Nature-Inspired Strategies in Cancer Management: The Potential of Plant Extracts in Modulating Tumour Biology
Abstract
1. Introduction
2. Proapoptotic Mechanisms Induced by Plant Extracts
3. Suppression of Cancer Cell Proliferation by Phytochemicals
4. Anti-Angiogenic Properties of Plant-Derived Compounds
5. Immunomodulatory Potential of Plant Extracts in Cancer Therapy
6. Mitigation of Chemotherapy-Induced Side Effects Using Plant Extracts
7. Challenges and Future Prospects for the Use of Plant Extracts in Cancer Treatment
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RAS | rat sarcoma viral oncogene homolog |
MYC | avian myelocytomatosis oncogene homolog |
TP53 | gene encoding the p53 tumour protein |
RB1 | gene encoding pRb retinoblastoma protein |
pRb | retinoblastoma protein; controls G1 to S phase transition during cell cycle |
Bcl-2 | B-cell Lymphoma 2; family of proteins that regulate cell apoptosis |
Bak | Bcl-2 homologous antagonist/killer; apoptotic protein |
Bax | Bcl-2-associated X protein; apoptotic protein |
Bcl-xL | B-cell lymphoma extra-large; antiapoptotic protein |
MMPs | extracellular matrix metalloproteinases |
BRCA1, BRCA2 | breast cancer genes 1 and 2; tumour suppressor genes involved in DNA repair through homologous recombination |
MLH1 | MutL Homolog 1; the human homolog of the bacterial MutL gene key in DNA mismatch repair pathway |
TNF | tumour necrosis factor |
DISC | death-inducing signalling complex |
FasL | Fas ligand; binds to the Fas receptor to initiate apoptosis |
TNF-α | tumour necrosis factor alpha; proinflammatory cytokine |
MOMP | mitochondrial outer membrane permeabilisation |
IAP | inhibitor of apoptosis proteins |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells; a family of transcription factor proteins |
BIR | baculoviral IAP repeat domains |
Mcl-1 | antiapoptotic protein |
MCF-7 | Michigan cancer foundation-7; human breast cancer cell line |
p53 | tumour suppressor protein responsible for monitoring and controlling the genetic integrity of cells |
FAS | cell surface death receptor that upon binding FasL triggers apoptosis via DISC formation |
FADD | FAS-associated death domain; apoptosis signal mediator |
MDA-MB-231 | MD Anderson—metastatic breast cancer line 231; triple-negative human breast cancer cell line |
MDA-MB-436 | MD Anderson—metastatic breast cancer line 436; triple-negative human breast cancer cell line |
MCF-7 | human breast adenocarcinoma cell line; oestrogen receptor-positive |
MCF 10A | non-cancerous human mammary epithelial cell line |
p21 | cyclin-dependent kinase inhibitor 1A; cell cycle suppressor protein |
PARP | poly(ADP-ribose)-polymerase |
HeLa | epithelial cervical cancer cell line derived from Henrietta Lacks |
HT-29 | human colorectal adenocarcinoma cells |
HepG2 | human hepatocellular carcinoma cells |
EGCG | epigallocatechin gallate |
CDKs | cyclin-dependent kinases |
EGFR | epidermal growth factor receptor; kinase inhibitor |
BRAF | B-rapidly accelerated fibrosarcoma (B-type Raf kinase) kinase |
CDK4/6 | cyclin-dependent kinases 4 and 6; inhibitors |
VEGF | vascular endothelial growth factor |
FGFs | receptors fibroblast growth factors |
Angs | angiopoietins and tie receptors |
TGF-β | transforming growth factor-β |
CAM test | a biological model that utilises the chorioallantoic membrane of the chicken embryo to study angiogenesis, tumour development, toxicity |
PDGF | platelet-derived growth factor |
HGF | hepatocyte growth factor |
IL-8 | interleukin-8/CXCL8 |
IL-6 | interleukin-6 |
TIMP-1 | tissue inhibitor of metalloproteinases-1 |
MMP-9 | matrix metalloproteinase-9 |
ANG2 | angiopoietin-2; crucial in vascular remodelling and tumour angiogenesis |
NK | “natural killer”; responsible for the immunological control of tumours and virus-infected cells |
MHC | major histocompatibility complex |
FasL | Fas ligand |
Fas | receptor CD95 |
TREG | regulatory T cells; suppress immune responses, often elevated in tumour microenvironments |
TME | tumour microenvironment |
ROS | reactive oxygen species |
NOX | NADPH oxidase |
JNK | c-Jun N-terminal kinase |
p38 | p38 mitogen-activated protein kinase |
GSH | reduced glutathione |
GST | glutathione s-transferase |
COX-2 | cyclooxygenase-2 |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Chhikara, B.S.; Parang, K. Chemical Biology LETTERS Global Cancer Statistics 2022: The Trends Projection Analysis. Available online: https://pubs.thesciencein.org/cbl (accessed on 23 January 2025).
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Fouad, Y.A.; Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res. 2017, 7, 1016–1036. [Google Scholar] [PubMed]
- Ravi, S.; Alencar, A.M.; Arakelyan, J.; Xu, W.; Stauber, R.; Wang, C.-C.I.; Papyan, R.; Ghazaryan, N.; Pereira, R.M. An Update to Hallmarks of Cancer. Cureus 2022, 14, e24803. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Ma, L.; Merlin, D. Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer therapy. Expert Opin. Drug Deliv. 2016, 14, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Abedi-Gaballu, F.; Dehghan, G.; Ghaffari, M.; Yekta, R.; Abbaspour-Ravasjani, S.; Baradaran, B.; Ezzati Nazhad Dolatabadi, J.; Hamblin, M.R. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl. Mater. Today 2018, 12, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Dilalla, V.; Chaput, G.; Williams, T.; Sultanem, K. Radiotherapy side effects: Integrating a survivorship clinical lens to better serve patients. Curr. Oncol. 2020, 27, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, F.; Cona, M.M.; Feng, Y.; Himmelreich, U.; Oyen, R.; Verbruggen, A.; Ni, Y. A review on various targeted anticancer therapies. Target. Oncol. 2012, 7, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019, 13, 961. [Google Scholar] [CrossRef] [PubMed]
- van den Boogaard, W.M.C.; Komninos, D.S.J.; Vermeij, W.P. Chemotherapy Side-Effects: Not All DNA Damage Is Equal. Cancers 2022, 14, 627. [Google Scholar] [CrossRef] [PubMed]
- Sanz Del Olmo, N.; Carloni, R.; Bajo, A.M.; Ortega, P.; Fattori, A.; Gómez, R.; Ottaviani, M.F.; García-Gallego, S.; Cangiotti, M.; De La Mata, F.J. Insight into the antitumor activity of carbosilane Cu(ii)-metallodendrimers through their interaction with biological membrane models. Nanoscale 2019, 11, 13330–13342. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.W.; Farooq, M.; Haseeb, M.; Choi, S. Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022, 11, 1326. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, N.; Bawari, S.; Burcher, J.T.; Sinha, D.; Tewari, D.; Bishayee, A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers 2023, 15, 3980. [Google Scholar] [CrossRef] [PubMed]
- Pons, D.G. Roles of Phytochemicals in Cancer Prevention and Therapeutics. Int. J. Mol. Sci. 2024, 25, 5450. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Lee, T.J. Mechanisms of Phytochemicals in Anti-Inflammatory and Anti-Cancer. Int. J. Mol. Sci. 2023, 24, 7863. [Google Scholar] [CrossRef] [PubMed]
- Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; et al. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother. 2022, 150, 113054. [Google Scholar] [CrossRef] [PubMed]
- ELichtenstein, M.; Sallon, S.; Paavilainen, H.; Solowey, E.; Lorberboum-Galski, H. Evaluating medicinal plants for anticancer activity. Sci. World J. 2014, 2014, 721402. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Mahasneh, A.M. Antiproliferative activity of plant extracts used against cancer in traditional medicine. Sci. Pharm. 2010, 78, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Nelson, V.K.; Sahoo, N.K.; Sahu, M.; Sudhan, H.H.; Pullaiah, C.P.; Muralikrishna, K.S. In vitro anticancer activity of Eclipta alba whole plant extract on colon cancer cell HCT-116. BMC Complement. Med. Ther. 2020, 20, 355. [Google Scholar] [CrossRef] [PubMed]
- Gull, N.; Arshad, F.; Naikoo, G.A.; Hassan, I.U.; Pedram, M.Z.; Ahmad, A.; Aljabali, A.A.A.; Mishra, V.; Satija, S.; Charbe, N.; et al. Recent Advances in Anticancer Activity of Novel Plant Extracts and Compounds from Curcuma longa in Hepatocellular Carcinoma. J. Gastrointest. Cancer 2023, 54, 368–390. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Oliveira, P.; Otero, P.; Pereira, A.G.; Chamorro, F.; Carpena, M.; Echave, J.; Fraga-Corral, M.; Simal-Gandara, J.; Prieto, M.A. Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals 2021, 14, 157. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.; Hoai Ta, Q.T.; Pham, Q.T.; Han Luong, T.N.; Phung, V.T.; Duong, T.H.; Vo, V.G. Anticancer activity of novel plant extracts and compounds from Adenosma bracteosum (Bonati) in human lung and liver cancer cells. Molecules 2020, 25, 2912. [Google Scholar] [CrossRef] [PubMed]
- Greenwell, M.; Rahman, P.K.S.M. Medicinal Plants: Their Use in Anticancer Treatment. Int. J. Pharm. Sci. Res. 2015, 6, 4103–4112. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Ali, H.; Prof, A. Anticancer activity of Medicinal plant extract—A review. J. Chem. Chem. Sci. 2010, 1, 79–85. [Google Scholar]
- Prakash, O.; Kumar, A.; Kumar, P.; Ajeet, A. Anticancer Potential of Plants and Natural Products: A Review. Am. J. Pharmacol. Sci. 2013, 1, 104–115. [Google Scholar] [CrossRef]
- Kiraz, Y.; Adan, A.; Kartal Yandim, M.; Baran, Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. 2016, 37, 8471–8486. [Google Scholar] [CrossRef] [PubMed]
- Tanos, R.; Karmali, D.; Nalluri, S.; Goldsmith, K.C. Select Bcl-2 antagonism restores chemotherapy sensitivity in high-risk neuroblastoma. BMC Cancer 2016, 16, 97. [Google Scholar] [CrossRef] [PubMed]
- Letai, A. Apoptosis and cancer. Annu. Rev. Cancer Biol. 2017, 1, 275–294. [Google Scholar] [CrossRef]
- Azab, A.E.; Azzwali, A.-A.A. Apoptosis: Insight into Stages, Extrinsic and Intrinsic Pathways, Apoptosis: Insight into Stages, Extrinsic and Intrinsic Pathways. Open Sci. J. Clin. Med. 2019, 7, 80–82. [Google Scholar]
- Nair, P.; Lu, M.; Petersen, S.; Ashkenazi, A. Apoptosis initiation through the cell-extrinsic pathway. In Methods Enzymol; Academic Press Inc.: Cambridge, MA, USA, 2014; pp. 99–128. [Google Scholar] [CrossRef]
- Ashkenazi, A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 2008, 19, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Sayers, T.J. Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol. Immunother. 2011, 60, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Chaudhry, G.E.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull. 2019, 9, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.N.; Mumtaz, S. Prunin: An Emerging Anticancer Flavonoid. Int. J. Mol. Sci. 2025, 26, 2678. [Google Scholar] [CrossRef] [PubMed]
- Vogler, M.; Braun, Y.; Smith, V.M.; Westhoff, M.-A.; Pereira, R.S.; Pieper, N.M.; Anders, M.; Callens, M.; Vervliet, T.; Abbas, M.; et al. The BCL2 family: From apoptosis mechanisms to new advances in targeted therapy. Signal Transduct. Target. Ther. 2025, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Fulda, S.; Debatin, K.M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006, 25, 4798–4811. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Luna, J.L. Apoptosis regulators as targets for cancer therapy. Clin. Transl. Oncol. 2007, 9, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Papaliagkas, V.; Anogianaki, A.; Anogianakis, G.; Ilonidis, G. The proteins and the mechanisms of apoptosis: A mini-review of the fundamentals. Hippokratia 2007, 11, 108–113. [Google Scholar] [PubMed]
- Shamas-Din, A.; Brahmbhatt, H.; Leber, B.; Andrews, D.W. BH3-only proteins: Orchestrators of apoptosis. Biochim. Biophys. Acta Mol. Cell Res. 2011, 1813, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Chota, A.; George, B.P.; Abrahamse, H. Interactions of multidomain pro-apoptotic and anti-apoptotic proteins in cancer cell death. Oncotarget 2021, 12, 1615. [Google Scholar] [CrossRef] [PubMed]
- Silke, J.; Meier, P. Inhibitorofapoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb. Perspect. Biol. 2013, 5, a008730. [Google Scholar] [CrossRef] [PubMed]
- Ola, M.S.; Nawaz, M.; Ahsan, H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol. Cell Biochem. 2011, 351, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Michels, J.; Johnson, P.W.M.; Packham, G. Mcl-1. Int. J. Biochem. Cell Biol. 2005, 37, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Yip, K.W.; Reed, J.C. Bcl-2 family proteins and cancer. Oncogene 2008, 27, 6398–6406. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 2019, 20, 175–193. [Google Scholar] [CrossRef] [PubMed]
- Ladokhin, A.S. Regulation of Apoptosis by the Bcl-2 Family of Proteins: Field on a Brink. Cells 2020, 9, 2121. [Google Scholar] [CrossRef] [PubMed]
- Gregoriou, G.; Neophytou, C.M.; Vasincu, A.; Gregoriou, Y.; Hadjipakkou, H.; Pinakoulaki, E.; Christodoulou, M.C.; Ioannou, G.D.; Stavrou, I.J.; Christou, A.; et al. Constantinou, Anti-cancer activity and phenolic content of extracts derived from cypriot carob (Ceratonia siliqua L.) pods using different solvents. Molecules 2021, 26, 5017. [Google Scholar] [CrossRef] [PubMed]
- Ben Ayache, S.; Saafi, E.B.; Emhemmed, F.; Flamini, G.; Achour, L.; Muller, C.D. Biological activities of aqueous extracts from carob plant (Ceratonia siliqua L.) by antioxidant, analgesic and proapoptotic properties evaluation. Molecules 2020, 25, 3120. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, G.M.; Balakrishnan, A.; Alshatwi, A.A.; Al-Khalifa, A.; Zuo, B. Cucurbita ficifolia Fruit Extract Induces Tp53/Caspase-Mediated Apoptosis in MCF-7 Breast Cancer Cells. BioMed Res. Int. 2020, 2020, 3712536. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Singh, R.; Siddiqui, S.; Ahmad, I.; Ahmad, R.; Upadhyay, S.; Barkat, A.; Ali, A.M.A.; Zia, Q.; Srivastava, A.; et al. Anticancer potential of Phoenix dactylifera L. seed extract in human cancer cells and pro-apoptotic effects mediated through caspase-3 dependent pathway in human breast cancer MDA-MB-231 cells: An in vitro and in silico investigation. BMC Complement. Med. Ther. 2022, 22, 68. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.; Chandra Bharti, A. Anticancer Potential of Curcumin: Preclinical and Clinical Studies. Anticancer Res. 2003, 23, 363–398. [Google Scholar] [PubMed]
- Deeh, P.B.D.; Arumugam, M.; Alagarsamy, K.; Karanam, G.; Natesh, N.S.; Watcho, P.; Vishwakarma, V. Phyllanthus muellerianus and Ficus exasperata exhibit anti-proliferative and pro-apoptotic activities in human prostate cancer PC-3 cells by modulating calcium influx and activating caspases. Biologia 2022, 77, 1981–1994. [Google Scholar] [CrossRef]
- Fouzat, A.; Hussein, O.J.; Gupta, I.; Al-Farsi, H.F.; Khalil, A.; Al Moustafa, A.E. Elaeagnus angustifolia Plant Extract Induces Apoptosis via P53 and Signal Transducer and Activator of Transcription 3 Signaling Pathways in Triple-Negative Breast Cancer Cells. Front. Nutr. 2022, 9, 871667. [Google Scholar] [CrossRef] [PubMed]
- Haykal, T.; Younes, M.; El Khoury, M.; Ammoury, C.; Tannous, S.; Hodroj, M.H.; Sarkis, R.; Gasilova, N.; Menin, L.; Rizk, S. The pro-apoptotic properties of a phytonutrient rich infusion of A. cherimola leaf extract on AML cells. Biomed. Pharmacother. 2021, 140, 111592. [Google Scholar] [CrossRef] [PubMed]
- Ammoury, C.; Younes, M.; El Khoury, M.; Hodroj, M.H.; Haykal, T.; Nasr, P.; Sily, M.; Taleb, R.I.; Sarkis, R.; Khalife, R.; et al. The pro-apoptotic effect of a Terpene-rich Annona cherimola leaf extract on leukemic cell lines. BMC Complement. Altern. Med. 2019, 19, 365. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.; Yadav, P.; Peeyush; Verma, P.; Kumar, R. Investigation of Proapoptotic Potential of Ipomoea carnea Leaf Extract on Breast Cancer Cell Line. J. Drug Deliv. Ther. 2022, 12, 51–55. [Google Scholar] [CrossRef]
- Khazaei, S.; Abdul Hamid, R.; Ramachandran, V.; Mohd Esa, N.; Pandurangan, A.K.; Danazadeh, F.; Ismail, P. Cytotoxicity and Proapoptotic Effects of Allium atroviolaceum Flower Extract by Modulating Cell Cycle Arrest and Caspase-Dependent and p53-Independent Pathway in Breast Cancer Cell Lines. Evidence-Based Complement. Altern. Med. 2017, 2017, 1468957. [Google Scholar] [CrossRef] [PubMed]
- Abbas Momtazi-Borojeni, A.; Behbahani, M.; Sadeghi-aliabadi, S.H. Antiproliferative, Activity and Apoptosis Induction of Crude Extract and Fractions of Avicennia marina. Iran. J. Basic Med. Sci. 2013, 16, 1203. [Google Scholar]
- Badmus, J.A.; Ekpo, O.E.; Hussein, A.A.; Meyer, M.; Hiss, D.C. Antiproliferative and apoptosis induction potential of the methanolic leaf extract of Holarrhena floribunda (G. Don). Evid.-Based Complement. Altern. Med. 2015, 2015, 756482. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mathew, S.O.; Aharwal, R.P.; Tulli, H.S.; Mohan, C.D.; Sethi, G.; Ahn, K.-S.; Webber, K.; Sandhu, S.S.; Bishayee, A. Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal. Pharmaceuticals 2023, 16, 160. [Google Scholar] [CrossRef] [PubMed]
- Elbouzidi, A.; Taibi, M.; Ouassou, H.; Ouahhoud, S.; Ou-Yahia, D.; Loukili, E.H.; Aherkou, M.; Mansouri, F.; Bencheikh, N.; Laaraj, S.; et al. Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity. Pharmaceuticals 2023, 16, 840. [Google Scholar] [CrossRef] [PubMed]
- Macuer-Guzmán, J.; Bernal, G.; Jamett-Díaz, F.; Ramírez-Rivera, S.; Ibáñez, C. Selective and Apoptotic Action of Ethanol Extract of Annona cherimola Seeds against Human Stomach Gastric Adenocarcinoma Cell Line AGS. Plant Foods Hum. Nutr. 2019, 74, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Lingfa, L.; Tirumala, A.; Ankanagari, S. In Vitro Cytotoxicity of Reproductive Stage Withania somnifera Leaf and Stem on HepG2 Cell Line. Evidence-Based Complement. Altern. Med. 2023, 2023, 8832166. [Google Scholar] [CrossRef] [PubMed]
- Feitelson, M.A.; Arzumanyan, A.; Kulathinal, R.J.; Blain, S.W.; Holcombe, R.F.; Mahajna, J.; Marino, M.; Martinez-Chantar, M.L.; Nawroth, R.; Sanchez-Garcia, I.; et al. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin. Cancer Biol. 2015, 35, S25–S54. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Thompson, C.B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 2019, 20, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Schiliro, C.; Firestein, B.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 2021, 10, 1056. [Google Scholar] [CrossRef] [PubMed]
- Purushotham, G.; Padma, Y.; Nabiha, Y.; Venkata Raju, R.R. In vitro evaluation of anti-proliferative, anti-inflammatory and pro-apoptotic activities of the methanolic extracts of Andrographis nallamalayana Ellis on A375 and B16F10 melanoma cell lines. 3 Biotech 2016, 6, 212. [Google Scholar] [CrossRef] [PubMed]
- Albinhassan, T.H.; Saleh, K.A.; Barhoumi, Z.; Alshehri, M.A.; Al-Ghazzawi, A.M. Anticancer, anti-proliferative activity of Avicennia marina plant extracts. J. Cancer Res. Ther. 2021, 17, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol. 2011, 82, 1807–1821. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Wang, X.; Lu, G.; Picinich, S.C. Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 2009, 9, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Devabattula, G.; Panda, B.; Yadav, R.; Godugu, C. The Potential Pharmacological Effects of Natural Product Withaferin A in Cancer: Opportunities and Challenges for Clinical Translation. Planta Medica 2024, 90, 440–453. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Bi, H.; Yan, Y.; Huang, W.; Zhang, G.; Zhang, G.; Tang, S.; Liu, Y.; Zhang, L.; Ma, J.; et al. Parthenolide suppresses non-small cell lung cancer GLC-82 cells growth via B-Raf/MAPK/Erk pathway. Oncotarget 2017, 8, 23436. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Roy, D.; Pati, S.; Sa, G. The Adroitness of Andrographolide as a Natural Weapon Against Colorectal Cancer. Front. Pharmacol. 2021, 12, 731492. [Google Scholar] [CrossRef] [PubMed]
- Swargiary, A.; Roy, M.K.; Verma, A.K. In vitro study of the antioxidant, antiproliferative, and anthelmintic properties of some medicinal plants of Kokrajhar district, India. J. Parasit. Dis. 2021, 45, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.X.; Jiao, Y.N.; Hao, H.F.; Xue, D.; Bai, C.C.; Han, S.Y. Taraxacum mongolicum extract inhibited malignant phenotype of triple-negative breast cancer cells in tumor-associated macrophages microenvironment through suppressing IL-10/STAT3/PD-L1 signaling pathways. J. Ethnopharmacol. 2021, 274, 113978. [Google Scholar] [CrossRef] [PubMed]
- Kheyar, N.; Bellik, Y.; Serra, A.T.; Kheyar, F.; Bedjou, F. Inula viscosa phenolic extract suppresses colon cancer cell proliferation and ulcerative colitis by modulating oxidative stress biomarkers. BioTechnologia 2022, 103, 269–281. [Google Scholar] [CrossRef] [PubMed]
- D’ANgelo, S.; Martino, E.; Ilisso, C.P.; Bagarolo, M.L.; Porcelli, M.; Cacciapuoti, G. Pro-oxidant and pro-apoptotic activity of polyphenol extract from Annurca apple and its underlying mechanisms in human breast cancer cells. Int. J. Oncol. 2017, 51, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines 2017, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Joga, S.; Koyyala, V.P.B. Angiogenesis in Cancer. Indian J. Med Paediatr. Oncol. 2021, 42, 168–171. [Google Scholar] [CrossRef]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Vascular Health and Risk Management ISSN: (Print) (Angiogenesis in Cancer). Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.L.; Chen, H.H.; Zheng, L.L.; Sun, L.P.; Shi, L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023, 8, 198. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, M.; Rüdiger, D.; Zahler, S. Mechanical aspects of angiogenesis. Cancers 2021, 13, 4987. [Google Scholar] [CrossRef] [PubMed]
- Al-Ostoot, F.H.; Salah, S.; Khamees, H.A.; Khanum, S.A. Tumor angiogenesis: Current challenges and therapeutic opportunities. Cancer Treat. Res. Commun. 2021, 28, 100422. [Google Scholar] [CrossRef] [PubMed]
- Hoseinkhani, Z.; Norooznezhad, F.; Rastegari-Pouyani, M.; Mansouri, K. Medicinal plants extracts with antiangiogenic activity: Where is the link? Adv. Pharm. Bull. 2020, 10, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Mangir, N.; Dikici, S.; Claeyssens, F.; MacNeil, S. Using ex Ovo Chick Chorioallantoic Membrane (CAM) Assay to Evaluate the Biocompatibility and Angiogenic Response to Biomaterials. ACS Biomater. Sci. Eng. 2019, 5, 3190–3200. [Google Scholar] [CrossRef] [PubMed]
- Sipos, S.; Moacă, E.A.; Pavel, I.Z.; Avram, Ş.; Crețu, O.M.; Coricovac, D.; Racoviceanu, R.M.; Ghiulai, R.; Pană, R.D.; Şoica, C.M.; et al. Melissa officinalis L. Aqueous extract exerts antioxidant and antiangiogenic effects and improves physiological skin parameters. Molecules 2021, 26, 2369. [Google Scholar] [CrossRef] [PubMed]
- Magyari-Pavel, I.Z.; Moacă, E.A.; Avram, Ș.; Diaconeasa, Z.; Haidu, D.; Ștefănuț, M.N.; Rostas, A.M.; Muntean, D.; Bora, L.; Badescu, B.; et al. Antioxidant Extracts from Greek and Spanish Olive Leaves: Antimicrobial, Anticancer and Antiangiogenic Effects. Antioxidants 2024, 13, 774. [Google Scholar] [CrossRef] [PubMed]
- Antoniak, K.; Studzińska-Sroka, E.; Szymański, M.; Dudek-Makuch, M.; Cielecka-Piontek, J.; Korybalska, K. Antiangiogenic, Anti-Inflammatory and Antioxidant Properties of Bidens tripartite Herb, Galium verum Herb and Rumex hydrolapathum Root. Molecules 2023, 28, 4966. [Google Scholar] [CrossRef] [PubMed]
- Kei, W.W.; Raju, N.S.C. Anti-Angiogenic Screening of Moringa oleifera Leaves Extract Using Chorioallantonic Membrane Assay. Iraqi J. Pharm. Sci. 2022, 31, 225–232. [Google Scholar] [CrossRef]
- Muralidharan, K.; Kumaravelu, P.; David, D. Evaluation of antiangiogenic and antiproliferative potential of ethanolic extracts of Andrographis echioides using in vitro and in ovo assays. J. Cancer Res. Ther. 2021, 17, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Niapour, A.; Miran, M.; Seyedasli, N.; Norouzi, F. Anti-angiogenic effects of aqueous extract from Agrostemma githago L. seed in human umbilical vein endothelial cells via regulating Notch/VEGF, MMP2/9, ANG2, and VEGFR2. Environ. Sci. Pollut. Res. 2022, 30, 22413–22429. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Shukla, S.; Kim, J.A.; Kim, M. Anti-angiogenic effect of nelumbo nucifera leaf extracts in human umbilical vein endothelial cells with antioxidant potential. PLoS ONE 2015, 10, e0118552. [Google Scholar] [CrossRef] [PubMed]
- Sajida; Prabhu, A. Anti-angiogenic, apoptotic and matrix metalloproteinase inhibitory activity of Withania somnifera (ashwagandha) on lung adenocarcinoma cells. Phytomedicine 2021, 90, 153639. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, R. Antigenotoxic and Antiangiogenic Activity of Alternanthera Sessilis, Alstonia Scholaris and Anogeissus Acuminata Leaf Extracts. J. Res. Technol. Educ. 2021, 8, 895–902. [Google Scholar]
- Majeed Al-Shammari, A.; Razzaq, B.; Falah Hassan, I.; Abdul Razzaq Mshimesh, B.; Mohammad Rasheed, A. Anti-Angiogenic Activity of Annona Reticulata N-Hexane Seeds Extract: In Vivo Study. Artic. Biochem. Cell Arch. 2021, 21, 4327–4335. [Google Scholar]
- Zhang, W.; Liu, B.; Feng, Y.; Liu, J.; Ma, Z.; Zheng, J.; Xia, Q.; Ni, Y.; Li, F.; Lin, R. Anti-angiogenic activity of water extract from Euphorbia pekinensis Rupr. J. Ethnopharmacol. 2017, 206, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Kamble, S.S.; Gacche, R.N. Evaluation of anti-breast cancer, anti-angiogenic and antioxidant properties of selected medicinal plants. Eur. J. Integr. Med. 2019, 25, 13–19. [Google Scholar] [CrossRef]
- Serrano-del Valle, A.; Naval, J.; Anel, A.; Marzo, I. Novel Forms of Immunomodulation for Cancer Therapy. Trends Cancer 2020, 6, 518–532. [Google Scholar] [CrossRef] [PubMed]
- Petroni, G.; Buqué, A.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Immunomodulation by targeted anticancer agents. Cancer Cell 2021, 39, 310–345. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, G.; Senese, G.; Gallo, C.; Albiani, F.; Romano, L.; D’ippolito, G.; Manzo, E.; Fontana, A. Antitumor Potential of Immunomodulatory Natural Products. Mar. Drugs 2022, 20, 386. [Google Scholar] [CrossRef] [PubMed]
- Vaghasia, H.; Patel, R.; Prajapati, J.; Shah, K.; Saraf, M.; Rawal, R.M. Cytotoxic and immunomodulatory properties of Tinospora cordifolia, Boerhaavia diffusa, Berberis aristata, and Ocimum basilicum extracts against HPV-positive cervical cancer cell line. BMC Complement. Med. Ther. 2025, 25, 59. [Google Scholar] [CrossRef] [PubMed]
- Kis, B.; Pavel, I.Z.; Avram, S.; Moaca, E.A.; Juan, M.H.S.; Schwiebs, A.; Radeke, H.H.; Muntean, D.; Diaconeasa, Z.; Minda, D.; et al. Antimicrobial activity, in vitro anticancer effect (MCF-7 breast cancer cell line), antiangiogenic and immunomodulatory potentials of Populus nigra L. buds extract. BMC Complement. Med. Ther. 2022, 22, 74. [Google Scholar] [CrossRef] [PubMed]
- Lemieszek, M.K.; Komaniecka, I.; Chojnacki, M.; Choma, A.; Rzeski, W. Immunomodulatory Properties of Polysaccharide-Rich Young Green Barley (Hordeum vulgare) Extract and Its Structural Characterization. Molecules 2022, 27, 1742. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, V.K.; Peasah-Darkwah, G.; Dhasmana, A.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022, 14, 611. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sun, Y.; Huang, J.; Wang, B.; Gong, Y.; Fang, Y.; Liu, Y.; Wang, S.; Guo, Y.; Wang, H.; et al. Anti-tumor effects and mechanisms of Astragalus membranaceus (AM) and its specific immunopotentiation: Status and prospect. J. Ethnopharmacol. 2020, 258, 112797. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Kim, Y.S.; Lee, D.R.; Choi, B.K.; Kwon, K.B.; Bae, G.S. Echinacea purpurea alleviates cyclophosphamide-induced immunosuppression in mice. Appl. Sci. 2021, 12, 105. [Google Scholar] [CrossRef]
- Nurgali, K.; Jagoe, R.T.; Abalo, R. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front. Pharmacol. 2018, 9, 245. [Google Scholar] [CrossRef] [PubMed]
- Pai, V.B.; Nahata, M.C. Cardiotoxicity of Chemotherapeutic Agents Incidence, Treatment and Prevention. Drug Saf. 2000, 22, 263–302. [Google Scholar] [CrossRef] [PubMed]
- Małyszko, J.; Kozłowska, K.; Kozłowski, L.; Małyszko, J. Nephrotoxicity of anticancer treatment. Nephrol. Dial. Transplant. 2016, 32, 924–936. [Google Scholar] [CrossRef] [PubMed]
- M. Publications Pvt Ltd. JCRT_July_08.indd. Available online: www.cancerjournal.net (accessed on 16 March 2025).
- Tag, H.M. Hepatoprotective effect of mulberry (Morus nigra) leaves extract against methotrexate induced hepatotoxicity in male albino rat. BMC Complement. Altern. Med. 2015, 15, 252. [Google Scholar] [CrossRef] [PubMed]
- Mhatre, B.A.; Marar, T. Protective effect of Morinda citrifolia L. (fruit extract) on methotrexate-induced toxicities—Hematological and biochemical studies. Cogent Biol. 2016, 2, 1207879. [Google Scholar] [CrossRef]
- Abouelela, M.E.; Orabi, M.A.; Abdelhamid, R.A.; Abdelkader, M.S.; Madkor, H.R.; Darwish, F.M.; Hatano, T.; Elsadek, B.E.M. Ethyl acetate extract of Ceiba pentandra (L.) Gaertn. reduces methotrexate-induced renal damage in rats via antioxidant, anti-inflammatory, and antiapoptotic actions. J. Tradit. Complement. Med. 2020, 10, 478–486. [Google Scholar] [CrossRef] [PubMed]
- LAl Kury, L.T.; Dayyan, F.; Shah, F.A.; Malik, Z.; Khalil, A.A.K.; Alattar, A.; Alshaman, R.; Ali, A.; Khan, Z. Ginkgo biloba extract Protects against methotrexate-induced hepatotoxicity: A computational and pharmacological approach. Molecules 2020, 25, 2540. [Google Scholar] [CrossRef] [PubMed]
- Upreti, S.; Pandey, S.C.; Bisht, I.; Samant, M. Evaluation of the target-specific therapeutic potential of herbal compounds for the treatment of cancer. Mol. Divers. 2021, 26, 1823–1835. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Das, S.K.; Sinha, K.; Ghosh, B.; Sen, K.; Ghosh, N.; Sil, P.C. The Emerging Role of Natural Products in Cancer Treatment. Arch. Toxicol. 2024, 98, 2353–2391. [Google Scholar] [CrossRef] [PubMed]
- Chunarkar-Patil, P.; Kaleem, M.; Mishra, R.; Ray, S.; Ahmad, A.; Verma, D.; Bhayye, S.; Dubey, R.; Singh, H.N.; Kumar, S. Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies. Biomedicines 2024, 12, 201. [Google Scholar] [CrossRef] [PubMed]
- Antunes, N.; Kundu, B.; Kundu, S.C.; Reis, R.L.; Correlo, V. In Vitro Cancer Models: A Closer Look at Limitations on Translation. Bioengineering 2022, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Sarnella, A.; Ferrara, Y.; Terlizzi, C.; Albanese, S.; Monti, S.; Licenziato, L.; Mancini, M. The Chicken Embryo: An Old but Promising Model for In Vivo Preclinical Research. Biomedicines 2024, 12, 2835. [Google Scholar] [CrossRef] [PubMed]
- Bokhout, L.; Campeiro, J.D.; Dalm, S.U. Exploring the landscape of current in vitro and in vivo models and their relevance for targeted radionuclide theranostics. Eur. J. Nucl. Med. 2025, 52, 3291–3311. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Kim, S.-M.; Nam, G.E.; Kim, S.-H.; Park, S.-J.; Park, Y.-K.; Baik, H.W. A Randomized, Double-Blind, Placebo-Controlled, Multi-Centered Clinical Study to Evaluate the Efficacy and Safety of Artemisia annua L. Extract for Improvement of Liver Function. Clin. Nutr. Res. 2020, 9, 258. [Google Scholar] [CrossRef] [PubMed]
- Zoi, V.; Galani, V.; Lianos, G.D.; Voulgaris, S.; Kyritsis, A.P.; Alexiou, G.A. The role of curcumin in cancer treatment. Biomedicines 2021, 9, 1086. [Google Scholar] [CrossRef] [PubMed]
- Ameer, S.F.; Mohamed, M.Y.; Elzubair, Q.A.; Sharif, E.A.M.; Ibrahim, W.N. Curcumin as a novel therapeutic candidate for cancer: Can this natural compound revolutionize cancer treatment? Front. Oncol. 2024, 14, 1438040. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The Essential Medicinal Chemistry of Curcumin. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef] [PubMed]
- Pavese, J.M.; Krishna, S.N.; Bergan, R.C. Genistein inhibits human prostate cancer cell detachment, invasion, and metastasis. Am. J. Clin. Nutr. 2014, 100, 431S–436S. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Ramírez, R.; Pinilla, P.; Sanchéz, J.; Torregrosa, L.; Aschner, P.; Urueña, C.; Fiorentino, S. Safety and efficacy of P2Et extract from Caesalpinia spinosa in breast cancer patients: Study protocol for a randomized double blind phase II clinical trial (CS003-BC). BMC Complement. Med. Ther. 2023, 23, 309. [Google Scholar] [CrossRef] [PubMed]
- Duran, M.I.; Ballesteros-Ramírez, R.; Tellez, A.; Torregrosa, L.; Olejua, P.A.; Galvis, S.; Urueña, C.; Fiorentino, S. Safety Evaluation in Healthy Colombian Volunteers of P2Et Extract Obtained from Caesalpinia spinosa: Design 3+3 Phase i Clinical Trial. Evid.-Based Complement. Altern. Med. 2022, 2022, 7943001. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 2009, 16, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action 1. J. Nutr. 2004, 134, 3479S–3485S. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Bozzuto, G.; Calcabrini, A.; Colone, M.; Condello, M.; Dupuis, M.L.; Pellegrini, E.; Stringaro, A. Phytocompounds and Nanoformulations for Anticancer Therapy: A Review. Molecules 2024, 29, 3784. [Google Scholar] [CrossRef] [PubMed]
- Ali Abdalla, Y.O.; Subramaniam, B.; Nyamathulla, S.; Shamsuddin, N.; Arshad, N.M.; Mun, K.S.; Awang, K.; Nagoor, N.H. Natural Products for Cancer Therapy: A Review of Their Mechanism of Actions and Toxicity in the Past Decade. J. Trop. Med. 2022, 2022, 5794350. [Google Scholar] [CrossRef] [PubMed]
Latin Name | English Name | Anticancer Activity | References |
---|---|---|---|
Agrostemma githago | Corncockle | Antiangiogenic: angiogenesis inhibition—associated with changes in the release of VEGF, MMP2/9, and ANG2 from cancer and endothelial cell lines | [93] |
Allium atroviolaceum | Dark Purple Garlic | Proapoptotic: apoptosis-inducing effect in MCF-7 and MDA-MB-231 by extrinsic and intrinsic pathways—caspase- and Bcl-2-dependent and p53 transcription-independent Antiproliferative: inhibition of MCF7 (arrest in the S and G2/M phases) and MDA-MB-231 (arrest in the S phase) cell proliferation | [59] |
Alstonia scholaris | Maidenhair Tree | Antiproliferative: inhibition of Dalton lymphoma cell proliferation Antiangiogenic: angiogenesis inhibition | [76,96] |
Alternanthera sessilis | Sessile Joyweed | Antiangiogenic: angiogenesis inhibition | [96] |
Andrographis echioides | False Waterwillow | Antiangiogenic: angiogenesis inhibition | [92] |
Andrographis paniculata | Green Chiretta | Antiproliferative, proapoptotic: inhibition the Wnt/β-catenin signal transduction pathway, leading to reduced proliferation and induced apoptosis in colon cancer cells | [75] |
Andrographis nallamalavana | - | Antiproliferative: inhibition of A 375 and B16F10 cell proliferation—acts on the G2/M phase by changing the expression of proteins involved in the G2/M phase | [69] |
Annona cherimola | Cherimoya | Proapoptotic: apoptosis-inducing effect in MDA-MB-231—release of cytochrome C, an increase in p21 levels, and an increase in the Bax/Bcl-2 ratio, and acute myeloid leukaemia lines—PARP cleavage, activation of caspases 8 and 9, and an increase in the Bax/Bcl-2 ratio | [56,57] |
Annona reticulata | Custard Apple | Antiangiogenic: angiogenesis inhibition—reduced expression of major proangiogenic proteins | [97] |
Anogeissus acuminata | - | Antiangiogenic: angiogenesis inhibition | [96] |
Astragalus membranaceus | Astragalus Root | Immunomodulatory: reduces immunosuppression by stimulating the activity of M1 macrophages and supporting the ability of T cells to destroy cancer cells in the tumour microenvironment | [107] |
Avicennia marina | Grey Mangrove | Proapoptotic: apoptosis-inducing effect in MDA-MB-231—DNA fragmentation, increased p53 expression, and decreased Bcl2 protein levels Antiproliferative: inhibition of HCT116 (arrest the G0-G1 phase), MCF-7, and HepG2 (arrest of the S phase) cells | [60,70] |
Berberis aristata | Indian Barberry | Immunomodulatory effect | [103] |
Bidens tripartite | Three-lobe Beggarticks | Antiangiogenic: angiogenesis inhibition—affecting the level of angiogenic/angiostatic mediators: PDGF, HGF, IL-8, IL-6, TIMP-1, and MMP-9 | [90] |
Boerhaavia diffusa | Punarnava/Spreading Hogweed | Immunomodulatory effect | [103] |
Callisetmon viminalis | Weeping Bottlebrush | Antiangiogenic: angiogenesis inhibition | [99] |
Camellia sinensis | Green Tea | Antiproliferative: arrest the cell cycle in lung cancer cells by blocking the transition from G1 to S phase | [71] |
Cardiospermum halicacabum | Balloon Vine | Antiproliferative: inhibition of Dalton lymphoma cell proliferation | [76] |
Cassia occidentalis | Coffee Senna | Antiangiogenic: angiogenesis inhibition | [99] |
Ceiba pentandra | Kapok Tree | Reducing the side effects: protection activities the kidneys against methotrexate-induced damage | [115] |
Ceratonia siliqua | Carob Tree | Proapoptotic: apoptosis-inducing in colon cancer cells | [50] |
Cleome viscosa | Asian Spiderflower | Antiangiogenic: angiogenesis inhibition | [99] |
Cucurbita ficifolia | Fig-leaved Gourd | Proapoptotic: apoptosis-inducing effect in MCF-7 breast cancer cells—modification of the expression levels of caspase-3, caspase-8, and caspase-9 genes and p53, FAS, FADD, Bax, and Bak | [51] |
Curcuma longa | Turmeric | Proapoptotic: various signalling molecules involved in apoptosis, including p53, Bax, Bcl-2, and caspase-3, promoting cancer cell death (breast and prostate cancer cell lines) while sparing normal cells | [53] |
Echinacea purpurea | Purple Coneflower | Immunomodulatory: improvement of parameters related to the spleen and thymus, increased proliferation of splenocytes, higher NK cell activity, increase in the number of T cells and cytokine levels | [108] |
Elaeaganus angustifolia | Russian Olive | Proapoptotic: apoptosis-inducing effect in MDA-MB-231 and MDA-MB-436 by affecting the expression of proapoptotic and antiapoptotic genes | [55] |
Euphorbia pekinensis | Peking Spurge | Antiangiogenic: angiogenesis inhibition—inhibiting the expression of most genes related to cancer-related angiogenesis | [98] |
Ficus exasperata | Sandpaper Fig | Proapoptotic: apoptosis-inducing in PC-3 cells via the Bax/Cytochrome C/Caspase 3-9 signalling pathway | [54] |
Galium verum | Lady’s Bedstraw | Antiangiogenic: angiogenesis inhibition—affecting the level of angiogenic/angiostatic mediators: PDGF, HGF, IL-8, IL-6, TIMP-1, and MMP-9 | [90] |
Ginkgo biloba | Maidenhair Tree | Reducing the side effects: protective effect on liver tissues exposed to methotrexate | [116] |
Holarrhena floribunda | False Rubber Tree | Proapoptotic: apoptosis-inducing effect in HeLa, MCF-7, and HT-29 Antiproliferative: inhibition of HeLa, MCF-7, and HT29 cell proliferation—acts on the G2/M phase by changing the expression of proteins involved in the G2/M phase—arrest in the G0/G1 phase of the cell cycle. | [61] |
Hordeum vulgare | Barley | Immunomodulatory effect: improving the ability of NK cells to recognise and eliminate human colon cancer cells | [105] |
Hydrocotyle sibthorpioides | Lawn Marshpennywort | Antiproliferative: inhibition of Dalton lymphoma cell proliferation | [76] |
Hypericum japonicum | Japanese St. John’s Wort | Antiproliferative: inhibition of Dalton lymphoma cell proliferation | [76] |
Innula viscosa | Sticky Inula | Antiproliferative: inhibition of HT29 cell proliferation | [78] |
Ipomoea carnea | Bush Morning Glory | Proapoptotic: apoptosis-inducing effect in breast cancer cells | [58] |
Malus domestica | Annurca Apples | Antiproliferative: inhibition of MCF-7 cell proliferation | [79] |
Melissa oficinalis | Lemon Balm | Antiangiogenic: angiogenesis inhibition | [88] |
Mimosa hamata | - | Antiangiogenic: angiogenesis inhibition | [99] |
Morinda citrifolia | Noni/Indian Mulberry | Reducing the side effects: activity in alleviating methotrexate-related toxicity | [114] |
Moringa oleifera | Drumstick Tree/Moringa | Antiangiogenic: angiogenesis inhibition | [91] |
Morus nigra | Black Mulberry | Reducing the side effects: protective effect on liver tissues exposed to methotrexate | [113] |
Nelumbo nucifera | Sacred Lotus | Antiangiogenic: angiogenesis inhibition | [94] |
Ocimum basilicum | Sweet Basil | Immunomodulatory effect: increase in interferon gamma production | [103] |
Olea europaea | Olive Tree | Antiangiogenic: angiogenesis inhibition | [89] |
Phyllanthus muellerianus | Müller’s Leaf-flower | Proapoptotic: apoptosis-inducing in PC-3 cells via the Bax/Cytochrome C/Caspase 3-9 signalling pathway | [54] |
Phoenix dactylifera | Date Palm | Proapoptotic: apoptosis-inducing effect in MDA-MB-231 | [52] |
Populus nigra | Black Poplar | Immunomodulatory effect: human primary dendritic cells | [104] |
Rubia cordifolia | Indian Madder | Reducing the side effects: inhibitory effect on kidney damage caused by cisplatin | [112] |
Rumex hydrolapathum | Water Dock | Antiangiogenic: angiogenesis inhibition—affecting the level of angiogenic/angiostatic mediators: PDGF, HGF, IL-8, IL-6, TIMP-1, and MMP-9 | [90] |
Tanacetum parthenium | Feverfew | Antiproliferative: inhibition of the growth of non-small cell lung cancer (NSCLC) cells by suppressing the B-Raf/MAPK/ERK pathway | [74] |
Taraxacum officinale | Common Dandelion | Antiproliferative: inhibition of triple-negative breast cancer cell proliferation—in the TAM microenvironment by suppressing the immunosuppressive IL-10/STAT3/PD-L1 signalling pathway | [77] |
Tinospora cordifolia | Heart-leaved Moonseed/Guduchi | Immunomodulatory effect: increase in interferon gamma production | [103] |
Withania somnifera | Ashwagandha/Indian Ginseng | Proapoptotic: apoptosis induction by activating both the intrinsic and extrinsic apoptotic pathways Antiproliferative: reduction in AKT phosphorylation and downstream signalling through mTOR Antiangiogenic: angiogenesis inhibition—associated with downregulation of various angiogenic growth factors Immunomodulatory: promotion of immunogenic death of T-cell leukaemia | [62,73,95,106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hołota, M.; Posmyk, M.M. Nature-Inspired Strategies in Cancer Management: The Potential of Plant Extracts in Modulating Tumour Biology. Int. J. Mol. Sci. 2025, 26, 6894. https://doi.org/10.3390/ijms26146894
Hołota M, Posmyk MM. Nature-Inspired Strategies in Cancer Management: The Potential of Plant Extracts in Modulating Tumour Biology. International Journal of Molecular Sciences. 2025; 26(14):6894. https://doi.org/10.3390/ijms26146894
Chicago/Turabian StyleHołota, Marcin, and Małgorzata M. Posmyk. 2025. "Nature-Inspired Strategies in Cancer Management: The Potential of Plant Extracts in Modulating Tumour Biology" International Journal of Molecular Sciences 26, no. 14: 6894. https://doi.org/10.3390/ijms26146894
APA StyleHołota, M., & Posmyk, M. M. (2025). Nature-Inspired Strategies in Cancer Management: The Potential of Plant Extracts in Modulating Tumour Biology. International Journal of Molecular Sciences, 26(14), 6894. https://doi.org/10.3390/ijms26146894