Association of Cord Blood Metabolic Biomarkers (Leptin, Adiponectin, IGF-1) with Fetal Adiposity Across Gestation †
Abstract
1. Introduction
2. Results
3. Discussion
3.1. Principal Findings
3.2. Clinical Implications
3.3. Research Implications
3.4. Strengths and Limitations
4. Materials and Methods
4.1. Study Population
4.2. Prenatal Ultrasonography
4.3. Umbilical Cord Blood Analyses
4.4. Measures of Umbilical Cord Adipokine Levels
5. Data Analysis
5.1. Adjustment of Fetal Measures for Gestational Age at Ultrasonography
5.2. Estimated Fetal Adiposity (EFA)
5.3. Pre-Pregnancy Body Mass Index (BMI) and Gestational Weight Gain (GWG)
5.4. Neonatal Body Weight Categories
6. Statistical Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IGF-1 | Insulin-like growth factor-1 |
EFA | Estimated fetal adiposity |
EFW | Estimated fetal weight |
BMI | Body mass index |
GWG | Gestational weight gain |
CPR | C-peptide immunoreactivity |
References
- Stratakis, N.; Anguita-Ruiz, A.; Fabbri, L.; Maitre, L.; González, J.R.; Andrusaityte, S.; Basagaña, X.; Borràs, E.; Keun, H.C.; Chatzi, L.; et al. Multi-omics architecture of childhood obesity and metabolic dysfunction uncovers biological pathways and prenatal determinants. Nat. Commun. 2025, 16, 654. [Google Scholar] [CrossRef]
- World Health Organaization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 30 June 2025).
- Catalano, P.M.; Farrell, K.; Thomas, A.; Huston-Presley, L.; Mencin, P.; de Mouzon, S.H.; Amini, S.B. Perinatal risk factors for childhood obesity and metabolic dysregulation. Am. J. Clin. Nutr. 2009, 90, 1303–1313. [Google Scholar] [CrossRef]
- Josefson, J.L.; Scholtens, D.M.; Kuang, A.; Catalano, P.M.; Lowe, L.P.; Dyer, A.R.; Petito, L.C.; Lowe, W.L., Jr.; Metzger, B.E. Newborn Adiposity and Cord Blood C-Peptide as Mediators of the Maternal Metabolic Environment and Childhood Adiposity. Diabetes Care 2021, 44, 1194–1202. [Google Scholar] [CrossRef]
- Ikenoue, S.; Waffarn, F.; Sumiyoshi, K.; Ohashi, M.; Ikenoue, C.; Buss, C.; Gillen, D.L.; Simhan, H.N.; Entringer, S.; Wadhwa, P.D. Association of ultrasound-based measures of fetal body composition with newborn adiposity. Pediatr. Obes. 2017, 12 (Suppl. S1), 86–93. [Google Scholar] [CrossRef]
- Catalano, P.M. Management of obesity in pregnancy. Obs. Gynecol. 2007, 109 Pt 1, 419–433. [Google Scholar] [CrossRef]
- Desai, M.; Jellyman, J.K.; Ross, M.G. Epigenomics, gestational programming and risk of metabolic syndrome. Int. J. Obes. 2015, 39, 633–641. [Google Scholar] [CrossRef]
- Victor, A.; de França da Silva Teles, L.; Aires, I.O.; de Carvalho, L.F.; Luzia, L.A.; Artes, R.; Rondó, P.H. The impact of gestational weight gain on fetal and neonatal outcomes: The Araraquara Cohort Study. BMC Pregnancy Childbirth 2024, 24, 320. [Google Scholar] [CrossRef]
- Hapo Study Cooperative Research Group. Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: Associations with neonatal anthropometrics. Diabetes 2009, 58, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Lowe, W.L., Jr.; Scholtens, D.M.; Kuang, A.; Linder, B.; Lawrence, J.M.; Lebenthal, Y.; McCance, D.; Hamilton, J.; Nodzenski, M.; Talbot, O.; et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): Maternal Gestational Diabetes Mellitus and Childhood Glucose Metabolism. Diabetes Care 2019, 42, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Lowe, W.L., Jr.; Scholtens, D.M.; Lowe, L.P.; Kuang, A.; Nodzenski, M.; Talbot, O.; Catalano, P.M.; Linder, B.; Brickman, W.J.; Clayton, P.; et al. Hapo Follow-up Study Cooperative Research Group, Association of Gestational Diabetes With Maternal Disorders of Glucose Metabolism and Childhood Adiposity. JAMA J. Am. Med. Assoc. 2018, 320, 1005–1016. [Google Scholar] [CrossRef]
- Walsh, J.M.; Byrne, J.; Mahony, R.M.; Foley, M.E.; McAuliffe, F.M. Leptin, fetal growth and insulin resistance in non-diabetic pregnancies. Early Hum. Dev. 2014, 90, 271–274. [Google Scholar] [CrossRef]
- Miehle, K.; Stepan, H.; Fasshauer, M. Leptin, adiponectin and other adipokines in gestational diabetes mellitus and pre-eclampsia. Clin. Endocrinol. 2012, 76, 2–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef]
- La Cava, A.; Matarese, G. The weight of leptin in immunity. Nat. Rev. Immunol. 2004, 4, 371–379. [Google Scholar] [CrossRef]
- Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 1995, 270, 26746–26749. [Google Scholar] [CrossRef]
- Arita, Y.; Kihara, S.; Ouchi, N.; Takahashi, M.; Maeda, K.; Miyagawa, J.; Hotta, K.; Shimomura, I.; Nakamura, T.; Miyaoka, K.; et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 1999, 257, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Cortelazzi, D.; Corbetta, S.; Ronzoni, S.; Pelle, F.; Marconi, A.; Cozzi, V.; Cetin, I.; Cortelazzi, R.; Beck-Peccoz, P.; Spada, A. Maternal and foetal resistin and adiponectin concentrations in normal and complicated pregnancies. Clin. Endocrinol. 2007, 66, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Tint, M.T.; Michael, N.; Yap, F.; Chong, Y.S.; Tan, K.H.; Godfrey, K.M.; Larbi, A.; Lee, Y.S.; Chan, S.Y.; et al. Determinants of cord blood adipokines and association with neonatal abdominal adipose tissue distribution. Int. J. Obes. 2022, 46, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Hellström, A.; Ley, D.; Hansen-Pupp, I.; Hallberg, B.; Löfqvist, C.; van Marter, L.; van Weissenbruch, M.; Ramenghi, L.A.; Beardsall, K.; Dunger, D.; et al. Insulin-like growth factor 1 has multisystem effects on foetal and preterm infant development. Acta Paediatr. 2016, 105, 576–586. [Google Scholar] [CrossRef]
- Kadakia, R.; Ma, M.; Josefson, J.L. Neonatal adiposity increases with rising cord blood IGF-1 levels. Clin. Endocrinol. 2016, 85, 70–75. [Google Scholar] [CrossRef]
- LeRoith, D.; Yakar, S. Mechanisms of disease: Metabolic effects of growth hormone and insulin-like growth factor 1. Nat. Clin. Pr. Endocrinol. Metab. 2007, 3, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Josefson, J.L.; Zeiss, D.M.; Rademaker, A.W.; Metzger, B.E. Maternal leptin predicts adiposity of the neonate. Horm. Res. Paediatr. 2014, 81, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.K.; Godfrey, K.M.; Taylor, P.; Shore, S.R.; Breier, B.; Arden, N.K.; Cooper, C. Umbilical venous IGF-1 concentration, neonatal bone mass, and body composition. J. Bone Min. Res. 2004, 19, 56–63. [Google Scholar] [CrossRef]
- Couillard, C.; Mauriège, P.; Imbeault, P.; Prud’homme, D.; Nadeau, A.; Tremblay, A.; Bouchard, C.; Després, J.P. Hyperleptinemia is more closely associated with adipose cell hypertrophy than with adipose tissue hyperplasia. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Lepercq, J.; Challier, J.C.; Guerre-Millo, M.; Cauzac, M.; Vidal, H.; Hauguel-de Mouzon, S. Prenatal leptin production: Evidence that fetal adipose tissue produces leptin. J. Clin. Endocrinol. Metab. 2001, 86, 2409–2413. [Google Scholar] [CrossRef]
- Tamura, T.; Goldenberg, R.L.; Johnston, K.E.; Cliver, S.P. Serum leptin concentrations during pregnancy and their relationship to fetal growth. Obs. Gynecol. 1998, 91, 389–395. [Google Scholar] [CrossRef]
- Schubring, C.; Kiess, W.; Englaro, P.; Rascher, W.; Dötsch, J.; Hanitsch, S.; Attanasio, A.; Blum, W.F. Levels of leptin in maternal serum, amniotic fluid, and arterial and venous cord blood: Relation to neonatal and placental weight. J. Clin. Endocrinol. Metab. 1997, 82, 1480–1483. [Google Scholar] [CrossRef]
- Jia, D.; Heersche, J.N. Insulin-like growth factor-1 and -2 stimulate osteoprogenitor proliferation and differentiation and adipocyte formation in cell populations derived from adult rat bone. Bone 2000, 27, 785–794. [Google Scholar] [CrossRef]
- Gallaher, B.W.; Breier, B.H.; Keven, C.L.; Harding, J.E.; Gluckman, P.D. Fetal programming of insulin-like growth factor (IGF)-I and IGF-binding protein-3: Evidence for an altered response to undernutrition in late gestation following exposure to periconceptual undernutrition in the sheep. J. Endocrinol. 1998, 159, 501–508. [Google Scholar] [CrossRef]
- Pinar, H.; Basu, S.; Hotmire, K.; Laffineuse, L.; Presley, L.; Carpenter, M.; Catalano, P.M.; Hauguel-de Mouzon, S. High molecular mass multimer complexes and vascular expression contribute to high adiponectin in the fetus. J. Clin. Endocrinol. Metab. 2008, 93, 2885–2890. [Google Scholar] [CrossRef]
- Christen, T.; Trompet, S.; Noordam, R.; van Klinken, J.B.; van Dijk, K.W.; Lamb, H.J.; Cobbaert, C.M.; den Heijer, M.; Jazet, I.M.; Jukema, J.W.; et al. Sex differences in body fat distribution are related to sex differences in serum leptin and adiponectin. Peptides 2018, 107, 25–31. [Google Scholar] [CrossRef]
- Viengchareun, S.; Zennaro, M.C.; Pascual-Le Tallec, L.; Lombes, M. Brown adipocytes are novel sites of expression and regulation of adiponectin and resistin. FEBS Lett. 2002, 532, 345–350. [Google Scholar] [CrossRef]
- Tsai, P.J.; Yu, C.H.; Hsu, S.P.; Lee, Y.H.; Chiou, C.H.; Hsu, Y.W.; Ho, S.C.; Chu, C.H. Cord plasma concentrations of adiponectin and leptin in healthy term neonates: Positive correlation with birthweight and neonatal adiposity. Clin. Endocrinol. 2004, 61, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Q.; Lu, Q.G.; Huang, J.; Jiao, C.Y.; Huang, S.M.; Mao, L.M. Maternal and cord blood adiponectin levels in relation to post-natal body size in infants in the first year of life: A prospective study. BMC Pregnancy Childbirth 2016, 16, 189. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.M.; Brei, C.; Stecher, L.; Much, D.; Brunner, S.; Hauner, H. Cord blood and child plasma adiponectin levels in relation to childhood obesity risk and fat distribution up to 5 y. Pediatr. Res. 2017, 81, 745–751. [Google Scholar] [CrossRef]
- Kamoda, T.; Saitoh, H.; Saito, M.; Sugiura, M.; Matsui, A. Serum adiponectin concentrations in newborn infants in early postnatal life. Pediatr. Res. 2004, 56, 690–693. [Google Scholar] [CrossRef]
- Fasshauer, M.; Klein, J.; Neumann, S.; Eszlinger, M.; Paschke, R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2002, 290, 1084–1089. [Google Scholar] [CrossRef]
- Halleux, C.M.; Takahashi, M.; Delporte, M.L.; Detry, R.; Funahashi, T.; Matsuzawa, Y.; Brichard, S.M. Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue. Biochem. Biophys. Res. Commun. 2001, 288, 1102–1107. [Google Scholar] [CrossRef]
- Kadakia, R.; Josefson, J. The Relationship of Insulin-Like Growth Factor 2 to Fetal Growth and Adiposity. Horm. Res. Paediatr. 2016, 85, 75–82. [Google Scholar] [CrossRef]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: Impact on the aging process and age-related diseases. Inflamm. Res. 2021, 70, 1043–1061. [Google Scholar] [CrossRef]
- Bäck, K.; Brännmark, C.; Strålfors, P.; Arnqvist, H.J. Differential effects of IGF-I, IGF-II and insulin in human preadipocytes and adipocytes--role of insulin and IGF-I receptors. Mol. Cell Endocrinol. 2011, 339, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.J.; Wise, L.S.; Berkowitz, R.; Wan, C.; Rubin, C.S. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J. Biol. Chem. 1988, 263, 9402–9408. [Google Scholar] [CrossRef]
- Japan Society of Ultrasound in Medicine. Ultrasound Fetal measurement standardization and Japanese standard. J. Med. Ultrasound 2003, 30, J416–J440. [Google Scholar]
- de Santis, M.S.; Taricco, E.; Radaelli, T.; Spada, E.; Rigano, S.; Ferrazzi, E.; Milani, S.; Cetin, I. Growth of fetal lean mass and fetal fat mass in gestational diabetes. Ultrasound Obs. Gynecol. 2010, 36, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Larciprete, G.; Valensise, H.; Vasapollo, B.; Novelli, G.P.; Parretti, E.; Altomare, F.; Di Pierro, G.; Menghini, S.; Barbati, G.; Mello, G.; et al. Fetal subcutaneous tissue thickness (SCTT) in healthy and gestational diabetic pregnancies. Ultrasound Obs. Gynecol. 2003, 22, 591–597. [Google Scholar] [CrossRef]
- Bernstein, I.M.; Goran, M.I.; Amini, S.B.; Catalano, P.M. Differential growth of fetal tissues during the second half of pregnancy. Am. J. Obs. Gynecol. 1997, 176 Pt 1, 28–32. [Google Scholar] [CrossRef]
- Ikenoue, S.; Waffarn, F.; Ohashi, M.; Tanaka, M.; Gillen, D.L.; Buss, C.; Entringer, S.; Wadhwa, P.D. Placental Corticotrophin-Releasing Hormone is a Modulator of Fetal Liver Blood Perfusion. J. Clin. Endocrinol. Metab. 2021, 106, 646–653. [Google Scholar] [CrossRef]
- Spong, C.Y. Defining “term” pregnancy: Recommendations from the Defining “Term” Pregnancy Workgroup. JAMA J. Am. Med. Assoc. 2013, 309, 2445–2446. [Google Scholar] [CrossRef]
- Ikenoue, S.; Waffarn, F.; Sumiyoshi, K.; Ohashi, M.; Ikenoue, C.; Tanaka, M.; Gillen, D.L.; Buss, C.; Entringer, S.; Wadhwa, P.D. Maternal insulin resistance in pregnancy is associated with fetal fat deposition: Findings from a longitudinal study. Am. J. Obs. Gynecol. 2023, 228, 455.e1–455.e8. [Google Scholar] [CrossRef]
- Takeda, J.; Morisaki, N.; Itakura, A.; Aoki, S.; Sago, H.; Nagamatsu, T.; Masuyama, H.; Matsubara, S.; Umazume, T.; Mitsuda, N.; et al. Investigation of optimal weight gain during pregnancy: A retrospective analysis of the Japanese perinatal registry database. J. Obs. Gynaecol. Res. 2024, 50, 403–423. [Google Scholar] [CrossRef]
- Itabashi, K.; Miura, F.; Uehara, R.; Nakamura, Y. New Japanese neonatal anthropometric charts for gestational age at birth. Pediatr. Int. 2014, 56, 702–708. [Google Scholar] [CrossRef]
- Tamai, J.; Ikenoue, S.; Akita, K.; Ha-segawa, K.; Otani, T.; Fukutake, M.; Kasuga, Y.; Tanaka, M. Association of cord blood cytokine levels with fetal adiposity across gestation. In Proceedings of the Society for Maternal-Fetal Medicine (SMFM) Pregnancy Meeting at Aurora, CO, USA, 27 January–1 February 2025. [Google Scholar]
Characteristics | |
---|---|
Maternal characteristics | |
Age, years | 35.0 ± 3.9 |
−35 | 54 (58.1%) |
>35 | 39 (41.9%) |
Primiparous | 54 (57.4%) |
Pre-pregnancy BMI, kg/m2 | 20.8 ± 2.6 |
Gestational weight gain, kg | 13.5 ± 12.5 |
pre-pregnancy to 24 weeks, kg/week | 0.17 ± 0.10 |
pre-pregnancy to 30 weeks, kg/week | 0.21 ± 0.92 |
pre-pregnancy to 36 weeks, kg/week | 0.24 ± 0.90 |
Gestational weight gain | |
<JSOG recommendation | 49 (52.1%) |
=JSOG recommendation | 20 (21.3%) |
>JSOG recommendation | 25 (26.6%) |
Method of conception | |
Natural Insemination | 55 (58.5%) |
In vitro fertilization | 39 (41.5%) |
Gestational diabetes mellitus | 24 (25.5%) |
Hypertensive disorders of pregnancy | 6 (6.4%) |
Neonatal characteristics | |
Gestational age at delivery, weeks | 38.8 ± 1.1 |
Birth weight, g | 3014 ± 332 |
Birth weight percent tile, % | 58.6 ± 26.7 |
SGA | 4 (4.3%) |
AGA | 79 (84.9%) |
LGA | 10 (10.8%) |
Infant sex (female) | 47 (50.0%) |
24 Weeks | 30 Weeks | 36 Weeks | |
---|---|---|---|
Estimated fetal weight (EFW), g | 757 ± 152 | 1578 ± 155 | 2553 ± 249 |
Mid-upper arm | |||
Total area, mm2 | 2.8 ± 0.5 | 4.7 ± 0.8 | 7.9 ± 1.2 |
Fat area, mm2 | 1.3 ± 0.4 | 2.4 ± 0.5 | 4.5 ± 1.0 |
Per cent fat area, % | 46.8 ± 7.8 | 50.8 ± 6.2 | 56.0 ± 5.6 |
Mid-thigh | |||
Total area, mm2 | 5.7 ± 1.1 | 10.4 ± 1.5 | 17.4 ± 2.7 |
Fat area, mm2 | 2.2 ± 0.7 | 4.4 ± 0.9 | 8.0 ± 1.8 |
Per cent fat area, % | 37.5 ± 5.9 | 41.9 ± 5.2 | 45.8 ± 5.1 |
Anterior abdominal wall thickness, mm | 2.2 ± 0.5 | 2.9 ± 0.6 | 4.0 ± 0.9 |
Estimated fetal adiposity (EFA) * | 0.01 ± 0.63 | 0.01 ± 0.64 | 0.00 ± 0.64 |
EFA (24 Weeks) | EFA (30 Weeks) | EFA (36 Weeks) | EFW (24 Weeks) | EFW (30 Weeks) | EFW (36 Weeks) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p Value | r | p Value | r | p Value | r | p Value | r | p Value | r | p Value | |
Leptin | 0.058 | 0.584 | 0.237 | 0.022 | 0.450 | <0.001 | −0.007 | 0.947 | 0.029 | 0.782 | 0.114 | 0.279 |
Adiponectin | −0.117 | 0.261 | 0.074 | 0.477 | 0.176 | 0.089 | −0.018 | 0.865 | −0.045 | 0.664 | 0.000 | 0.999 |
IGF-1 | −0.070 | 0.505 | 0.141 | 0.176 | 0.248 | 0.016 | 0.188 | 0.069 | 0.127 | 0.223 | 0.206 | 0.047 |
C-peptide | −0.069 | 0.507 | 0.239 | 0.020 | 0.008 | 0.936 | 0.013 | 0.901 | 0.050 | 0.630 | 0.140 | 0.177 |
Unstandardized Coefficients B [95% CI] | Partial Correlation | p Value | |
---|---|---|---|
Leptin a | 1.062 [0.547–1.577] | 0.399 | <0.001 |
IGF-1 b | 0.007 [0.000–0.015] | 0.208 | 0.045 |
adiponectin b | 0.013 [−0.006–0.033] | 0.139 | 0.185 |
C-peptide c | 0.032 [−0.376–0.440] | 0.032 | 0.875 |
Leptin | Adiponectin | IGF-1 | C-Peptide | |||||
---|---|---|---|---|---|---|---|---|
Unstandardized Coefficients B | p Value | Unstandardized Coefficients B | p Value | Unstandardized Coefficients B | p Value | Unstandardized Coefficients B | p Value | |
Leptin | - | - | 6.216 | 0.033 | 12.808 | 0.103 | 0.343 | 0.020 |
Adiponectin | 0.008 | 0.033 | - | - | 0.227 | 0.427 | 0.011 | 0.030 |
IGF-1 | 0.002 | 0.103 | 0.031 | 0.427 | - | - | 0.003 | 0.154 |
CPR | 0.172 | 0.020 | 4.480 | 0.030 | 8.005 | 0.154 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamai, J.; Ikenoue, S.; Akita, K.; Hasegawa, K.; Otani, T.; Fukutake, M.; Kasuga, Y.; Tanaka, M. Association of Cord Blood Metabolic Biomarkers (Leptin, Adiponectin, IGF-1) with Fetal Adiposity Across Gestation. Int. J. Mol. Sci. 2025, 26, 6926. https://doi.org/10.3390/ijms26146926
Tamai J, Ikenoue S, Akita K, Hasegawa K, Otani T, Fukutake M, Kasuga Y, Tanaka M. Association of Cord Blood Metabolic Biomarkers (Leptin, Adiponectin, IGF-1) with Fetal Adiposity Across Gestation. International Journal of Molecular Sciences. 2025; 26(14):6926. https://doi.org/10.3390/ijms26146926
Chicago/Turabian StyleTamai, Junko, Satoru Ikenoue, Keisuke Akita, Keita Hasegawa, Toshimitsu Otani, Marie Fukutake, Yoshifumi Kasuga, and Mamoru Tanaka. 2025. "Association of Cord Blood Metabolic Biomarkers (Leptin, Adiponectin, IGF-1) with Fetal Adiposity Across Gestation" International Journal of Molecular Sciences 26, no. 14: 6926. https://doi.org/10.3390/ijms26146926
APA StyleTamai, J., Ikenoue, S., Akita, K., Hasegawa, K., Otani, T., Fukutake, M., Kasuga, Y., & Tanaka, M. (2025). Association of Cord Blood Metabolic Biomarkers (Leptin, Adiponectin, IGF-1) with Fetal Adiposity Across Gestation. International Journal of Molecular Sciences, 26(14), 6926. https://doi.org/10.3390/ijms26146926