Sufficient to Recover Visual Cortical Function. Nat. Commun. 2025, 16, 732. [Google Scholar] [CrossRef]
- Kopper, T.J.; Gensel, J.C. Myelin as an Inflammatory Mediator: Myelin Interactions with Complement, Macrophages, and Microglia in Spinal Cord Injury. J. Neurosci. Res. 2018, 96, 969–977. [Google Scholar] [CrossRef]
- de Faria, O.; Pivonkova, H.; Varga, B.; Timmler, S.; Evans, K.A.; Káradóttir, R.T. Periods of Synchronized Myelin Changes Shape Brain Function and Plasticity. Nat. Neurosci. 2021, 24, 1508–1521. [Google Scholar] [CrossRef]
- Jensen, S.K.; Michaels, N.J.; Ilyntskyy, S.; Keough, M.B.; Kovalchuk, O.; Yong, V.W. Multimodal Enhancement of Remyelination by Exercise with a Pivotal Role for Oligodendroglial PGC1α. Cell Rep. 2018, 24, 3167–3179. [Google Scholar] [CrossRef]
- Dumont, R.J.; Okonkwo, D.O.; Verma, S.; Hurlbert, R.J.; Boulos, P.T.; Ellegala, D.B.; Dumont, A.S. Acute Spinal Cord Injury, Part I: Pathophysiologic Mechanisms. Clin. Neuropharmacol. 2001, 24, 254–264. [Google Scholar] [CrossRef]
- Tator, C.H.; Fehlings, M.G. Review of the Secondary Injury Theory of Acute Spinal Cord Trauma with Emphasis on Vascular Mechanisms. J. Neurosurg. 1991, 75, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Menegoz, M.; Gaspar, P.; Le Bert, M.; Galvez, T.; Burgaya, F.; Palfrey, C.; Ezan, P.; Arnos, F.; Girault, J.-A. Paranodin, a Glycoprotein of Neuronal Paranodal Membranes. Neuron 1997, 19, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Fu, Y.; Shi, Y.; Cheng, J.-X.; Cao, P.; Shi, R. Paranodal Myelin Damage after Acute Stretch in Guinea Pig Spinal Cord. J. Neurotrauma 2012, 29, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Almad, A.; Sahinkaya, F.R.; McTigue, D.M. Oligodendrocyte Fate after Spinal Cord Injury. Neurotherapeutics 2011, 8, 262–273. [Google Scholar] [CrossRef]
- Warnock, A.; Toomey, L.M.; Wright, A.J.; Fisher, K.; Won, Y.; Anyaegbu, C.; Fitzgerald, M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J. Neurotrauma 2020, 37, 739–769. [Google Scholar] [CrossRef]
- Pukos, N.; Goodus, M.T.; Sahinkaya, F.R.; McTigue, D.M. Myelin Status and Oligodendrocyte Lineage Cells over Time after Spinal Cord Injury: What Do We Know and What Still Needs to Be Unwrapped? GLIA 2019, 67, 2178–2202. [Google Scholar] [CrossRef]
- Duncan, G.J.; Manesh, S.B.; Hilton, B.J.; Assinck, P.; Plemel, J.R.; Tetzlaff, W. The Fate and Function of Oligodendrocyte Progenitor Cells after Traumatic Spinal Cord Injury. GLIA 2020, 68, 227–245. [Google Scholar] [CrossRef]
- Alizadeh, A.; Karimi-Abdolrezaee, S. Microenvironmental Regulation of Oligodendrocyte Replacement and Remyelination in Spinal Cord Injury. J. Physiol. 2016, 594, 3539–3552. [Google Scholar] [CrossRef]
- Hassannejad, Z.; Shakouri-Motlagh, A.; Mokhatab, M.; Zadegan, S.A.; Sharif-Alhoseini, M.; Shokraneh, F.; Rahimi-Movaghar, V. Oligodendrogliogenesis and Axon Remyelination after Traumatic Spinal Cord Injuries in Animal Studies: A Systematic Review. Neuroscience 2019, 402, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Giacci, M.K.; Bartlett, C.A.; Smith, N.M.; Iyer, K.S.; Toomey, L.M.; Jiang, H.; Guagliardo, P.; Kilburn, M.R.; Fitzgerald, M. Oligodendroglia Are Particularly Vulnerable to Oxidative Damage after Neurotrauma In Vivo. J. Neurosci. 2018, 38, 6491–6504. [Google Scholar] [CrossRef] [PubMed]
- Forston, M.D.; Wei, G.Z.; Chariker, J.H.; Stephenson, T.; Andres, K.; Glover, C.; Rouchka, E.C.; Whittemore, S.R.; Hetman, M. Enhanced Oxidative Phosphorylation, Re-Organized Intracellular Signaling, and Epigenetic de-Silencing as Revealed by Oligodendrocyte Translatome Analysis after Contusive Spinal Cord Injury. Sci. Rep. 2023, 13, 21254. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Velumian, A.A.; Fehlings, M.G. The Role of Excitotoxicity in Secondary Mechanisms of Spinal Cord Injury: A Review with an Emphasis on the Implications for White Matter Degeneration. J. Neurotrauma 2004, 21, 754–774. [Google Scholar] [CrossRef]
- Huang, S.; Ren, C.; Luo, Y.; Ding, Y.; Ji, X.; Li, S. New Insights into the Roles of Oligodendrocytes Regulation in Ischemic Stroke Recovery. Neurobiol. Dis. 2023, 184, 106200. [Google Scholar] [CrossRef]
- Mifsud, G.; Zammit, C.; Muscat, R.; Di Giovanni, G.; Valentino, M. Oligodendrocyte Pathophysiology and Treatment Strategies in Cerebral Ischemia. CNS Neurosci. Ther. 2014, 20, 603–612. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Tator, C.H. The Relationships among the Severity of Spinal Cord Injury, Residual Neurological Function, Axon Counts, and Counts of Retrogradely Labeled Neurons after Experimental Spinal Cord Injury. Exp. Neurol. 1995, 132, 220–228. [Google Scholar] [CrossRef]
- Káradóttir, R.; Attwell, D. Neurotransmitter Receptors in the Life and Death of Oligodendrocytes. Neuroscience 2007, 145, 1426–1438. [Google Scholar] [CrossRef]
- Káradóttir, R.; Cavelier, P.; Bergersen, L.H.; Attwell, D. NMDA Receptors Are Expressed in Oligodendrocytes and Activated in Ischaemia. Nature 2005, 438, 1162–1166. [Google Scholar] [CrossRef]
- Sawada, M.; Kondo, N.; Suzumura, A.; Marunouchi, T. Production of Tumor Necrosis Factor-Alpha by Microglia and Astrocytes in Culture. Brain Res. 1989, 491, 394–397. [Google Scholar] [CrossRef]
- Christie, S.D.; Comeau, B.; Myers, T.; Sadi, D.; Purdy, M.; Mendez, I. Duration of Lipid Peroxidation after Acute Spinal Cord Injury in Rats and the Effect of Methylprednisolone: Laboratory Investigation. Neurosurg. Focus 2008, 25, E5. [Google Scholar] [CrossRef] [PubMed]
- Duchen, M.R. Mitochondria, Calcium-Dependent Neuronal Death and Neurodegenerative Disease. Pflüg. Arch.-Eur. J. Physiol. 2012, 464, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Finelli, M.J.; Wong, J.K.; Zou, H. Epigenetic Regulation of Sensory Axon Regeneration after Spinal Cord Injury. J. Neurosci. 2013, 33, 19664–19676. [Google Scholar] [CrossRef]
- Zhang, C.; Zhai, T.; Zhu, J.; Wei, D.; Ren, S.; Yang, Y.; Gao, F.; Zhao, L. Research Progress of Antioxidants in Oxidative Stress Therapy after Spinal Cord Injury. Neurochem. Res. 2023, 48, 3473–3484. [Google Scholar] [CrossRef]
- Spaas, J.; Van Veggel, L.; Schepers, M.; Tiane, A.; Van Horssen, J.; Wilson, D.M.; Moya, P.R.; Piccart, E.; Hellings, N.; Eijnde, B.O.; et al. Oxidative Stress and Impaired Oligodendrocyte Precursor Cell Differentiation in Neurological Disorders. Cell. Mol. Life Sci. 2021, 78, 4615–4637. [Google Scholar] [CrossRef]
- Lee, K.; Na, W.; Lee, J.Y.; Na, J.; Cho, H.; Wu, H.; Yune, T.Y.; Kim, W.S.; Ju, B.G. Molecular Mechanism of Jmjd3-Mediated Interleukin-6 Gene Regulation in Endothelial Cells Underlying Spinal Cord Injury. J. Neurochem. 2012, 122, 272–282. [Google Scholar] [CrossRef]
- Tiane, A.; Schepers, M.; Rombaut, B.; Hupperts, R.; Prickaerts, J.; Hellings, N.; Van Den Hove, D.; Vanmierlo, T. From OPC to Oligodendrocyte: An Epigenetic Journey. Cells 2019, 8, 1236. [Google Scholar] [CrossRef]
- Lv, Y.; Ji, L.; Dai, H.; Qiu, S.; Wang, Y.; Teng, C.; Yu, B.; Mi, D.; Yao, C. Identification of Key Regulatory Genes Involved in Myelination after Spinal Cord Injury by GSEA Analysis. Exp. Neurol. 2024, 382, 114966. [Google Scholar] [CrossRef]
- Jones, T.B. Lymphocytes and Autoimmunity after Spinal Cord Injury. Exp. Neurol. 2014, 258, 78–90. [Google Scholar] [CrossRef]
- Kil, K.; Zang, Y.C.Q.; Yang, D.; Markowski, J.; Fuoco, G.S.; Vendetti, G.C.; Rivera, V.M.; Zhang, J.Z. T Cell Responses to Myelin Basic Protein in Patients with Spinal Cord Injury and Multiple Sclerosis. J. Neuroimmunol. 1999, 98, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.S.; Cui, Q.-L.; Warsi, N.M.; Durafourt, B.A.; Zorko, N.; Owen, D.R.; Antel, J.P.; Bar-Or, A. Direct and Indirect Effects of Immune and Central Nervous System–Resident Cells on Human Oligodendrocyte Progenitor Cell Differentiation. J. Immunol. 2015, 194, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Potas, J.R.; Zheng, Y.; Moussa, C.; Venn, M.; Gorrie, C.A.; Deng, C.; Waite, P.M.E. Augmented Locomotor Recovery after Spinal Cord Injury in the Athymic Nude Rat. J. Neurotrauma 2006, 23, 660–673. [Google Scholar] [CrossRef] [PubMed]
- Kroner, A.; Greenhalgh, A.D.; Zarruk, J.G.; dos Santos, R.P.; Gaestel, M.; David, S. TNF and Increased Intracellular Iron Alter Macrophage Polarization to a Detrimental M1 Phenotype in the Injured Spinal Cord. Neuron 2014, 83, 1098–1116. [Google Scholar] [CrossRef]
- Chandler, S.; Coates, R.; Gearing, A.; Lury, J.; Wells, G.; Bone, E. Matrix Metalloproteinases Degrade Myelin Basic Protein. Neurosci. Lett. 1995, 201, 223–226. [Google Scholar] [CrossRef]
- Guest, J.D.; Hiester, E.D.; Bunge, R.P. Demyelination and Schwann Cell Responses Adjacent to Injury Epicenter Cavities Following Chronic Human Spinal Cord Injury. Exp. Neurol. 2005, 192, 384–393. [Google Scholar] [CrossRef]
- Totoiu, M.O.; Keirstead, H.S. Spinal Cord Injury Is Accompanied by Chronic Progressive Demyelination. J. Comp. Neurol. 2005, 486, 373–383. [Google Scholar] [CrossRef]
- Waxman, S.G. Demyelination in Spinal Cord Injury. J. Neurol. Sci. 1989, 91, 1–14. [Google Scholar] [CrossRef]
- Fu, H.; Qi, Y.; Tan, M.; Cai, J.; Takebayashi, H.; Nakafuku, M.; Richardson, W.; Qiu, M. Dual Origin of Spinal Oligodendrocyte Progenitors and Evidence for the Cooperative Role of Olig2 and Nkx2.2 in the Control of Oligodendrocyte Differentiation. Development 2002, 129, 681–693. [Google Scholar] [CrossRef]
- Cunha, M.I.; Su, M.; Cantuti-Castelvetri, L.; Müller, S.A.; Schifferer, M.; Djannatian, M.; Alexopoulos, I.; Van Der Meer, F.; Winkler, A.; Van Ham, T.J.; et al. Pro-Inflammatory Activation Following Demyelination Is Required for Myelin Clearance and Oligodendrogenesis. J. Exp. Med. 2020, 217, e20191390. [Google Scholar] [CrossRef]
- Murugaiyan, G.; Fujiwara, M.; Garo, L.P. Remyelination-Promoting Inflammation: Novel Role for MyD88 Signaling in Microglia/Macrophages. Trends Neurosci. 2020, 43, 455–457. [Google Scholar] [CrossRef] [PubMed]
- Voss, E.V.; Škuljec, J.; Gudi, V.; Skripuletz, T.; Pul, R.; Trebst, C.; Stangel, M. Characterisation of Microglia during De- and Remyelination: Can They Create a Repair Promoting Environment? Neurobiol. Dis. 2012, 45, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Miron, V.E.; Boyd, A.; Zhao, J.W.; Yuen, T.J.; Ruckh, J.M.; Shadrach, J.L.; van Wijngaarden, P.; Wagers, A.J.; Williams, A.; Franklin, R.J.M.; et al. M2 Microglia and Macrophages Drive Oligodendrocyte Differentiation during CNS Remyelination. Nat. Neurosci. 2013, 16, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Miron, V.E. Microglia-Driven Regulation of Oligodendrocyte Lineage Cells, Myelination, and Remyelination. J. Leukoc. Biol. 2017, 101, 1103–1108. [Google Scholar] [CrossRef]
- Lloyd, A.F.; Davies, C.L.; Miron, V.E. Microglia: Origins, Homeostasis, and Roles in Myelin Repair. Curr. Opin. Neurobiol. 2017, 47, 113–120. [Google Scholar] [CrossRef]
- Mishra, M.K.; Rawji, K.S.; Keough, M.B.; Kappen, J.; Dowlatabadi, R.; Vogel, H.J.; Chopra, S.; Distéfano-Gagné, F.; Dufour, A.; Gosselin, D.; et al. Harnessing the Benefits of Neuroinflammation: Generation of Macrophages/Microglia with Prominent Remyelinating Properties. J. Neurosci. 2021, 41, 3366–3385. [Google Scholar] [CrossRef]
- Cao, M.; Boltze, J.; Li, S. Factors Regulating Oligodendrocyte Progenitor Cell Migration: From Development to Remyelination. GLIA 2025. [Google Scholar] [CrossRef]
- Assinck, P.; Duncan, G.J.; Plemel, J.R.; Lee, M.J.; Stratton, J.A.; Manesh, S.B.; Liu, J.; Ramer, L.M.; Kang, S.H.; Bergles, D.E.; et al. Myelinogenic Plasticity of Oligodendrocyte Precursor Cells Following Spinal Cord Contusion Injury. J. Neurosci. 2017, 37, 8635–8654. [Google Scholar] [CrossRef]
- Bartus, K.; Burnside, E.R.; Galino, J.; James, N.D.; Bennett, D.L.H.; Bradbury, E.J. ErbB Receptor Signaling Directly Controls Oligodendrocyte Progenitor Cell Transformation and Spontaneous Remyelination after Spinal Cord Injury. GLIA 2019, 67, 1036–1046. [Google Scholar] [CrossRef]
- Biname, F.; Sakry, D.; Dimou, L.; Jolivel, V.; Trotter, J. NG2 Regulates Directional Migration of Oligodendrocyte Precursor Cells via Rho GTPases and Polarity Complex Proteins. J. Neurosci. 2013, 33, 10858–10874. [Google Scholar] [CrossRef]
- Gaesser, J.M.; Fyffe-Maricich, S.L. Intracellular Signaling Pathway Regulation of Myelination and Remyelination in the CNS. Exp. Neurol. 2016, 283, 501–511. [Google Scholar] [CrossRef]
- Mathieu, P.A.; Almeira Gubiani, M.F.; Rodríguez, D.; Gómez Pinto, L.I.; Calcagno, M.L.; Adamo, A.M. Demyelination-Remyelination in the Central Nervous System: Ligand-Dependent Participation of the Notch Signaling Pathway. Toxicol. Sci. 2019, 171, 172–192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Argaw, A.T.; Gurfein, B.T.; Zameer, A.; Snyder, B.J.; Ge, C.; Lu, Q.R.; Rowitch, D.H.; Raine, C.S.; Brosnan, C.F.; et al. Notch1 Signaling Plays a Role in Regulating Precursor Differentiation during CNS Remyelination. Proc. Natl. Acad. Sci. USA 2009, 106, 19162–19167. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, M.B.; Wu, Y.; Clarke, E.; Grist, J.; Hobbs, C.; Trigo, D.; Jack, J.; Corcoran, J.P.T. Regulation of Myelination by Exosome Associated Retinoic Acid Release from NG2-Positive Cells. J. Neurosci. 2019, 39, 3013–3027. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, E.; Mathieu, P.; Luppi, M.P.; Gubiani, M.F.A.; Adamo, A.M. The Notch Signaling Pathway: Its Role in Focal CNS Demyelination and Apotransferrin-Induced Remyelination. J. Neurochem. 2013, 127, 819–836. [Google Scholar] [CrossRef]
- Genoud, S.; Lappe-Siefke, C.; Goebbels, S.; Radtke, F.; Aguet, M.; Scherer, S.S.; Suter, U.; Nave, K.-A.; Mantei, N. Notch1 Control of Oligodendrocyte Differentiation in the Spinal Cord. J. Cell Biol. 2002, 158, 709–718. [Google Scholar] [CrossRef]
- Hammond, T.R.; Gadea, A.; Dupree, J.; Kerninon, C.; Nait-Oumesmar, B.; Aguirre, A.; Gallo, V. Astrocyte-Derived Endothelin-1 Inhibits Remyelination through Notch Activation. Neuron 2014, 81, 588–602. [Google Scholar] [CrossRef]
- Hu, Q.; Ang, B.; Karsak, M.; Hu, W.; Cui, X.; Duka, T.; Takeda, Y.; Chia, W.; Sankar, N.; Ng, Y.; et al. F3/Contactin Acts as a Functional Ligand for Notch during Oligodendrocyte Maturation. Cell 2003, 115, 163–175. [Google Scholar] [CrossRef]
- Hu, Q.; Cui, X.; Ng, Y.-K.; Xiao, Z.-C. Axoglial Interaction via the Notch Receptor in Oligodendrocyte Differentiation. Ann.-Acad. Med. Singap. 2004, 33, 581–588. [Google Scholar] [CrossRef]
- Cui, X.; Hu, Q.; Tekaya, M.; Shimoda, Y.; Ang, B.; Nie, D.; Sun, L.; Hu, W.; Karsak, M.; Duka, T.; et al. NB-3/Notch1 Pathway via Deltex1 Promotes Neural Progenitor Cell Differentiation into Oligodendrocytes. J. Biol. Chem. 2004, 279, 25858–25865. [Google Scholar] [CrossRef]
- Danesin, C.; Soula, C. Moving the Shh Source over Time: What Impact on Neural Cell Diversification in the Developing Spinal Cord? J. Dev. Biol. 2017, 5, 4. [Google Scholar] [CrossRef]
- Sanchez, M.A.; Sullivan, G.M.; Armstrong, R.C. Genetic Detection of Sonic Hedgehog (Shh) Expression and Cellular Response in the Progression of Acute through Chronic Demyelination and Remyelination. Neurobiol. Dis. 2018, 115, 145–156. [Google Scholar] [CrossRef]
- Zakaria, M.; Ferent, J.; Hristovska, I.; Laouarem, Y.; Zahaf, A.; Kassoussi, A.; Mayeur, M.E.; Pascual, O.; Charron, F.; Traiffort, E. The Shh Receptor Boc Is Important for Myelin Formation and Repair. Development 2019, 146, dev172502. [Google Scholar] [CrossRef]
- Yue, Y.; Zhao, J.; Li, X.; Zhang, L.; Su, Y.; Fan, H. Involvement of Shh/Gli1 Signaling in the Permeability of Blood-Spinal Cord Barrier and Locomotion Recovery after Spinal Cord Contusion. Neurosci. Lett. 2020, 728, 134947. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, J.L.; Murray, S.S.; Xiao, J. Brain-Derived Neurotrophic Factor in Central Nervous System Myelination: A New Mechanism to Promote Myelin Plasticity and Repair. Int. J. Mol. Sci. 2018, 19, 4131. [Google Scholar] [CrossRef] [PubMed]
- McTigue, D.M.; Horner, P.J.; Stokes, B.T.; Gage, F.H. Neurotrophin-3 and Brain-Derived Neurotrophic Factor Induce Oligodendrocyte Proliferation and Myelination of Regenerating Axons in the Contused Adult Rat Spinal Cord. J. Neurosci. 1998, 18, 5354–5365. [Google Scholar] [CrossRef] [PubMed]
- Hinks, G.L.; Franklin, R.J. Distinctive Patterns of PDGF-A, FGF-2, IGF-I, and TGF-Beta1 Gene Expression during Remyelination of Experimentally-Induced Spinal Cord Demyelination. Mol. Cell. Neurosci. 1999, 14, 153–168. [Google Scholar] [CrossRef]
- Hesp, Z.C.; Goldstein, E.A.; Miranda, C.J.; Kaspar, B.K.; McTigue, D.M. Chronic Oligodendrogenesis and Remyelination after Spinal Cord Injury in Mice and Rats. J. Neurosci. 2015, 35, 1274–1290. [Google Scholar] [CrossRef]
- Hill, R.A.; Nishiyama, A.; Hughes, E.G. Features, Fates, and Functions of Oligodendrocyte Precursor Cells. Cold Spring Harb. Perspect. Biol. 2024, 16, a041425. [Google Scholar] [CrossRef]
- Adams, K.L.; Dahl, K.D.; Gallo, V.; Macklin, W.B. Intrinsic and Extrinsic Regulators of Oligodendrocyte Progenitor Proliferation and Differentiation. Semin. Cell Dev. Biol. 2021, 116, 16–24. [Google Scholar] [CrossRef]
- Clayton, B.L.L.; Tesar, P.J. Oligodendrocyte Progenitor Cell Fate and Function in Development and Disease. Curr. Opin. Cell Biol. 2021, 73, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Fancy, S.P.; Baranzini, S.E.; Zhao, C.; Yuk, D.I.; Irvine, K.A.; Kaing, S.; Sanai, N.; Franklin, R.J.; Rowitch, D.H. Dysregulation of the Wnt Pathway Inhibits Timely Myelination and Remyelination in the Mammalian CNS. Genes. Dev. 2009, 23, 1571–1585. [Google Scholar] [CrossRef] [PubMed]
- Tawk, M.; Makoukji, J.; Belle, M.; Fonte, C.; Trousson, A.; Hawkins, T.; Li, H.; Ghandour, S.; Schumacher, M.; Massaad, C. Wnt/Beta-Catenin Signaling Is an Essential and Direct Driver of Myelin Gene Expression and Myelinogenesis. J. Neurosci. 2011, 31, 3729–3742. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Chaboub, L.S.; Zhu, W.; Zollinger, D.; Rasband, M.N.; Fancy, S.P.; Deneen, B. Daam2-PIP5K Is a Regulatory Pathway for Wnt Signaling and Therapeutic Target for Remyelination in the CNS. Neuron 2015, 85, 1227–1243. [Google Scholar] [CrossRef]
- Rodriguez, J.P.; Coulter, M.; Miotke, J.; Meyer, R.L.; Takemaru, K.; Levine, J.M. Abrogation of β-Catenin Signaling in Oligodendrocyte Precursor Cells Reduces Glial Scarring and Promotes Axon Regeneration after CNS Injury. J. Neurosci. 2014, 34, 10285–10297. [Google Scholar] [CrossRef]
- Fernández-Martos, C.M.; González-Fernández, C.; González, P.; Maqueda, A.; Arenas, E.; Rodríguez, F.J. Differential Expression of Wnts after Spinal Cord Contusion Injury in Adult Rats. PLoS ONE 2011, 6, e27000. [Google Scholar] [CrossRef]
- Gammons, M.; Bienz, M. Multiprotein Complexes Governing Wnt Signal Transduction. Curr. Opin. Cell Biol. 2018, 51, 42–49. [Google Scholar] [CrossRef]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/Beta-Catenin Signaling: Components, Mechanisms, and Diseases. Dev. Cell 2009, 17, 9–26. [Google Scholar] [CrossRef]
- Rim, E.Y.; Clevers, H.; Nusse, R. The Wnt Pathway: From Signaling Mechanisms to Synthetic Modulators. Annu. Rev. Biochem. 2022, 91, 571–598. [Google Scholar] [CrossRef]
- Lebrun-Julien, F.; Bachmann, L.; Norrmen, C.; Trotzmuller, M.; Kofeler, H.; Ruegg, M.A.; Hall, M.N.; Suter, U. Balanced mTORC1 Activity in Oligodendrocytes Is Required for Accurate CNS Myelination. J. Neurosci. 2014, 34, 8432–8448. [Google Scholar] [CrossRef]
- Fedder-Semmes, K.N.; Appel, B. The Akt-mTOR Pathway Drives Myelin Sheath Growth by Regulating Cap-Dependent Translation. J. Neurosci. 2021, 41, 8532–8544. [Google Scholar] [CrossRef]
- Dahl, K.D.; Almeida, A.R.; Hathaway, H.A.; Bourne, J.; Brown, T.L.; Finseth, L.T.; Wood, T.L.; Macklin, W.B. mTORC2 Loss in Oligodendrocyte Progenitor Cells Results in Regional Hypomyelination in the Central Nervous System. J. Neurosci. 2023, 43, 540–558. [Google Scholar] [CrossRef]
- Dai, J.; Bercury, K.K.; Macklin, W.B. Interaction of mTOR and Erk1/2 Signaling to Regulate Oligodendrocyte Differentiation. GLIA 2014, 62, 2096–2109. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, X.; He, Q.; Zheng, Y.; Kim, D.H.; Whittemore, S.R.; Cao, Q.L. Astrocytes from the Contused Spinal Cord Inhibit Oligodendrocyte Differentiation of Adult Oligodendrocyte Precursor Cells by Increasing the Expression of Bone Morphogenetic Proteins. J. Neurosci. 2011, 31, 6053–6058. [Google Scholar] [CrossRef] [PubMed]
- Ornelas, I.M.; Khandker, L.; Wahl, S.E.; Hashimoto, H.; Macklin, W.B.; Wood, T.L. The Mechanistic Target of Rapamycin Pathway Downregulates Bone Morphogenetic Protein Signaling to Promote Oligodendrocyte Differentiation. GLIA 2020, 68, 1274–1290. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, L.; Jiang, M.; Zhao, C.; Liu, X.; Berry, K.; Waisman, A.; Langseth, A.J.; Novitch, B.G.; Bergles, D.E.; et al. Olig2 Ablation in Immature Oligodendrocytes Does Not Enhance CNS Myelination and Remyelination. J. Neurosci. 2022, 42, 8542–8555. [Google Scholar] [CrossRef] [PubMed]
- Wegener, A.; Deboux, C.; Bachelin, C.; Frah, M.; Kerninon, C.; Seilhean, D.; Weider, M.; Wegner, M.; Nait-Oumesmar, B. Gain of Olig2 Function in Oligodendrocyte Progenitors Promotes Remyelination. Brain 2015, 138, 120–135. [Google Scholar] [CrossRef]
- Arnett, H.A.; Fancy, S.P.; Alberta, J.A.; Zhao, C.; Plant, S.R.; Kaing, S.; Raine, C.S.; Rowitch, D.H.; Franklin, R.J.; Stiles, C.D. bHLH Transcription Factor Olig1 Is Required to Repair Demyelinated Lesions in the CNS. Science 2004, 306, 2111–2115. [Google Scholar] [CrossRef]
- Kim, H.M.; Hwang, D.H.; Choi, J.Y.; Park, C.H.; Suh-Kim, H.; Kim, S.U.; Kim, B.G. Differential and Cooperative Actions of Olig1 and Olig2 Transcription Factors on Immature Proliferating Cells after Contusive Spinal Cord Injury. GLIA 2011, 59, 1094–1106. [Google Scholar] [CrossRef]
- Li, H.; Lu, Y.; Smith, H.K.; Richardson, W.D. Olig1 and Sox10 Interact Synergistically to Drive Myelin Basic Protein Transcription in Oligodendrocytes. J. Neurosci. 2007, 27, 14375–14382. [Google Scholar] [CrossRef]
- Takada, N.; Kucenas, S.; Appel, B. Sox10 Is Necessary for Oligodendrocyte Survival Following Axon Wrapping. GLIA 2010, 58, 996–1006. [Google Scholar] [CrossRef]
- Khanghahi, A.M.; Satarian, L.; Deng, W.; Baharvand, H.; Javan, M. In Vivo Conversion of Astrocytes into Oligodendrocyte Lineage Cells with Transcription Factor Sox10; Promise for Myelin Repair in Multiple Sclerosis. PLoS ONE 2018, 13, e0203785. [Google Scholar] [CrossRef]
- Wittstatt, J.; Reiprich, S.; Küspert, M. Crazy Little Thing Called Sox—New Insights in Oligodendroglial Sox Protein Function. Int. J. Mol. Sci. 2019, 20, 2713. [Google Scholar] [CrossRef] [PubMed]
- Fancy, S.P.; Zhao, C.; Franklin, R.J. Increased Expression of Nkx2.2 and Olig2 Identifies Reactive Oligodendrocyte Progenitor Cells Responding to Demyelination in the Adult CNS. Mol. Cell. Neurosci. 2004, 27, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Hadzic, T.; Nishiyama, A. Transient Upregulation of Nkx2.2 Expression in Oligodendrocyte Lineage Cells during Remyelination. GLIA 2004, 46, 311–322. [Google Scholar] [CrossRef]
- Zhou, Q.; Choi, G.; Anderson, D.J. The bHLH Transcription Factor Olig2 Promotes Oligodendrocyte Differentiation in Collaboration with Nkx2.2. Neuron 2001, 31, 791–807. [Google Scholar] [CrossRef]
- Suyama, K.; Watanabe, M.; Sakai, D.; Osada, T.; Imai, M.; Mochida, J. Nkx2.2 Expression in Differentiation of Oligodendrocyte Precursor Cells and Inhibitory Factors for Differentiation of Oligodendrocytes after Traumatic Spinal Cord Injury. J. Neurotrauma 2007, 24, 1013–1025. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Cai, Q.; Yao, Z. ID2: A Negative Transcription Factor Regulating Oligodendroglia Differentiation. J. Neurosci. Res. 2012, 90, 925–932. [Google Scholar] [CrossRef]
- Huang, H.; Wu, H.; He, W.; Zhou, F.; Yu, X.; Yi, M.; Du, J.; Xie, B.; Qiu, M. Id2 and Id4 Are Not the Major Negative Regulators of Oligodendrocyte Differentiation during Early Central Nervous System Development. GLIA 2022, 70, 590–601. [Google Scholar] [CrossRef]
- Havrda, M.C.; Paolella, B.R.; Ran, C.; Jering, K.S.; Wray, C.M.; Sullivan, J.M.; Nailor, A.; Hitoshi, Y.; Israel, M.A. Id2 Mediates Oligodendrocyte Precursor Cell Maturation Arrest and Is Tumorigenic in a PDGF-Rich Microenvironment. Cancer Res. 2014, 74, 1822–1832. [Google Scholar] [CrossRef]
- Wedel, M.; Fröb, F.; Elsesser, O.; Wittmann, M.-T.; Lie, D.C.; Reis, A.; Wegner, M. Transcription Factor Tcf4 Is the Preferred Heterodimerization Partner for Olig2 in Oligodendrocytes and Required for Differentiation. Nucleic Acids Res. 2020, 48, 4839–4857. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Deng, Y.; Liu, L.; Yu, K.; Zhang, L.; Wang, H.; He, X.; Wang, J.; Lu, C.; Wu, L.N.; et al. Dual Regulatory Switch through Interactions of Tcf7l2/Tcf4 with Stage-Specific Partners Propels Oligodendroglial Maturation. Nat. Commun. 2016, 7, 10883. [Google Scholar] [CrossRef] [PubMed]
- Cantone, M.; Küspert, M.; Reiprich, S.; Lai, X.; Eberhardt, M.; Göttle, P.; Beyer, F.; Azim, K.; Küry, P.; Wegner, M.; et al. A Gene Regulatory Architecture That Controls Region-independent Dynamics of Oligodendrocyte Differentiation. GLIA 2019, 67, 825–843. [Google Scholar] [CrossRef] [PubMed]
- Sock, E.; Wegner, M. Using the Lineage Determinants Olig2 and Sox10 to Explore Transcriptional Regulation of Oligodendrocyte Development. Dev. Neurobiol. 2021, 81, 892–901. [Google Scholar] [CrossRef]
- Camargo, N.; Goudriaan, A.; van Deijk, A.-L.F.; Otte, W.M.; Brouwers, J.; Lodder, H.; Gutmann, D.; Nave, K.; Dijkhuizen, R.; Mansvelder, H.; et al. Oligodendroglial Myelination Requires Astrocyte-Derived Lipids. PLoS Biol. 2017, 15, e1002605. [Google Scholar] [CrossRef]
- Molina-Gonzalez, I.; Holloway, R.K.; Jiwaji, Z.; Dando, O.; Kent, S.A.; Emelianova, K.; Lloyd, A.F.; Forbes, L.H.; Mahmood, A.; Skripuletz, T.; et al. Astrocyte-Oligodendrocyte Interaction Regulates Central Nervous System Regeneration. Nat. Commun. 2023, 14, 3372. [Google Scholar] [CrossRef]
- Albrecht, P.J.; Murtie, J.C.; Ness, J.K.; Redwine, J.M.; Enterline, J.R.; Armstrong, R.C.; Levison, S.W. Astrocytes Produce CNTF during the Remyelination Phase of Viral-Induced Spinal Cord Demyelination to Stimulate FGF-2 Production. Neurobiol. Dis. 2003, 13, 89–101. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, Y.; Wang, K.; Xu, X.; Song, Y.; Zhao, B.; Ding, W.; Liu, J.; Song, Z. The Role of Astrocyte-Derived Extracellular Vesicles in Cellular Microenvironment Remodeling after Spinal Cord Injury: A Study Based on Quantitative Proteomics Analysis. Exp. Neurol. 2025, 391, 115321. [Google Scholar] [CrossRef]
- Gouna, G.; Klose, C.; Bosch-Queralt, M.; Liu, L.; Gokce, O.; Schifferer, M.; Cantuti-Castelvetri, L.; Simons, M. TREM2-Dependent Lipid Droplet Biogenesis in Phagocytes Is Required for Remyelination. J. Exp. Med. 2021, 218, e20210227. [Google Scholar] [CrossRef]
- Yao, X.-Q.; Chen, J.-Y.; Garcia-Segura, M.E.; Wen, Z.-H.; Yu, Z.-H.; Huang, Z.-C.; Hamel, R.; Liu, J.-H.; Shen, X.; Huang, Z.-P.; et al. Integrated Multi-Omics Analysis Reveals Molecular Changes Associated with Chronic Lipid Accumulation Following Contusive Spinal Cord Injury. Exp. Neurol. 2024, 380, 114909. [Google Scholar] [CrossRef]
- Voskuhl, R.R.; Itoh, N.; Tassoni, A.; Matsukawa, M.A.; Ren, E.; Tse, V.; Jang, E.; Suen, T.T.; Itoh, Y. Gene Expression in Oligodendrocytes during Remyelination Reveals Cholesterol Homeostasis as a Therapeutic Target in Multiple Sclerosis. Proc. Natl. Acad. Sci. USA 2019, 116, 10130–10139. [Google Scholar] [CrossRef] [PubMed]
- Hubler, Z.; Allimuthu, D.; Bederman, I.; Elitt, M.S.; Madhavan, M.; Allan, K.C.; Shick, H.E.; Garrison, E.; Karl, M.T.; Factor, D.C.; et al. Accumulation of 8,9-Unsaturated Sterols Drives Oligodendrocyte Formation and Remyelination. Nature 2018, 560, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Akbik, F.; Cafferty, W.B.J.; Strittmatter, S.M. Myelin Associated Inhibitors: A Link between Injury-Induced and Experience-Dependent Plasticity. Exp. Neurol. 2012, 235, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Löw, K.; Culbertson, M.; Bradke, F.; Tessier-Lavigne, M.; Tuszynski, M.H. Netrin-1 Is a Novel Myelin-Associated Inhibitor to Axon Growth. J. Neurosci. 2008, 28, 1099–1108. [Google Scholar] [CrossRef]
- Keirstead, H.S.; Blakemore, W.F. The Role of Oligodendrocytes and Oligodendrocyte Progenitors in Cns Remyelination. In The Functional Roles of Glial Cells in Health and Disease; Matsas, R., Tsacopoulos, M., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 1999; Volume 468, pp. 183–197. ISBN 978-1-4613-7121-2. [Google Scholar]
- Yu, G.; Zhang, Y.; Ning, B. Reactive Astrocytes in Central Nervous System Injury: Subgroup and Potential Therapy. Front. Cell. Neurosci. 2021, 15, 792764. [Google Scholar] [CrossRef]
- Su, Z.; Yuan, Y.; Chen, J.; Zhu, Y.; Qiu, Y.; Zhu, F.; Huang, A.; He, C. Reactive Astrocytes Inhibit the Survival and Differentiation of Oligodendrocyte Precursor Cells by Secreted TNF-α. J. Neurotrauma 2011, 28, 1089–1100. [Google Scholar] [CrossRef]
- Siebert, J.R.; Osterhout, D.J. The Inhibitory Effects of Chondroitin Sulfate Proteoglycans on Oligodendrocytes. J. Neurochem. 2011, 119, 176–188. [Google Scholar] [CrossRef]
- Sun, Y.; Deng, Y.; Xiao, M.; Hu, L.; Li, Z.; Chen, C. Chondroitin Sulfate Proteoglycans Inhibit the Migration and Differentiation of Oligodendrocyte Precursor Cells and Its Counteractive Interaction with Laminin. Int. J. Mol. Med. 2017, 40, 1657–1668. [Google Scholar] [CrossRef]
- Franklin, R.J.M.; Simons, M. CNS Remyelination and Inflammation: From Basic Mechanisms to Therapeutic Opportunities. Neuron 2022, 110, 3549–3565. [Google Scholar] [CrossRef]
- Foote, A.K.; Blakemore, W.F. Inflammation Stimulates Remyelination in Areas of Chronic Demyelination. Brain 2005, 128, 528–539. [Google Scholar] [CrossRef]
- Imai, M.; Watanabe, M.; Suyama, K.; Osada, T.; Sakai, D.; Kawada, H.; Matsumae, M.; Mochida, J. Delayed Accumulation of Activated Macrophages and Inhibition of Remyelination after Spinal Cord Injury in an Adult Rodent Model: Laboratory Investigation. J. Neurosurg. Spine 2008, 8, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Kigerl, K.A.; Gensel, J.C.; Ankeny, D.P.; Alexander, J.K.; Donnelly, D.J.; Popovich, P.G. Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing Either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord. J. Neurosci. 2009, 29, 13435–13444. [Google Scholar] [CrossRef]
- Paolicelli, R.C.; Sierra, A.; Stevens, B.; Tremblay, M.-E.; Aguzzi, A.; Ajami, B.; Amit, I.; Audinat, E.; Bechmann, I.; Bennett, M.; et al. Microglia States and Nomenclature: A Field at Its Crossroads. Neuron 2022, 110, 3458–3483. [Google Scholar] [CrossRef] [PubMed]
- Schwab, J.M.; Conrad, S.; Monnier, P.P.; Julien, S.; Mueller, B.K.; Schluesener, H.J. Spinal Cord Injury-induced Lesional Expression of the Repulsive Guidance Molecule (RGM). Eur. J. Neurosci. 2005, 21, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Simkins, T.J.; Duncan, G.J.; Bourdette, D. Chronic Demyelination and Axonal Degeneration in Multiple Sclerosis: Pathogenesis and Therapeutic Implications. Curr. Neurol. Neurosci. Rep. 2021, 21, 26. [Google Scholar] [CrossRef]
- Kerschensteiner, M.; Schwab, M.E.; Lichtman, J.W.; Misgeld, T. In Vivo Imaging of Axonal Degeneration and Regeneration in the Injured Spinal Cord. Nat. Med. 2005, 11, 572–577. [Google Scholar] [CrossRef]
- Khorasanizadeh, M.; Yousefifard, M.; Eskian, M.; Lu, Y.; Chalangari, M.; Harrop, J.S.; Jazayeri, S.B.; Seyedpour, S.; Khodaei, B.; Hosseini, M.; et al. Neurological Recovery Following Traumatic Spinal Cord Injury: A Systematic Review and Meta-Analysis. J. Neurosurg. Spine 2019, 30, 683–699. [Google Scholar] [CrossRef]
- Kirshblum, S.; Snider, B.; Eren, F.; Guest, J. Characterizing Natural Recovery after Traumatic Spinal Cord Injury. J. Neurotrauma 2021, 38, 1267–1284. [Google Scholar] [CrossRef]
- Flanders, A.E.; Spettell, C.M.; Friedman, D.P.; Marino, R.J.; Herbison, G.J. The Relationship between the Functional Abilities of Patients with Cervical Spinal Cord Injury and the Severity of Damage Revealed by MR Imaging. AJNR Am. J. Neuroradiol. 1999, 20, 926–934. [Google Scholar]
- Hofstoetter, U.S.; Knikou, M.; Guertin, P.A.; Minassian, K. Probing the Human Spinal Locomotor Circuits by Phasic Step-Induced Feedback and by Tonic Electrical and Pharmacological Neuromodulation. Curr. Pharm. Des. 2017, 23, 1805–1820. [Google Scholar] [CrossRef]
- Rossignol, S.; Frigon, A. Recovery of Locomotion After Spinal Cord Injury: Some Facts and Mechanisms. Annu. Rev. Neurosci. 2011, 34, 413–440. [Google Scholar] [CrossRef]
- Sun, X.; Li, L.; Huang, L.; Li, Y.; Wang, L.; Wei, Q. Harnessing Spinal Circuit Reorganization for Targeted Functional Recovery after Spinal Cord Injury. Neurobiol. Dis. 2025, 207, 106854. [Google Scholar] [CrossRef]
- Markandaya, M.; Stein, D.M.; Menaker, J. Acute Treatment Options for Spinal Cord Injury. Curr. Treat. Options Neurol. 2012, 14, 175–187. [Google Scholar] [CrossRef]
- Rabinstein, A.A. Traumatic Spinal Cord Injury. Continuum 2018, 24, 551–566. [Google Scholar] [CrossRef] [PubMed]
- Badner, A.; Siddiqui, A.M.; Fehlings, M.G. Spinal Cord Injuries: How Could Cell Therapy Help? Expert Opin. Biol. Ther. 2017, 17, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Plemel, J.R.; Keough, M.B.; Duncan, G.J.; Sparling, J.S.; Yong, V.W.; Stys, P.K.; Tetzlaff, W. Remyelination after Spinal Cord Injury: Is It a Target for Repair? Prog. Neurobiol. 2014, 117, 54–72. [Google Scholar] [CrossRef] [PubMed]
- Stokes, S.; Drozda, M.; Lee, C. The Past, Present, and Future of Traumatic Spinal Cord Injury Therapies: A Review. Bone Jt. Open 2022, 3, 348–358. [Google Scholar] [CrossRef]
- Anderson, K.D. Targeting Recovery: Priorities of the Spinal Cord-Injured Population. J. Neurotrauma 2004, 21, 1371–1383. [Google Scholar] [CrossRef]
- Samejima, S.; Shackleton, C.; McCracken, L.; Malik, R.N.; Miller, T.; Kavanagh, A.; Ghuman, A.; Elliott, S.; Walter, M.; Nightingale, T.E.; et al. Effects of Non-Invasive Spinal Cord Stimulation on Lower Urinary Tract, Bowel, and Sexual Functions in Individuals with Chronic Motor-Complete Spinal Cord Injury: Protocol for a Pilot Clinical Trial. PLoS ONE 2022, 17, e0278425. [Google Scholar] [CrossRef]
- Simpson, L.A.; Eng, J.J.; Hsieh, J.T.C.; Wolfe, D.L.; the Spinal Cord Injury Rehabilitation Evidence (SCIRE) Research Team. The Health and Life Priorities of Individuals with Spinal Cord Injury: A Systematic Review. J. Neurotrauma 2012, 29, 1548–1555. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 6 June 2025).
- Kucher, K.; Johns, D.; Maier, D.; Abel, R.; Badke, A.; Baron, H.; Thietje, R.; Casha, S.; Meindl, R.; Gomez-Mancilla, B.; et al. First-in-Man Intrathecal Application of Neurite Growth-Promoting Anti-Nogo-A Antibodies in Acute Spinal Cord Injury. Neurorehabilit. Neural Repair 2018, 32, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Weidner, N.; Abel, R.; Maier, D.; Röhl, K.; Röhrich, F.; Baumberger, M.; Hund-Georgiadis, M.; Saur, M.; Benito, J.; Rehahn, K.; et al. Safety and Efficacy of Intrathecal Antibodies to Nogo-A in Patients with Acute Cervical Spinal Cord Injury: A Randomised, Double-Blind, Multicentre, Placebo-Controlled, Phase 2b Trial. Lancet Neurol. 2025, 24, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Casha, S.; Zygun, D.; McGowan, M.D.; Bains, I.; Yong, V.W.; Hurlbert, R.J. Results of a Phase II Placebo-Controlled Randomized Trial of Minocycline in Acute Spinal Cord Injury. Brain 2012, 135, 1224–1236. [Google Scholar] [CrossRef] [PubMed]
- Bracken, M.B.; Shepard, M.J.; Holford, T.R.; Leo-Summers, L.; Aldrich, E.F.; Fazl, M.; Fehlings, M.; Herr, D.L.; Hitchon, P.W.; Marshall, L.F.; et al. Administration of Methylprednisolone for 24 or 48 Hours or Tirilazad Mesylate for 48 Hours in the Treatment of Acute Spinal Cord Injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 1997, 277, 1597–1604. [Google Scholar] [CrossRef]
- Ineichen, B.V.; Kapitza, S.; Bleul, C.; Good, N.; Plattner, P.S.; Seyedsadr, M.S.; Kaiser, J.; Schneider, M.P.; Zörner, B.; Martin, R.; et al. Nogo-A Antibodies Enhance Axonal Repair and Remyelination in Neuro-Inflammatory and Demyelinating Pathology. Acta Neuropathol. 2017, 134, 423–440. [Google Scholar] [CrossRef]
- Mdzomba, J.B.; Joly, S.; Rodriguez, L.; Dirani, A.; Lassiaz, P.; Behar-Cohen, F.; Pernet, V. Nogo-A-Targeting Antibody Promotes Visual Recovery and Inhibits Neuroinflammation after Retinal Injury. Cell Death Dis. 2020, 11, 101. [Google Scholar] [CrossRef]
- Gonzenbach, R.R.; Zoerner, B.; Schnell, L.; Weinmann, O.; Mir, A.K.; Schwab, M.E. Delayed Anti-Nogo-a Antibody Application after Spinal Cord Injury Shows Progressive Loss of Responsiveness. J. Neurotrauma 2012, 29, 567–578. [Google Scholar] [CrossRef]
- Dergham, P.; Ellezam, B.; Essagian, C.; Avedissian, H.; Lubell, W.D.; McKerracher, L. Rho Signaling Pathway Targeted to Promote Spinal Cord Repair. J. Neurosci. 2002, 22, 6570–6577. [Google Scholar] [CrossRef]
- Fournier, A.E.; Takizawa, B.T.; Strittmatter, S.M. Rho Kinase Inhibition Enhances Axonal Regeneration in the Injured CNS. J. Neurosci. 2003, 23, 1416–1423. [Google Scholar] [CrossRef]
- Forgione, N.; Fehlings, M.G. Rho-ROCK Inhibition in the Treatment of Spinal Cord Injury. World Neurosurg. 2014, 82, e535–e539. [Google Scholar] [CrossRef]
- Boland, S.; Bourin, A.; Alen, J.; Geraets, J.; Schroeders, P.; Castermans, K.; Kindt, N.; Boumans, N.; Panitti, L.; Fransen, S.; et al. Design, Synthesis, and Biological Evaluation of Novel, Highly Active Soft ROCK Inhibitors. J. Med. Chem. 2015, 58, 4309–4324. [Google Scholar] [CrossRef]
- Watzlawick, R.; Sena, E.S.; Dirnagl, U.; Brommer, B.; Kopp, M.A.; Macleod, M.R.; Howells, D.W.; Schwab, J.M. Effect and Reporting Bias of RhoA/ROCK-Blockade Intervention on Locomotor Recovery after Spinal Cord Injury: A Systematic Review and Meta-Analysis. JAMA Neurol. 2014, 71, 91–99. [Google Scholar] [CrossRef]
- Stirling, D.P.; Khodarahmi, K.; Liu, J.; McPhail, L.T.; McBride, C.B.; Steeves, J.D.; Ramer, M.S.; Tetzlaff, W. Minocycline Treatment Reduces Delayed Oligodendrocyte Death, Attenuates Axonal Dieback, and Improves Functional Outcome after Spinal Cord Injury. J. Neurosci. 2004, 24, 2182–2190. [Google Scholar] [CrossRef]
- Teng, Y.D.; Choi, H.; Onario, R.C.; Zhu, S.; Desilets, F.C.; Lan, S.; Woodard, E.J.; Snyder, E.Y.; Eichler, M.E.; Friedlander, R.M. Minocycline Inhibits Contusion-Triggered Mitochondrial Cytochrome c Release and Mitigates Functional Deficits after Spinal Cord Injury. Proc. Natl. Acad. Sci. USA 2004, 101, 3071–3076. [Google Scholar] [CrossRef]
- Yune, T.Y.; Lee, J.Y.; Jung, G.Y.; Kim, S.J.; Jiang, M.H.; Kim, Y.C.; Oh, Y.J.; Markelonis, G.J.; Oh, T.H. Minocycline Alleviates Death of Oligodendrocytes by Inhibiting Pro-Nerve Growth Factor Production in Microglia after Spinal Cord Injury. J. Neurosci. 2007, 27, 7751–7761. [Google Scholar] [CrossRef] [PubMed]
- Hellenbrand, D.J.; Lee, J.S.; Mickelson, E.J.; Baer, M.C.; Ott, E.L.; Martinson, N.R.; Celeen, M.R.; Hilger, K.H.; Nielsen, B.E.; Jacobs, A.N.; et al. Mineral Coated Microparticles Delivering Interleukin-4, Interleukin-10, and Interleukin-13 Reduce Inflammation and Improve Function after Spinal Cord Injury in a Rat. Exp. Neurol. 2025, 386, 115179. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.; Matcovitch, O.; David, E.; Barnett-Itzhaki, Z.; Keren-Shaul, H.; Blecher-Gonen, R.; Jaitin, D.A.; Sica, A.; Amit, I.; Schwartz, M. Chronic Exposure to TGFβ1 Regulates Myeloid Cell Inflammatory Response in an IRF7-Dependent Manner. EMBO J. 2014, 33, 2906–2921. [Google Scholar] [CrossRef] [PubMed]
- Hellenbrand, D.J.; Reichl, K.A.; Travis, B.J.; Filipp, M.E.; Khalil, A.S.; Pulito, D.J.; Gavigan, A.V.; Maginot, E.R.; Arnold, M.T.; Adler, A.G.; et al. Sustained Interleukin-10 Delivery Reduces Inflammation and Improves Motor Function after Spinal Cord Injury. J. Neuroinflamm. 2019, 16, 93. [Google Scholar] [CrossRef]
- Park, J.; Decker, J.T.; Margul, D.J.; Smith, D.R.; Cummings, B.J.; Anderson, A.J.; Shea, L.D. Local Immunomodulation with Anti-Inflammatory Cytokine-Encoding Lentivirus Enhances Functional Recovery after Spinal Cord Injury. Mol. Ther. 2018, 26, 1756–1770. [Google Scholar] [CrossRef]
- Zhang, K.; Wen, R.; Ma, W.; Ji, H.; He, X.; Yang, Z.; Liu, D.; Li, X. P2Y12-Targeted Modulation of Microglial Phenotypes: A Novel Therapeutic Strategy for Enhanced Axonal Regeneration Post-Spinal Cord Injury. Life Sci. 2024, 357, 123057. [Google Scholar] [CrossRef]
- Döring, A.; Sloka, S.; Lau, L.; Mishra, M.; van Minnen, J.; Zhang, X.; Kinniburgh, D.; Rivest, S.; Yong, V.W. Stimulation of Monocytes, Macrophages, and Microglia by Amphotericin B and Macrophage Colony-Stimulating Factor Promotes Remyelination. J. Neurosci. 2015, 35, 1136–1148. [Google Scholar] [CrossRef]
- Ding, L.; Zhou, J.; Ye, L.; Sun, Y.; Jiang, Z.; Gan, D.; Xu, L.; Luo, Q.; Wang, G. PPAR-γ Is Critical for HDAC3-Mediated Control of Oligodendrocyte Progenitor Cell Proliferation and Differentiation after Focal Demyelination. Mol. Neurobiol. 2020, 57, 4810–4824. [Google Scholar] [CrossRef]
- Lyssiotis, C.A.; Walker, J.; Wu, C.; Kondo, T.; Schultz, P.G.; Wu, X. Inhibition of Histone Deacetylase Activity Induces Developmental Plasticity in Oligodendrocyte Precursor Cells. Proc. Natl. Acad. Sci. USA 2007, 104, 14982–14987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fujita, Y.; Matsuzaki, R.; Yamashita, T. Class I Histone Deacetylase (HDAC) Inhibitor CI-994 Promotes Functional Recovery Following Spinal Cord Injury. Cell Death Dis. 2018, 9, 460. [Google Scholar] [CrossRef] [PubMed]
- Scholpa, N.E. Role of DNA Methylation during Recovery from Spinal Cord Injury with and without β(2)-Adrenergic Receptor Agonism. Exp. Neurol. 2023, 368, 114494. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.F.; Wang, Z.Y.; Sun, L.; Yu, S.X.; Yu, H.D.; Yang, Z.Z.; Li, W.Z.; Niu, L.; Sun, D.; Shi, Y.H.; et al. DNMT3b-Mediated CpA Methylation Facilitates REST Binding and Gene Silencing and Exacerbates Hippocampal Demyelination in Diabetic Mice. J. Biol. Chem. 2024, 301, 108137. [Google Scholar] [CrossRef]
- Lopez, M.; Gilbert, J.; Contreras, J.; Halby, L.; Arimondo, P.B. Inhibitors of DNA Methylation. In DNA Methyltransferases—Role and Function; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2022; Volume 1389, pp. 471–513. [Google Scholar] [CrossRef]
- Bambakidis, N.C.; Wang, R.Z.; Franic, L.; Miller, R.H. Sonic Hedgehog—Induced Neural Precursor Proliferation after Adult Rodent Spinal Cord Injury. J. Neurosurg. 2003, 99, 70–75. [Google Scholar] [CrossRef]
- Bambakidis, N.C.; Wang, X.; Lukas, R.J.; Spetzler, R.F.; Sonntag, V.K.; Preul, M.C. Intravenous Hedgehog Agonist Induces Proliferation of Neural and Oligodendrocyte Precursors in Rodent Spinal Cord Injury. Neurosurgery 2010, 67, 1709–1715, discussion 1715. [Google Scholar] [CrossRef]
- Del Giovane, A.; Ragnini-Wilson, A. Targeting Smoothened as a New Frontier in the Functional Recovery of Central Nervous System Demyelinating Pathologies. Int. J. Mol. Sci. 2018, 19, 3677. [Google Scholar] [CrossRef]
- Fancy, S.P.; Harrington, E.P.; Yuen, T.J.; Silbereis, J.C.; Zhao, C.; Baranzini, S.E.; Bruce, C.C.; Otero, J.J.; Huang, E.J.; Nusse, R.; et al. Axin2 as Regulatory and Therapeutic Target in Newborn Brain Injury and Remyelination. Nat. Neurosci. 2011, 14, 1009–1016. [Google Scholar] [CrossRef]
- Zhou, X.; Zhan, Z.; Tang, C.; Li, J.; Zheng, X.; Zhu, S.; Qi, J. Silencing Celsr2 Inhibits the Proliferation and Migration of Schwann Cells through Suppressing the Wnt/β-Catenin Signaling Pathway. Biochem. Biophys. Res. Commun. 2020, 533, 623–630. [Google Scholar] [CrossRef]
- González, P.; González-Fernández, C.; Campos-Martín, Y.; Mollejo, M.; Carballosa-Gautam, M.; Marcillo, A.; Norenberg, M.; Rodríguez, F.J. Frizzled 1 and Wnt1 as New Potential Therapeutic Targets in the Traumatically Injured Spinal Cord. Cell Mol. Life Sci. 2020, 77, 4631–4662. [Google Scholar] [CrossRef]
- Preisner, A.; Albrecht, S.; Cui, Q.L.; Hucke, S.; Ghelman, J.; Hartmann, C.; Taketo, M.M.; Antel, J.; Klotz, L.; Kuhlmann, T. Non-Steroidal Anti-Inflammatory Drug Indometacin Enhances Endogenous Remyelination. Acta Neuropathol. 2015, 130, 247–261. [Google Scholar] [CrossRef]
- Ohta, S.; Iwashita, Y.; Takada, H.; Kuno, S.; Nakamura, T. Neuroprotection and Enhanced Recovery with Edaravone after Acute Spinal Cord Injury in Rats. Spine 2005, 30, 1154–1158. [Google Scholar] [CrossRef]
- Takase, H.; Liang, A.C.; Miyamoto, N.; Hamanaka, G.; Ohtomo, R.; Maki, T.; Pham, L.D.; Lok, J.; Lo, E.H.; Arai, K. Protective Effects of a Radical Scavenger Edaravone on Oligodendrocyte Precursor Cells against Oxidative Stress. Neurosci. Lett. 2018, 668, 120–125. [Google Scholar] [CrossRef]
- Ates, O.; Cayli, S.R.; Gurses, I.; Turkoz, Y.; Tarim, O.; Cakir, C.O.; Kocak, A. Comparative Neuroprotective Effect of Sodium Channel Blockers after Experimental Spinal Cord Injury. J. Clin. Neurosci. 2007, 14, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Hains, B.C.; Saab, C.Y.; Lo, A.C.; Waxman, S.G. Sodium Channel Blockade with Phenytoin Protects Spinal Cord Axons, Enhances Axonal Conduction, and Improves Functional Motor Recovery after Contusion SCI. Exp. Neurol. 2004, 188, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.; Fehlings, M.G. Evaluation of the Neuroprotective Effects of Sodium Channel Blockers after Spinal Cord Injury: Improved Behavioral and Neuroanatomical Recovery with Riluzole. J. Neurosurg. 2001, 94, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, R.; Wu, Y.; Li, Y.; Zhong, X.; Zhang, G.; Kang, Y.; Liu, S.; Xie, L.; Ye, J.; et al. Thermosensitive Heparin-Poloxamer Hydrogel Encapsulated bFGF and NGF to Treat Spinal Cord Injury. J. Cell. Mol. Med. 2020, 24, 8166–8178. [Google Scholar] [CrossRef]
- Pan, S.; Qi, Z.; Li, Q.; Ma, Y.; Fu, C.; Zheng, S.; Kong, W.; Liu, Q.; Yang, X. Graphene Oxide-PLGA Hybrid Nanofibres for the Local Delivery of IGF-1 and BDNF in Spinal Cord Repair. Artif. Cells Nanomed. Biotechnol. 2019, 47, 650–663. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wu, Y.T.; Huang, H.Y.; Lin, H.I.; Lo, L.W.; Tzeng, S.F.; Yang, C.S. Sustained Intraspinal Delivery of Neurotrophic Factor Encapsulated in Biodegradable Nanoparticles Following Contusive Spinal Cord Injury. Biomaterials 2008, 29, 4546–4553. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; He, J.; Yang, H.; Zhang, Q.; Zhang, L.; Zhang, X.; Xie, E.; Liu, C.; Zhang, R.; Wang, Y.; et al. Repair of Spinal Cord Injury by Implantation of bFGF-Incorporated HEMA-MOETACL Hydrogel in Rats. Sci. Rep. 2015, 5, 9017. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wen, G.; Zhao, H.; Qi, H.; Yang, Y.; Hu, T. Delivery of FGF10 by Implantable Porous Gelatin Microspheres for Treatment of Spinal Cord Injury. Mol. Med. Rep. 2023, 28, 137. [Google Scholar] [CrossRef] [PubMed]
- Khaing, Z.Z.; Agrawal, N.K.; Park, J.H.; Xin, S.; Plumton, G.C.; Lee, K.H.; Huang, Y.J.; Niemerski, A.L.; Schmidt, C.E.; Grau, J.W. Localized and Sustained Release of Brain-Derived Neurotrophic Factor from Injectable Hydrogel/Microparticle Composites Fosters Spinal Learning after Spinal Cord Injury. J. Mater. Chem. B 2016, 4, 7560–7571. [Google Scholar] [CrossRef]
- Shi, B.; Ding, J.; Liu, Y.; Zhuang, X.; Zhuang, X.; Chen, X.; Fu, C. ERK1/2 Pathway-Mediated Differentiation of IGF-1-Transfected Spinal Cord-Derived Neural Stem Cells into Oligodendrocytes. PLoS ONE 2014, 9, e106038. [Google Scholar] [CrossRef]
- Song, P.; Han, T.; Wu, Z.; Fang, H.; Liu, Y.; Ying, W.; Wang, X.; Shen, C. Transplantation of Neural Stem Cells Loaded in an IGF-1 Bioactive Supramolecular Nanofiber Hydrogel for the Effective Treatment of Spinal Cord Injury. Adv. Sci. 2024, 11, e2306577. [Google Scholar] [CrossRef]
- Keirstead, H.S.; Nistor, G.; Bernal, G.; Totoiu, M.; Cloutier, F.; Sharp, K.; Steward, O. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Transplants Remyelinate and Restore Locomotion after Spinal Cord Injury. J. Neurosci. 2005, 25, 4694–4705. [Google Scholar] [CrossRef]
- Cao, Q.; He, Q.; Wang, Y.; Cheng, X.; Howard, R.M.; Zhang, Y.; DeVries, W.H.; Shields, C.B.; Magnuson, D.S.; Xu, X.M.; et al. Transplantation of Ciliary Neurotrophic Factor-Expressing Adult Oligodendrocyte Precursor Cells Promotes Remyelination and Functional Recovery after Spinal Cord Injury. J. Neurosci. 2010, 30, 2989–3001. [Google Scholar] [CrossRef]
- Wu, B.; Sun, L.; Li, P.; Tian, M.; Luo, Y.; Ren, X. Transplantation of Oligodendrocyte Precursor Cells Improves Myelination and Promotes Functional Recovery after Spinal Cord Injury. Injury 2012, 43, 794–801. [Google Scholar] [CrossRef]
- Antel, J.P.; Lin, Y.H.; Cui, Q.L.; Pernin, F.; Kennedy, T.E.; Ludwin, S.K.; Healy, L.M. Immunology of Oligodendrocyte Precursor Cells in Vivo and in Vitro. J. Neuroimmunol. 2019, 331, 28–35. [Google Scholar] [CrossRef]
- All, A.H.; Gharibani, P.; Gupta, S.; Bazley, F.A.; Pashai, N.; Chou, B.K.; Shah, S.; Resar, L.M.; Cheng, L.; Gearhart, J.D.; et al. Early Intervention for Spinal Cord Injury with Human Induced Pluripotent Stem Cells Oligodendrocyte Progenitors. PLoS ONE 2015, 10, e0116933. [Google Scholar] [CrossRef] [PubMed]
- Salewski, R.P.; Mitchell, R.A.; Li, L.; Shen, C.; Milekovskaia, M.; Nagy, A.; Fehlings, M.G. Transplantation of Induced Pluripotent Stem Cell-Derived Neural Stem Cells Mediate Functional Recovery Following Thoracic Spinal Cord Injury Through Remyelination of Axons. Stem Cells Transl. Med. 2015, 4, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, L.J.; Bestard-Cuche, N.; Kaczmarek, M.; Fidanza, A.; McNeil, L.; Franklin, R.J.M.; Williams, A.C. CRISPR-Edited Human ES-Derived Oligodendrocyte Progenitor Cells Improve Remyelination in Rodents. Nat. Commun. 2024, 15, 8570. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Sun, Z.; Fan, Y.; Yin, M.; Jin, C.; Guo, B.; Yin, Y.; Quan, R.; Zhao, S.; Han, S.; et al. Mimicked Spinal Cord Fibers Trigger Axonal Regeneration and Remyelination after Injury. ACS Nano 2023, 17, 25591–25613. [Google Scholar] [CrossRef]
- Liu, J.; Yan, R.; Wang, B.; Chen, S.; Hong, H.; Liu, C.; Chen, X. Decellularized Extracellular Matrix Enriched with GDNF Enhances Neurogenesis and Remyelination for Improved Motor Recovery after Spinal Cord Injury. Acta Biomater. 2024, 180, 308–322. [Google Scholar] [CrossRef]
- Milbreta, U.; Lin, J.; Pinese, C.; Ong, W.; Chin, J.S.; Shirahama, H.; Mi, R.; Williams, A.; Bechler, M.E.; Wang, J.; et al. Scaffold-Mediated Sustained, Non-Viral Delivery of miR-219/miR-338 Promotes CNS Remyelination. Mol. Ther. 2019, 27, 411–423. [Google Scholar] [CrossRef]
- Kim, G.U.; Sung, S.E.; Kang, K.K.; Choi, J.H.; Lee, S.; Sung, M.; Yang, S.Y.; Kim, S.K.; Kim, Y.I.; Lim, J.H.; et al. Therapeutic Potential of Mesenchymal Stem Cells (MSCs) and MSC-Derived Extracellular Vesicles for the Treatment of Spinal Cord Injury. Int. J. Mol. Sci. 2021, 22, 13672. [Google Scholar] [CrossRef]
- Santos, S.I.P.; Ortiz-Peñuela, S.J.; de Paula Filho, A.; Tomiyama, A.; Coser, L.O.; da Silveira, J.C.; Martins, D.D.S.; Ciena, A.P.; de Oliveira, A.L.R.; Ambrósio, C.E. Oligodendrocyte Precursor Cell-Derived Exosomes Combined with Cell Therapy Promote Clinical Recovery by Immunomodulation and Gliosis Attenuation. Front. Cell. Neurosci. 2024, 18, 1413843. [Google Scholar] [CrossRef]
- Zhang, J.; Buller, B.A.; Zhang, Z.G.; Zhang, Y.; Lu, M.; Rosene, D.L.; Medalla, M.; Moore, T.L.; Chopp, M. Exosomes Derived from Bone Marrow Mesenchymal Stromal Cells Promote Remyelination and Reduce Neuroinflammation in the Demyelinating Central Nervous System. Exp. Neurol. 2022, 347, 113895. [Google Scholar] [CrossRef]
- Jenkins, S.I.; Pickard, M.R.; Granger, N.; Chari, D.M. Magnetic Nanoparticle-Mediated Gene Transfer to Oligodendrocyte Precursor Cell Transplant Populations Is Enhanced by Magnetofection Strategies. ACS Nano 2011, 5, 6527–6538. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kumar, H.; Jo, M.J.; Kim, J.; Yoon, J.K.; Lee, J.R.; Kang, M.; Choo, Y.W.; Song, S.Y.; Kwon, S.P.; et al. Therapeutic Efficacy-Potentiated and Diseased Organ-Targeting Nanovesicles Derived from Mesenchymal Stem Cells for Spinal Cord Injury Treatment. Nano Lett. 2018, 18, 4965–4975. [Google Scholar] [CrossRef]
- Cordano, C.; Sin, J.H.; Timmons, G.; Yiu, H.H.; Stebbins, K.; Guglielmetti, C.; Cruz-Herranz, A.; Xin, W.; Lorrain, D.; Chan, J.R.; et al. Validating Visual Evoked Potentials as a Preclinical, Quantitative Biomarker for Remyelination Efficacy. Brain 2022, 145, 3943–3952. [Google Scholar] [CrossRef]
- Farley, B.J.; Morozova, E.; Dion, J.; Wang, B.; Harvey, B.D.; Gianni, D.; Wipke, B.; Cadavid, D.; Wittmann, M.; Hajos, M. Evoked Potentials as a Translatable Biomarker to Track Functional Remyelination. Mol. Cell. Neurosci. 2019, 99, 103393. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.; Baldassarro, V.A.; Capirossi, R.; Montevecchi, R.; Bonavita, J.; Cescatti, M.; Giovannini, T.; Giovannini, G.; Uneddu, M.; Giovanni, G.; et al. Possible Strategies to Optimize a Biomarker Discovery Approach to Correlate with Neurological Outcome in Patients with Spinal Cord Injury: A Pilot Study. J. Neurotrauma 2020, 37, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.F.; Moura-Neto, V.; de Sampaio e Spohr, T.C.L. Biomarkers in Spinal Cord Injury: From Prognosis to Treatment. Mol. Neurobiol. 2018, 55, 6436–6448. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yi, J.; Zhang, C.; Li, Y.; Wang, Q.; Wang, S.; Dai, S.; Zheng, Z.; Jiang, T.; Gao, P.; et al. Macrophage GIT1 Promotes Oligodendrocyte Precursor Cell Differentiation and Remyelination after Spinal Cord Injury. GLIA 2024, 72, 1674–1692. [Google Scholar] [CrossRef]
- Nagoshi, N.; Khazaei, M.; Ahlfors, J.-E.; Ahuja, C.S.; Nori, S.; Wang, J.; Shibata, S.; Fehlings, M.G. Human Spinal Oligodendrogenic Neural Progenitor Cells Promote Functional Recovery After Spinal Cord Injury by Axonal Remyelination and Tissue Sparing. Stem Cells Transl. Med. 2018, 7, 806–818. [Google Scholar] [CrossRef]
- McCaughey-Chapman, A.; Connor, B. Cell Reprogramming for Oligodendrocytes: A Review of Protocols and Their Applications to Disease Modeling and Cell-based Remyelination Therapies. J. Neurosci. Res. 2023, 101, 1000–1028. [Google Scholar] [CrossRef]
- Lubetzki, C.; Zalc, B.; Williams, A.; Stadelmann, C.; Stankoff, B. Remyelination in Multiple Sclerosis: From Basic Science to Clinical Translation. Lancet Neurol. 2020, 19, 678–688. [Google Scholar] [CrossRef]
- He, X.; Li, Y.; Deng, B.; Lin, A.; Zhang, G.; Ma, M.; Wang, Y.; Yang, Y.; Kang, X. The PI3K/AKT Signalling Pathway in Inflammation, Cell Death and Glial Scar Formation after Traumatic Spinal Cord Injury: Mechanisms and Therapeutic Opportunities. Cell Prolif. 2022, 55, e13275. [Google Scholar] [CrossRef]
- Xiao, C.-L.; Yin, W.-C.; Zhong, Y.-C.; Luo, J.-Q.; Liu, L.-L.; Liu, W.-Y.; Zhao, K. The Role of PI3K/Akt Signalling Pathway in Spinal Cord Injury. Biomed. Pharmacother. 2022, 156, 113881. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Tian, H.; Mao, L.; Li, D.; Lin, J.; Hu, H.; Huang, S.; Zhang, C.; Mei, X. Zinc Attenuates Ferroptosis and Promotes Functional Recovery in Contusion Spinal Cord Injury by Activating Nrf2/GPX4 Defense Pathway. CNS Neurosci. Ther. 2021, 27, 1023–1040. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Luo, H.; Wang, Y.; Zhao, Q.; Zhang, Q.; Zhu, Y.; Pan, L.; Liu, Y.; Yang, C.; Yin, Y.; et al. Myelin Repair of Spinal Cord Injury in Adult Mice Induced by Treadmill Training Upregulated Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1 Alpha. GLIA 2024, 72, 607–624. [Google Scholar] [CrossRef] [PubMed]
- Bimbova, K.K.; Bacova, M.; Kisucka, A.; Gálik, J.; Ileninova, M.; Kuruc, T.; Magurova, M.; Lukacova, N. Impact of Endurance Training on Regeneration of Axons, Glial Cells, and Inhibitory Neurons after Spinal Cord Injury: A Link between Functional Outcome and Regeneration Potential within the Lesion Site and in Adjacent Spinal Cord Tissue. Int. J. Mol. Sci. 2023, 24, 8616. [Google Scholar] [CrossRef]
- Lozinski, B.M.; De Almeida, L.G.N.; Silva, C.; Dong, Y.; Brown, D.; Chopra, S.; Yong, V.W.; Dufour, A. Exercise Rapidly Alters Proteomes in Mice Following Spinal Cord Demyelination. Sci. Rep. 2021, 11, 7239. [Google Scholar] [CrossRef]
- Hahn, K.R.; Hwang, I.K.; Yoo, D.Y. Low-Intensity Physical Exercise Is Associated with Improved Myelination and Reduced Microglial Activation in a Cuprizone-Induced Demyelination Model. Neurochem. Res. 2025, 50, 182. [Google Scholar] [CrossRef]
- Guo, L.Y.; Lozinski, B.; Yong, V.W. Exercise in Multiple Sclerosis and Its Models: Focus on the Central Nervous System Outcomes. J. Neurosci. Res. 2020, 98, 509–523. [Google Scholar] [CrossRef]
- Patil, N.; Korenfeld, O.; Scalf, R.N.; Lavoie, N.; Huntemer-Silveira, A.; Han, G.; Swenson, R.; Parr, A.M. Electrical Stimulation Affects the Differentiation of Transplanted Regionally Specific Human Spinal Neural Progenitor Cells (sNPCs) after Chronic Spinal Cord Injury. Stem Cell Res. Ther. 2023, 14, 378. [Google Scholar] [CrossRef]
- Dorrian, R.M.; Berryman, C.F.; Lauto, A.; Leonard, A.V. Electrical Stimulation for the Treatment of Spinal Cord Injuries: A Review of the Cellular and Molecular Mechanisms That Drive Functional Improvements. Front. Cell. Neurosci. 2023, 17, 1095259. [Google Scholar] [CrossRef]
- Duan, R.; Qu, M.; Yuan, Y.; Lin, M.; Liu, T.; Huang, W.; Gao, J.; Zhang, M.; Yu, X. Clinical Benefit of Rehabilitation Training in Spinal Cord Injury: A Systematic Review and Meta-Analysis. Spine 2021, 46, E398–E410. [Google Scholar] [CrossRef]
- Hu, M.; Tang, Z.; Li, H.; Lei, Q.; Xu, Q.; Su, J.; Huang, Y.; Chen, S.; Chen, H. Effects of Transcranial Magnetic Stimulation on Axonal Regeneration in the Corticospinal Tract of Female Rats with Spinal Cord Injury. J. Neurosci. Methods 2024, 411, 110267. [Google Scholar] [CrossRef]
- Bacova, M.; Bimbova, K.; Kisucka, A.; Lukacova, N.; Galik, J. Epidural Oscillating Field Stimulation Increases Axonal Regenerative Capacity and Myelination after Spinal Cord Trauma. Neural Regen. Res. 2022, 17, 2730–2736. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Makowiecki, K.; Lewis, T.S.; Fortune, A.J.; Clutterbuck, M.; Reale, L.A.; Taylor, B.V.; Rodger, J.; Cullen, C.L.; Young, K.M. Low Intensity Repetitive Transcranial Magnetic Stimulation Enhances Remyelination by Newborn and Surviving Oligodendrocytes in the Cuprizone Model of Toxic Demyelination. Cell. Mol. Life Sci. 2024, 81, 346. [Google Scholar] [CrossRef] [PubMed]
- Krogh, S.; Aagaard, P.; Jønsson, A.B.; Figlewski, K.; Kasch, H. Effects of Repetitive Transcranial Magnetic Stimulation on Recovery in Lower Limb Muscle Strength and Gait Function Following Spinal Cord Injury: A Randomized Controlled Trial. Spinal Cord 2022, 60, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dong, T.; Li, X.; Zhao, H.; Yang, L.; Xu, R.; Fu, Y.; Li, L.; Gai, X.; Qin, D. Research Progress on the Application of Transcranial Magnetic Stimulation in Spinal Cord Injury Rehabilitation: A Narrative Review. Front. Neurol. 2023, 14, 1219590. [Google Scholar] [CrossRef] [PubMed]
- Kiyotake, E.A.; Martin, M.D.; Detamore, M.S. Regenerative Rehabilitation with Conductive Biomaterials for Spinal Cord Injury. Acta Biomater. 2022, 139, 43–64. [Google Scholar] [CrossRef]
- Sherrod, B.A.; Porche, K.; Condie, C.K.; Dailey, A.T. Pharmacologic Therapy for Spinal Cord Injury. Clin. Spine Surg. 2024, 37, 433–439. [Google Scholar] [CrossRef]
- Haggerty, A.E.; Oudega, M. Biomaterials for Spinal Cord Repair. Neurosci. Bull. 2013, 29, 445–459. [Google Scholar] [CrossRef]
- Karimi-Abdolrezaee, S.; Eftekharpour, E.; Wang, J.; Schut, D.; Fehlings, M.G. Synergistic Effects of Transplanted Adult Neural Stem/Progenitor Cells, Chondroitinase, and Growth Factors Promote Functional Repair and Plasticity of the Chronically Injured Spinal Cord. J. Neurosci. 2010, 30, 1657. [Google Scholar] [CrossRef]
- Sousa, C.S.; Monteiro, A.; Salgado, A.J.; Silva, N.A. Combinatorial Therapies for Spinal Cord Injury Repair. Neural Regen. Res. 2025, 20, 1293–1308. [Google Scholar] [CrossRef]
- Weishaupt, N.; Li, S.; Di Pardo, A.; Sipione, S.; Fouad, K. Synergistic Effects of BDNF and Rehabilitative Training on Recovery after Cervical Spinal Cord Injury. Behav. Brain Res. 2013, 239, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Alluin, O.; Delivet-Mongrain, H.; Gauthier, M.-K.; Fehlings, M.G.; Rossignol, S.; Karimi-Abdolrezaee, S. Examination of the Combined Effects of Chondroitinase ABC, Growth Factors and Locomotor Training Following Compressive Spinal Cord Injury on Neuroanatomical Plasticity and Kinematics. PLoS ONE 2014, 9, e111072. [Google Scholar] [CrossRef]
- Tashiro, S.; Nishimura, S.; Iwai, H.; Sugai, K.; Zhang, L.; Shinozaki, M.; Iwanami, A.; Toyama, Y.; Liu, M.; Okano, H.; et al. Functional Recovery from Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training in Mice with Chronic Spinal Cord Injury. Sci. Rep. 2016, 6, 30898. [Google Scholar] [CrossRef] [PubMed]
- Sinopoulou, E.; Spejo, A.B.; Roopnarine, N.; Burnside, E.R.; Bartus, K.; De Winter, F.; McMahon, S.B.; Bradbury, E.J. Chronic Muscle Recordings Reveal Recovery of Forelimb Function in Spinal Injured Female Rats after Cortical Epidural Stimulation Combined with Rehabilitation and Chondroitinase ABC. J. Neurosci. Res. 2022, 100, 2055–2076. [Google Scholar] [CrossRef] [PubMed]
Mechanism | Drug Name | Phase | Inclusion Criteria | Recruitment Status | Enrollment | Sponsor | Clinical Trial Identifier/Reference |
---|---|---|---|---|---|---|---|
Anti-Nogo-A antibodies | ATI355 | 1 | C5-T12, paraplegic and tetraplegic patients with AIS A classification, 4–14 days post injury | Completed | 52 | Novartis Pharmaceuticals | NCT00406016/Kucher at al., 2018 [154] |
Anti-Nogo-A antibodies | NG-101 | 2 | C1-C8, tetraplegic patients with ASIA A-D classification; predicted UEMS recovery less than 41/50, 4–28 days post injury | Completed | 129 | University of Zurich | NCT03935321/Weidner et al., 2025 [155] |
ROCK inhibitor | VX-210 | 2b/3 | C4-C7, AIS A-B, within 72 h post injury | Completed | 70 | Vertex Pharmaceuticals Incorporated | NCT02669849 |
Tetracycline | Minocycline | 1/2 | C0-T11, motor complete or incomplete, within 12 h post injury | Completed | 52 | University of Calgary | NCT00559494/Casha et al., 2012 [156] |
Inhibitor of lipid peroxidation | Tirilazad | 3 | Within 8 h post injury | Completed | 499 | National Institute of Neurological Disorders and Stroke (NINDS) | NCT00004759/Bracken et al., 1997 [157] |
Hepatocyte Growth Factor | KP-100IT | 3 | C3-C8, AIS A, within 78 h post injury | Unknown Status | 25 | Kringle Pharma, Inc. | NCT04475224 |
FGF-1 | SC0806 | 1/2 | T2-T11, ASIA A, 4 months-10 years post injury | Unknown Status | 27 | BioArctic AB | NCT02490501 |
Therapeutic Class | Mechanism | Evidence | Limitations/Challenges | References |
---|---|---|---|---|
Anti-Nogo-A antibodies (e.g., NG-101, ATI355) | Neutralize Nogo-A to reduce axonal growth inhibition and promote remyelination | Phase 1–2 trials completed | Efficacy is time- and region-specific; unclear translation to chronic SCI | [115,116,158,159,160,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244] |
ROCK inhibitors (e.g., VX-210) | Inhibit Rho/ROCK to reduce neuroinflammation and cytoskeletal collapse | Phase 2b/3 trial completed | Potential systemic side effects; dosing optimization needed | [125,161,162,224] |
Shh agonists | Activate Shh pathway to drive OPC proliferation and differentiation | Preclinical rodent models | Delivery, specificity, and clinical translation remain uncertain | [72,73,181,182,183,227] |
Notch inhibitors | Block Notch to permit OPC differentiation into OLs | Preclinical studies in SCI and MS | Broad effects on Notch signaling may have off-target risks | [63,64,66,224] |
Wnt/β-catenin inhibitors (e.g., XAV939) | Suppress Wnt signaling to enable OPC maturation and reduce glial scarring | Preclinical in vitro and in vivo models | Timing-sensitive; may interfere with development or repair if over-suppressed | [62,85,184,191,224] |
Minocycline | Anti-inflammatory, reduces apoptosis and microglial activation | Phase 1–2 clinical trial completed | Clinical benefit unclear; variability in outcomes and dosage requirements | [125,156,166,224] |
HDAC inhibitors (e.g., CI-994, VPA) | Increase myelin gene transcription via chromatin remodeling | Preclinical models of SCI and demyelination | Possible off-target transcriptional effects; needs controlled delivery | [109,111,175,177,224] |
Growth factor delivery (e.g., BDNF, IGF-1, FGF) | Enhance OL survival and differentiation via trophic support | Preclinical studies; early human biomaterial trials ongoing | Growth factor degradation, short half-life, and targeting challenges | [58,65,76,77,78,79,91,116,158,193,195,196,200,207,209,224,243,245,246] |
Sodium channel blockers (e.g., Riluzole, Phenytoin) | Reduce excitotoxicity and OL damage by blocking Na+ influx | Preclinical SCI models | Nonspecific action; potential motor side effects and seizure risk | [188,189,190,192,224] |
Antioxidants (e.g., Edaravone) | Scavenge ROS to protect OLs and support remyelination | Rodent models of SCI and white matter damage | Limited CNS penetration; unclear clinical efficacy beyond ALS | [147,148] |
Cell therapy (OPCs, iPSC-derived NSCs, MSCs) | Replace or augment endogenous OPCs; modulate immune microenvironment | Multiple preclinical models; early-phase human trials | Low survival/integration; immune rejection risks; scalability issues | [163,164,165,166,167,168] |
Gene therapy (e.g., CRISPR-edited OPCs) | Improve OPC function or lesion resistance via gene editing (e.g., Daam2 KO) | Rodent models with functional and histological improvement | Ethical and regulatory hurdles; specificity of edits and durability | [156] |
MSC or OPC-derived EVs | Deliver pro-regenerative miRNAs or proteins to injury site | Preclinical models | Standardization, biodistribution, and scaling remain barriers | [172,173,174] |
Neurostimulation (TMS, FES, treadmill training) | Stimulate neurotrophic signaling and OL maturation through activity-dependent mechanisms | Human and rodent studies; some meta-analyses available | Inconsistent functional outcomes; requires intensive rehabilitation | [179,180,181,182,183,184,185,186,187] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaniuk, J.K.; Kumar, D.; Tennyson, J.; Hurka, K.L.; Margolis, A.; Bucaloiu, A.; Selner, A.; Ahuja, C.S. Spinal Cord Injury Remyelination: Pathways to Therapies. Int. J. Mol. Sci. 2025, 26, 7249. https://doi.org/10.3390/ijms26157249
Kaniuk JK, Kumar D, Tennyson J, Hurka KL, Margolis A, Bucaloiu A, Selner A, Ahuja CS. Spinal Cord Injury Remyelination: Pathways to Therapies. International Journal of Molecular Sciences. 2025; 26(15):7249. https://doi.org/10.3390/ijms26157249
Chicago/Turabian StyleKaniuk, Julia K., Divy Kumar, Joshua Tennyson, Kaitlyn L. Hurka, Alexander Margolis, Andrei Bucaloiu, Ashley Selner, and Christopher S. Ahuja. 2025. "Spinal Cord Injury Remyelination: Pathways to Therapies" International Journal of Molecular Sciences 26, no. 15: 7249. https://doi.org/10.3390/ijms26157249
APA StyleKaniuk, J. K., Kumar, D., Tennyson, J., Hurka, K. L., Margolis, A., Bucaloiu, A., Selner, A., & Ahuja, C. S. (2025). Spinal Cord Injury Remyelination: Pathways to Therapies. International Journal of Molecular Sciences, 26(15), 7249. https://doi.org/10.3390/ijms26157249