Interplay of Gut Microbiota, Biologic Agents, and Postoperative Anastomotic Leakage in Inflammatory Bowel Disease: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Gut Microbiota in Inflammatory Bowel Disease
3.1.1. Dysbiosis
3.1.2. Faecalibacterium Prausnitzii
3.2. Fluctuation of Gut Microbiota and Implications for Treatment Response Prediction
3.3. Longitudinal Changes in Gut Microbiota in IBD Patients Treated with Biologic Agents
3.3.1. Adalimumab
3.3.2. Infliximab
3.3.3. Ustekinumab
3.3.4. Vedolizumab
3.4. Surgery in Inflammatory Bowel Disease, Surgical Complications, and Gut Microbiota
3.4.1. Surgery and the Role of Gut Microbiota
3.4.2. Anastomotic Leakage and the Role of Gut Microbiota
3.4.3. Anastomotic Leakage and the Role of Biologic Agents
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IBD | Inflammatory Bowel Disease |
SCFA | Short-chain Fatty Acids |
CD | Crohn’s Disease |
UC | Ulcerative Colitis |
References
- Dolinger, M.; Torres, J.; Vermeire, S. Crohn’s disease. Lancet 2024, 403, 1177–1191. [Google Scholar] [CrossRef] [PubMed]
- Le Berre, C.; Honap, S.; Peyrin-Biroulet, L. Ulcerative colitis. Lancet 2023, 402, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780–13785. [Google Scholar] [CrossRef] [PubMed]
- Pisani, A.; Rausch, P.; Bang, C.; Ellul, S.; Tabone, T.; Marantidis Cordina, C.; Zahra, G.; Franke, A.; Ellul, P. Dysbiosis in the Gut Microbiota in Patients with Inflammatory Bowel Disease during Remission. Microbiol. Spectr. 2022, 10, e0061622. [Google Scholar] [CrossRef] [PubMed]
- Machiels, K.; Joossens, M.; Sabino, J.; De Preter, V.; Arijs, I.; Eeckhaut, V.; Ballet, V.; Claes, K.; Van Immerseel, F.; Verbeke, K.; et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2014, 63, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Schulthess, J.; Pandey, S.; Capitani, M.; Rue-Albrecht, K.C.; Arnold, I.; Franchini, F.; Chomka, A.; Ilott, N.E.; Johnston, D.G.W.; Pires, E.; et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity 2019, 50, 432–445.e7. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, R.; Sciberras, M.; Ellul, P. The role of the fecal microbiota in inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2024, 36, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Rios-Covian, D.; Huillet, E.; Auger, S.; Khazaal, S.; Bermúdez-Humarán, L.G.; Sokol, H.; Chatel, J.M.; Langella, P. Faecalibacterium: A bacterial genus with promising human health applications. FEMS Microbiol. Rev. 2023, 47, fuad039. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Siles, M.; Martinez-Medina, M.; Abellà, C.; Busquets, D.; Sabat-Mir, M.; Duncan, S.H.; Aldeguer, X.; Flint, H.J.; Garcia-Gil, L.J. Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. Appl. Environ. Microbiol. 2015, 81, 7582–7592. [Google Scholar] [CrossRef] [PubMed]
- Touch, S.; Godefroy, E.; Rolhion, N.; Danne, C.; Oeuvray, C.; Straube, M.; Galbert, C.; Brot, L.; Salgueiro, I.A.; Chadi, S.; et al. Human CD4+CD8α+ Tregs induced by Faecalibacterium prausnitzii protect against intestinal inflammation. JCI Insight. 2022, 7, e154722. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, M.; Wang, Y.; Dorfman, R.G.; Liu, H.; Yu, T.; Chen, X.; Tang, D.; Xu, L.; Yin, Y.; et al. Faecalibacterium prausnitzii Produces Butyrate to Maintain Th17/Treg Balance and to Ameliorate Colorectal Colitis by Inhibiting Histone Deacetylase 1. Inflamm. Bowel Dis. 2018, 24, 1926–1940. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, A.; Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Varela, E.; Manichanh, C.; Gallart, M.; Torrejón, A.; Borruel, N.; Casellas, F.; Guarner, F.; Antolin, M. Colonisation by Faecalibacterium prausnitzii and maintenance of clinical remission in patients with ulcerative colitis. Aliment. Pharmacol. Ther. 2013, 38, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, M.K.; Strid, H.; Sapnara, M.; Lasson, A.; Bajor, A.; Ung, K.A.; Öhman, L. Anti-TNF Therapy Response in Patients with Ulcerative Colitis Is Associated with Colonic Antimicrobial Peptide Expression and Microbiota Composition. J. Crohn’s Colitis 2016, 10, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Alexandrescu, L.; Nicoara, A.D.; Tofolean, D.E.; Herlo, A.; Nelson Twakor, A.; Tocia, C.; Trandafir, A.; Dumitru, A.; Dumitru, E.; Aftenie, C.F.; et al. Healing from Within: How Gut Microbiota Predicts IBD Treatment Success—A Systematic Review. Int. J. Mol. Sci. 2024, 25, 8451. [Google Scholar] [CrossRef] [PubMed]
- Schierova, D.; Roubalova, R.; Kolar, M.; Stehlikova, Z.; Rob, F.; Jackova, Z.; Coufal, S.; Thon, T.; Mihula, M.; Modrak, M.; et al. Fecal Microbiota Changes and Specific Anti-Bacterial Response in Patients with IBD during Anti-TNF Therapy. Cells 2021, 10, 3188. [Google Scholar] [CrossRef] [PubMed]
- Halfvarson, J.; Brislawn, C.J.; Lamendella, R.; Vázquez-Baeza, Y.; Walters, W.A.; Bramer, L.M.; D’Amato, M.; Bonfiglio, F.; McDonald, D.; Gonzalez, A.; et al. Dynamics of the human gut microbiota in inflammatory bowel disease. Nat. Microbiol. 2017, 2, 17004. [Google Scholar] [CrossRef] [PubMed]
- Eckenberger, J.; Butler, J.C.; Bernstein, C.N.; Shanahan, F.; Claesson, M.J. Interactions between Medications and the Gut Microbiota in Inflammatory Bowel Disease. Microorganisms 2022, 10, 1963. [Google Scholar] [CrossRef] [PubMed]
- Meade, S.; Liu Chen Kiow, J.; Massaro, C.; Kaur, G.; Squirell, E.; Bressler, B.; Lunken, G. Gut microbiota-associated predictors as biomarkers of response to advanced therapies in inflammatory bowel disease: A systematic review. Gut Microbes. 2023, 15, 2287073. [Google Scholar] [CrossRef] [PubMed]
- Rajca, S.; Grondin, V.; Louis, E.; Vernier-Massouille, G.; Grimaud, J.C.; Bouhnik, Y.; Laharie, D.; Dupas, J.L.; Pillant, H.; Picon, L.; et al. Alterations in the intestinal microbiota [dysbiosis] as a predictor of relapse after infliximab withdrawal in Crohn’’s disease. Inflamm. Bowel Dis. 2014, 20, 978–986. [Google Scholar] [PubMed]
- Caenepeel, C.; Falony, G.; Machiels, K.; Verstockt, B.; Goncalves, P.J.; Ferrante, M.; Sabino, J.; Raes, J.; Vieira-Silva, S.; Vermeire, S. Dysbiosis and Associated Stool Features Improve Prediction of Response to Biological Therapy in Inflammatory Bowel Disease. Gastroenterology 2024, 166, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, Z.Z.; He, Y.; Yang, Y.; Liu, L.; Lin, Q.; Nie, Y.; Li, M.; Zhi, F.; Liu, S.; et al. Gut Microbiota Offers Universal Biomarkers across Ethnicity in Inflammatory Bowel Disease Diagnosis and Infliximab Response Prediction. mSystem 2018, 3, e00188-17. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.S.; McDonald, J.A.K.; Perdones-Montero, A.; Rees, D.N.; Adegbola, S.O.; Misra, R.; Hendy, P.; Penez, L.; Marchesi, J.R.; Holmes, E.; et al. Metabonomics and the Gut Microbiota Associated with Primary Response to Anti-TNF Therapy in Crohn’s Disease. J. Crohn’s Colitis 2020, 14, 1090–1102. [Google Scholar] [CrossRef] [PubMed]
- Busquets, D.; Mas-de-Xaxars, T.; López-Siles, M.; Martínez-Medina, M.; Bahí, A.; Sàbat, M.; Louvriex, R.; Miquel-Cusachs, J.O.; Garcia-Gil, J.L.; Aldeguer, X.; et al. Anti-tumour Necrosis Factor Treatment with Adalimumab Induces Changes in the Microbiota of Crohn’s Disease. J. Crohn’s Colitis 2015, 9, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Ribaldone, D.G.; Caviglia, G.P.; Abdulle, A.; Pellicano, R.; Ditto, M.C.; Morino, M.; Fusaro, E.; Saracco, G.M.; Bugianesi, E.; Astegiano, M. Adalimumab Therapy Improves Intestinal Dysbiosis in Crohn’’s Disease. J. Clin. Med. 2019, 8, 1646. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, Z.; Kang, D.; Feng, Z.; Li, G.; Sun, M.; Liu, Z.; Wu, W.; Fang, L. Distinct alterations of fecal microbiota refer to the efficacy of adalimumab in Crohn’’s disease. Front. Pharmacol. 2022, 13, 913720. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.N.; Shin, S.Y.; Kim, J.H.; Baek, J.; Kim, H.J.; Lee, K.M.; Park, S.J.; Kim, S.Y.; Choi, H.K.; Kim, W.; et al. Dynamic changes in the gut microbiota composition during adalimumab therapy in patients with ulcerative colitis: Implications for treatment response prediction and therapeutic targets. Gut Pathog. 2024, 16, 44. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Nishiyama, H.; Sakai, K.; De Velasco, M.A.; Nagai, T.; Komeda, Y.; Kashida, H.; Okada, A.; Kawai, I.; Nishio, K.; et al. Mucosal microbiota and gene expression are associated with long-term remission after discontinuation of adalimumab in ulcerative colitis. Sci. Rep. 2020, 10, 19186. [Google Scholar] [CrossRef] [PubMed]
- Aden, K.; Rehman, A.; Waschina, S.; Pan, W.H.; Walker, A.; Lucio, M.; Nunez, A.M.; Bharti, R.; Zimmerman, J.; Bethge, J.; et al. Metabolic Functions of Gut Microbes Associate with Efficacy of Tumor Necrosis Factor Antagonists in Patients With Inflammatory Bowel Diseases. Gastroenterology 2019, 157, 1279–1292.e11. [Google Scholar] [CrossRef] [PubMed]
- Ditto, M.C.; Parisi, S.; Landolfi, G.; Borrelli, R.; Realmuto, C.; Finucci, A.; Caviglia, G.P.; Ribaldone, D.G.; Astegiano, M.; Zanetti, A.; et al. Intestinal microbiota changes induced by TNF-inhibitors in IBD-related spondyloarthritis. RMD Open 2021, 7, e001755. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Tian, Z.; Feng, R.; Li, M.; Li, T.; Zhou, G.; Qiu, Y.; Chen, B.; He, Y.; Chen, M.; et al. Fecal Microbiota Alterations Associated With Clinical and Endoscopic Response to Infliximab Therapy in Crohn’s Disease. Inflamm. Bowel Dis. 2020, 26, 1636–1647. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Artero, L.; Martínez-Blanch, J.F.; Manresa-Vera, S.; Cortés-Castell, E.; Valls-Gandia, M.; Iborra, M.; Paredes-Arquiola, J.M.; Boscá-Watts, M.; Huguet, J.M.; Gil-Borrás, R.; et al. Evaluation of changes in intestinal microbiota in Crohn’s disease patients after anti-TNF alpha treatment. Sci. Rep. 2021, 11, 10016. [Google Scholar] [CrossRef] [PubMed]
- Seong, G.; Kim, N.; Joung, J.G.; Kim, E.R.; Chang, D.K.; Chun, J.; Hong, S.N.; Kim, Y.H. Changes in the Intestinal Microbiota of Patients with Inflammatory Bowel Disease with Clinical Remission during an 8-Week Infliximab Infusion Cycle. Microorganisms 2020, 8, 874. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, F.B.; Tripathi, A.; Gold, M.P.; Yang, J.C.; Biancalani, T.; McBride, J.M.; Keir, M.E. Gardenia Study Group. Gut Microbial Species and Endotypes Associate with Remission in Ulcerative Colitis Patients Treated with Anti-TNF or Anti-integrin Therapy. J. Crohn’s Colitis 2024, 18, 1819–1831. [Google Scholar] [CrossRef] [PubMed]
- Rob, F.; Schierova, D.; Stehlikova, Z.; Kreisinger, J.; Roubalova, R.; Coufal, S.; Mihula, M.; Jackova, Z.; Kverka, M.; Thon, T.; et al. Association between ustekinumab therapy and changes in specific anti-microbial response, serum biomarkers, and microbiota composition in patients with IBD: A pilot study. PLoS ONE 2022, 17, e0277576. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.K.; Ding, T.; Koumpouras, C.; Telesco, S.E.; Monast, C.; Das, A.; Brodmerkel, C.; Schloss, P.D. Fecal Microbiota Signatures Are Associated with Response to Ustekinumab Therapy among Crohn’s Disease Patients. mBio 2018, 9, e02120-17. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Xie, R.; He, L.; Wang, H.; Zhu, Y.; Yang, X.; Yu, H. Oral Microbiota Associated with Clinical Efficacy of Ustekinumab in Crohn’s Disease. Endocr. Metab. Immune Disord. Drug Targets. 2025; Advance online publication. [Google Scholar] [CrossRef]
- Liu, J.; Fang, H.; Hong, N.; Lv, C.; Zhu, Q.; Feng, Y.; Wang, B.; Tian, J.; Yu, Y. Gut Microbiota and Metabonomic Profile Predict Early Remission to Anti-Integrin Therapy in Patients with Moderate to Severe Ulcerative Colitis. Microbiol. Spectr. 2023, 11, e0145723. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N.; Luo, C.; Yajnik, V.; Khalili, H.; Garber, J.J.; Stevens, B.W.; Cleland, T.; Xavier, R.J. Gut Microbiota Function Predicts Response to Anti-integrin Biologic Therapy in Inflammatory Bowel Diseases. Cell Host Microbe 2017, 21, 603–610.e3. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wu, Z.; Yang, X.; Ding, J.; Wang, Q.; Fang, H.; Zhu, L.; Hu, M. Reduced gut microbiota diversity in ulcerative colitis patients with latent tuberculosis infection during vedolizumab therapy: Insights on prophylactic anti-tuberculosis effects. BMC Microbiol. 2024, 24, 543. [Google Scholar] [CrossRef] [PubMed]
- Tsai, L.; Ma, C.; Dulai, P.S.; Prokop, L.J.; Eisenstein, S.; Ramamoorthy, S.L.; Feagan, B.G.; Jairath, V.; Sandborn, W.J.; Singh, S. Contemporary Risk of Surgery in Patients With Ulcerative Colitis and Crohn’s Disease: A Meta-Analysis of Population-Based Cohorts. Clin. Gastroenterol. Hepatol. 2021, 19, 2031–2045.e11. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Daniel, S.G.; Li, H.; Hao, F.; Patterson, A.D.; Hecht, A.L.; Brensinger, C.M.; Wu, G.D.; Bittinger, K.; Wolf, D.C.; et al. Surgery for Crohn’s Disease Is Associated With a Dysbiotic Microbiota and Metabolome: Results From Two Prospective Cohorts. Cell. Mol. Gastroenterol. Hepatol. 2024, 18, 101357. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Vázquez-Baeza, Y.; Elijah, E.; Vargas, F.; Ackermann, G.; Humphrey, G.; Lau, R.; Weldon, K.C.; Sanders, J.G.; Panitchpakdi, M.; et al. Gastrointestinal Surgery for Inflammatory Bowel Disease Persistently Lowers Microbiota and Metabolome Diversity. Inflamm. Bowel Dis. 2021, 27, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.B.; Khot, Z.; Vogt, K.N.; Ott, M.; Dubois, L. Quality of Life After Total Proctocolectomy With Ileostomy or IPAA: A Systematic Review. Dis. Colon. Rectum. 2015, 58, 899–908. [Google Scholar] [CrossRef] [PubMed]
- McDermott, F.D.; Heeney, A.; Kelly, M.E.; Steele, R.J.; Carlson, G.L.; Winter, D.C. Systematic review of preoperative, intraoperative and postoperative risk factors for colorectal anastomotic leaks. Br. J. Surg. 2015, 102, 462–479. [Google Scholar] [CrossRef] [PubMed]
- Hansen, R.B.; Balachandran, R.; Valsamidis, T.N.; Iversen, L.H. The role of preoperative mechanical bowel preparation and oral antibiotics in prevention of anastomotic leakage following restorative resection for primary rectal cancer—A systematic review and meta-analysis. Int. J. Color. Dis. 2023, 38, 129. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, B.; Wei, Y. New understanding of gut microbiota and colorectal anastomosis leak: A collaborative review of the current concepts. Front. Cell. Infect. Microbiol. 2022, 12, 1022603. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Cui, H.; Wang, F.; Zhang, Y.; Xu, Q.; Liu, D.; Wang, K.; Hou, S. Role of gut microbiota in postoperative complications and prognosis of gastrointestinal surgery: A narrative review. Medicine 2022, 101, e29826. [Google Scholar] [CrossRef] [PubMed]
- Olivas, A.D.; Shogan, B.D.; Valuckaite, V.; Zaborin, A.; Belogortseva, N.; Musch, M.; Meyer, F.; Trimble, W.L.; An, G.; Gilbert, J.; et al. Intestinal tissues induce an SNP mutation in Pseudomonas aeruginosa that enhances its virulence: Possible role in anastomotic leak. PLoS ONE 2012, 7, e44326. [Google Scholar] [CrossRef] [PubMed]
- Shogan, B.D.; Belogortseva, N.; Luong, P.M.; Zaborin, A.; Lax, S.; Bethel, C.; Ward, M.; Muldoon, J.P.; Singer, M.; An, G.; et al. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Sci. Transl. Med. 2015, 7, 286ra68. [Google Scholar] [CrossRef] [PubMed]
- Schardey, H.M.; Kamps, T.; Rau, H.G.; Gatermann, S.; Baretton, G.; Schildberg, F.W. Bacteria: A major pathogenic factor for anastomotic insufficiency. Antimicrob. Agents Chemother. 1994, 38, 2564–2567. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, R.; Gonzalez, E.; Fragoso, G.; Oliero, M.; Alaoui, A.A.; Calvé, A.; Vennin Rendos, H.; Djediai, S.; Cuisiniere, T.; Laplante, P.; et al. Gut microbiota influence anastomotic healing in colorectal cancer surgery through modulation of mucosal proinflammatory cytokines. Gut 2023, 72, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Hernández-González, P.I.; Barquín, J.; Ortega-Ferrete, A.; Patón, V.; Ponce-Alonso, M.; Romero-Hernández, B.; Ocaña, J.; Caminoa, A.; Conde-Moreno, E.; Galeano, J.; et al. Anastomotic leak in colorectal cancer surgery: Contribution of gut microbiota and prediction approaches. Color. Dis. 2023, 25, 2187–2197. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, S.; Campisciano, G.; Iacuzzo, C.; Bonadio, L.; Zucca, A.; Cosola, D.; Comar, M.; de Manzini, N. Role of preoperative gut microbiota on colorectal anastomotic leakage: Preliminary results. Updates Surg. 2020, 72, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Lehr, K.; Lange, U.G.; Hipler, N.M.; Vilchez-Vargas, R.; Hoffmeister, A.; Feisthammel, J.; Buchloh, D.; Schanze, D.; Zenker, M.; Gockel, I.; et al. Prediction of anastomotic insufficiency based on the mucosal microbiota prior to colorectal surgery: A proof-of-principle study. Sci. Rep. 2024, 14, 15335. [Google Scholar] [CrossRef] [PubMed]
- Lianos, G.D.; Frountzas, M.; Kyrochristou, I.D.; Sakarellos, P.; Tatsis, V.; Kyrochristou, G.D.; Bali, C.D.; Gazouli, M.; Mitsis, M.; Schizas, D. What Is the Role of the Gut Microbiota in Anastomotic Leakage After Colorectal Resection? A Scoping Review of Clinical and Experimental Studies. J. Clin. Med. 2024, 13, 6634. [Google Scholar] [CrossRef] [PubMed]
- El-Hussuna, A.; Qvist, N.; Zangenberg, M.S.; Langkilde, A.; Siersma, V.; Hjort, S.; Gögenur, I. No effect of anti-TNF-α agents on the surgical stress response in patients with inflammatory bowel disease undergoing bowel resections: A prospective multi-center pilot study. BMC Surg. 2018, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Shwaartz, C.; Fields, A.C.; Sobrero, M.; Cohen, B.D.; Divino, C.M. Effect of Anti-TNF Agents on Postoperative Outcomes in Inflammatory Bowel Disease Patients: A Single Institution Experience. J. Gastrointest. Surg. 2016, 20, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- El-Hussuna, A.; Andersen, J.; Bisgaard, T.; Jess, P.; Henriksen, M.; Oehlenschlager, J.; Thorlacius-Ussing, O.; Olaison, G. Biologic treatment or immunomodulation is not associated with postoperative anastomotic complications in abdominal surgery for Crohn’s disease. Scand. J. Gastroenterol. 2012, 47, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Kunitake, H.; Hodin, R.; Shellito, P.C.; Sands, B.E.; Korzenik, J.; Bordeianou, L. Perioperative treatment with infliximab in patients with Crohn’s disease and ulcerative colitis is not associated with an increased rate of postoperative complications. J. Gastrointest. Surg. 2008, 12, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, G.; Qian, H.; Bressler, B. The risks of post-operative complications following pre-operative infliximab therapy for Crohn’s disease in patients undergoing abdominal surgery: A systematic review and meta-analysis. J. Crohn’s Colitis 2013, 7, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Alsaleh, A.; Gaidos, J.K.; Kang, L.; Kuemmerle, J.F. Timing of Last Preoperative Dose of Infliximab Does Not Increase Postoperative Complications in Inflammatory Bowel Disease Patients. Dig. Dis. Sci. 2016, 61, 2602–2607. [Google Scholar] [CrossRef] [PubMed]
- Gaines, S.; Hyoju, S.; Williamson, A.J.; van Praagh, J.B.; Zaborina, O.; Rubin, D.T.; Alverdy, J.C.; Shogan, B.D.; Hyman, N. Infliximab Does Not Promote the Presence of Collagenolytic Bacteria in a Mouse Model of Colorectal Anastomosis. J. Gastrointest. Surg. 2020, 24, 2637–2642. [Google Scholar] [CrossRef] [PubMed]
Ref. | Disease | Biologic Agent | Patients | Type of Sample | Main Outcomes | F. prausnitzii |
---|---|---|---|---|---|---|
[15] | UC | TNF inhibitors | 56 | Faecal, sigmoid biopsies | Not reported | ↑ especially in responders |
[25] | CD | Adalimumab | 15 | Rectal mucosal biopsy | ↑ Firmicutes, ↑ Bacteroides, and ↑ Actinobacteria/↓ E. coli | Non-significant changes |
[26] | CD | Adalimumab | 20 | Faecal | ↓ Proteobacteria in responders (from 15.8% to 6.8%; p: 0.049) | Non-significant changes |
[27] | CD | Adalimumab | 8 | Faecal | No differences in α- and β-diversity ↑ Firmicutes and ↓ Proteobacteria in responders | Not reported |
[28] | UC | Adalimumab | 131 | Faecal | ↓ Burkholderia-Caballeronia-Paraburkholderia, ↓ Staphylococcus, ↑ Bifidobacterium, and ↑ Dorea in responders | Not reported |
[29] | UC | Adalimumab | 9 | Biopsy | ↑ Dorea and ↑ Lachnospira in responders | Not reported |
[30] | IBD | Infliximab, vedolizumab | 35 | Faecal | ↑ α-diversity | Not reported |
[31] | IBD + EA | TNF inhibitors | 20 | Faecal | No differences in α- and β-diversity ↑ Lachnospiraceae and ↑ Coprococcus | Not reported |
[32] | CD | Infliximab | 49 | Faecal | ↑ α-diversity ↑ Bacteroidetes, ↑ Firmicutes, ↓ Enterobacterales ↑ SCFA-producing taxa (Lachnospira, Blautia) | Not reported |
[33] | IBD | TNF inhibitors | 27 | Faecal | ↑ α-diversity only in responders ↑ Firmicutes, ↑ Lachnospiraceae in responders | ↑ F. prausnitzii/E. coli (F/E) ratio in responders |
[34] | IBD | Infliximab | 40 | Faecal | ↑ Shannon in patients with mucosal healing ↑ Blautia, ↑ Bacteroides, and ↓ Prevotella in patients with mucosal healing | ↑ in patients with mucosal healing |
[35] | UC | Infliximab, etrolizumab | 287 | Faecal | Shannon diversity and species richness ↑ in remitters Bifidobacterium breve ↓ | More abundant in non-remitters |
[36] | IBD | Ustekinumab | 11 | Faecal | No differences in α- and β-diversity No differences in abundances of phyla or genera | Not reported |
[37] | CD | Ustekinumab | 306 | Faecal | α-diversity of responders changed over time (↑ from baseline to 4 weeks, ↓ from 4 to 6, and ↑ than baseline at 22 weeks) | More abundant at baseline in responders |
[39] | UC | Vedolizumab | 29 | Faecal | ↑ Verrucomicrobiota in responders | Not reported |
[40] | IBD | Vedolizumab | 85 | Faecal | In CD, Bifidobacterium longum, Eggerthella, Ruminococcus gnavus, Roseburia inulinivorans, and Veillonella parvula ↓ in responders. In UC, Strepotococcus salivarium ↑ in non-responders. | Not reported |
[41] | UC | Vedolizumab | 45 | Faecal | ↑ Firmicutes | Not reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menni, A.-E.; Kyriazopoulou, E.; Karakike, E.; Tzikos, G.; Filidou, E.; Kotzampassi, K. Interplay of Gut Microbiota, Biologic Agents, and Postoperative Anastomotic Leakage in Inflammatory Bowel Disease: A Narrative Review. Int. J. Mol. Sci. 2025, 26, 7066. https://doi.org/10.3390/ijms26157066
Menni A-E, Kyriazopoulou E, Karakike E, Tzikos G, Filidou E, Kotzampassi K. Interplay of Gut Microbiota, Biologic Agents, and Postoperative Anastomotic Leakage in Inflammatory Bowel Disease: A Narrative Review. International Journal of Molecular Sciences. 2025; 26(15):7066. https://doi.org/10.3390/ijms26157066
Chicago/Turabian StyleMenni, Alexandra-Eleftheria, Evdoxia Kyriazopoulou, Eleni Karakike, Georgios Tzikos, Eirini Filidou, and Katerina Kotzampassi. 2025. "Interplay of Gut Microbiota, Biologic Agents, and Postoperative Anastomotic Leakage in Inflammatory Bowel Disease: A Narrative Review" International Journal of Molecular Sciences 26, no. 15: 7066. https://doi.org/10.3390/ijms26157066
APA StyleMenni, A.-E., Kyriazopoulou, E., Karakike, E., Tzikos, G., Filidou, E., & Kotzampassi, K. (2025). Interplay of Gut Microbiota, Biologic Agents, and Postoperative Anastomotic Leakage in Inflammatory Bowel Disease: A Narrative Review. International Journal of Molecular Sciences, 26(15), 7066. https://doi.org/10.3390/ijms26157066