Electroretinographic Findings in Fragile X, Premutation, and Controls: A Study of Biomarker Correlations †
Abstract
1. Introduction
2. Results
2.1. Group Differences in ERG Parameters Across Diagnostic Categories
2.2. Test-Retest Reliability of FMRP and ERG Parameters
2.3. Group Differences in FMRP Levels
2.4. Correlation of ERG with FMRP Levels, IQ, SEQ, SNAP-IV, ABC, ADAMS, and Vineland III Scores
2.5. Correlation Between Molecular and Cognitive/Behavioral Measures
2.6. Association Between Age and PhNR Response
3. Discussion
Limitations and Future Directions
4. Materials and Methods
4.1. Study Design
- Behavioral and Sensory Evaluations:
- ○
- Vineland Adaptive Behavior Scales, Third Edition (VABS-III) (Pearson Assessments, San Antonio, TX, USA)
- ○
- Stanford-Binet Intelligence Scales, Fifth Edition (SB5) (PRO-ED Inc., Austin, TX, USA),
- Questionnaire-Based Measures:
- ○
- Aberrant Behavior Checklist for Fragile X syndrome (ABCFX)
- ○
- Anxiety, Depression, and Mood Scale (ADAMS) (NovoPsych, Melbourne, Australia)
- ○
- Sensory Experiences Questionnaire 3.0 (SEQ-3.0)
- ○
- Swanson, Nolan, and Pelham Teacher and Parent Rating Scale (SNAP-IV)
4.2. Participants
4.3. ERG Protocol
- a = a-wave peak (photoreceptor response)
- b = b-wave peak (bipolar and Müller cell response)
- Pmin = minimum of the PhNR wave (ganglion cell response)
- Single Flash (First Portion of the Test): a-wave and b-wave time to peak and amplitude were measured for both eyes.
- Flicker Stimulus (Second Portion of the Test): b-wave time to peak and amplitude were recorded in µV.
- Red Flash on Blue Background (Third Portion of the Test): Outcomes included a-wave, b-wave, and PhNR (Photopic Negative Response) time to peak and amplitudes, as well as the W-ratio.
4.4. TR-FRET Assay for FMRP Levels
4.5. FMR1 CGG Repeat Allele Size and Methylation Status
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ERG | Electroretinography |
FXS | Fragile X syndrome |
FMRP | Fragile X messenger ribonucleoprotein |
TR-FRET | Time-Resolved Fluorescence Resonance Energy Transfer |
IQ | Intelligence Quotient |
ABCFX | Aberrant Behavior Checklist for Fragile X Syndrome |
SNAP-IV | Swanson, Nolan, and Pelham Teacher and Parent Rating scale |
SEQ | Sensory Experiences Questionnaire |
ADAMS | Anxiety, Depression, and Mood Scale |
ASD | Autism Spectrum Disorder |
PBMCs | Peripheral blood mononuclear cells |
CNS | Central Nervous System |
VABS-III | Vineland Adaptive Behavior Scales |
SB5 | Stanford-Binet Intelligence Scales |
LA | Light adapted |
ISCEV | International Society for Clinical Electrophysiology of Vision |
PhNR | Photopic Negative Response |
ICC | Intraclass Correlation Coefficient |
IQR | Interquartile Range |
FDR | False Discovery Rate |
ADHD | Attention Deficit Hyperactivity Disorder |
FXTAS | Fragile X Tremor Ataxia Syndrome |
OCT | Optical Coherence Tomography |
SRS-2 | Social Responsiveness Scale |
ADOS-2 | Autism Diagnostic Observation Schedule, Second Edition |
BK channel | Large-conductance calcium- and voltage-activated potassium channels |
ELISA | Enzyme-Linked Immunosorbent Assay |
S.D. | Standard Deviation |
LoA | Limits of Agreement |
References
- Lozano, R.; Rosero, C.A.; Hagerman, R.J. Fragile X spectrum disorders. Intractable Rare Dis. Res. 2014, 3, 134–146. [Google Scholar] [CrossRef]
- Primerano, B.; Tassone, F.; Hagerman, R.J.; Hagerman, P.; Amaldi, F.; Bagni, C. Reduced FMR1 mRNA translation efficiency in Fragile X patients with premutations. RNA 2002, 8, 1482–1488. [Google Scholar] [CrossRef]
- Kéri, S.; Benedek, G. Fragile X protein expression is linked to visual functions in healthy male volunteers. Neuroscience 2011, 192, 345–350. [Google Scholar] [CrossRef]
- Kogan, C.S.; Boutet, I.; Cornish, K.; Zangenehpour, S.; Mullen, K.T.; Holden, J.J.A.; Der Kaloustian, V.M.; Andermann, E.; Chaudhuri, A. Differential impact of the FMR1 gene on visual processing in fragile X syndrome. Brain 2003, 127, 591–601. [Google Scholar] [CrossRef]
- Kéri, S.; Benedek, G. Visual pathway deficit in female fragile X premutation carriers: A potential endophenotype. Brain Cogn. 2009, 69, 291–295. [Google Scholar] [CrossRef]
- Kéri, S.; Benedek, G. Why is vision impaired in fragile X premutation carriers? The role of fragile X mental retardation protein and potential FMR1 mRNA toxicity. Neuroscience 2012, 206, 183–189. [Google Scholar] [CrossRef]
- Winston, M.; Nayar, K.; Landau, E.; Maltman, N.; Sideris, J.; Zhou, L.; Sharp, K.; Berry-Kravis, E.; Losh, M. A Unique Visual Attention Profile Associated With the FMR1 Premutation. Front. Genet. 2021, 12, 591211. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Folsom, T.D. The role of fragile X mental retardation protein in major mental disorders. Neuropharmacology 2011, 60, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.H.; Folsom, T.D. GABA receptor subunit distribution and FMRP–mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism. Schizophr. Res. 2015, 167, 42–56. [Google Scholar] [CrossRef] [PubMed]
- Kovács, T.; Kelemen, O.; Kéri, S. Decreased fragile X mental retardation protein (FMRP) is associated with lower IQ and earlier illness onset in patients with schizophrenia. Psychiatry Res. 2013, 210, 690–693. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, O.; Kovács, T.; Kéri, S. Contrast, motion, perceptual integration, and neurocognition in schizophrenia: The role of fragile-X related mechanisms. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 46, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Iossifov, I.; Ronemus, M.; Levy, D.; Wang, Z.; Hakker, I.; Rosenbaum, J.; Yamrom, B.; Lee, Y.; Narzisi, G.; Leotta, A.; et al. De Novo Gene Disruptions in Children on the Autistic Spectrum. Neuron 2012, 74, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Iossifov, I.; O’Roak, B.J.; Sanders, S.J.; Ronemus, M.; Krumm, N.; Levy, D.; Stessman, H.A.; Witherspoon, K.T.; Vives, L.; Patterson, K.E.; et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 2014, 515, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Salkoff, L.; Butler, A.; Ferreira, G.; Santi, C.; Wei, A. High-conductance potassium channels of the SLO family. Nat. Rev. Neurosci. 2006, 7, 921–931. [Google Scholar] [CrossRef]
- Deng, P.; Klyachko, V.A. Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome. J. Physiol. 2016, 594, 83–97. [Google Scholar] [CrossRef]
- Deng, P.-Y.; Rotman, Z.; Blundon, J.A.; Cho, Y.; Cui, J.; Cavalli, V.; Zakharenko, S.S.; Klyachko, V.A. FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK Channels. Neuron 2013, 77, 696–711. [Google Scholar] [CrossRef]
- Zhang, P.-P.; Yao, H.-H.; Zha, A.-H.; Liu, X.-Y.; Fan, K.-Y.; Xu, Y.; Yuan, H.-Y.; Li, L.; Wang, L.-C. Cellular localization of the FMRP in rat retina. Biosci. Rep. 2020, 40, BSR20200570. [Google Scholar] [CrossRef]
- Ardourel, M.; Pâris, A.; Felgerolle, C.; Lesne, F.; Ranchon-Cole, I.; Briault, S.; Perche, O. FMRP-related retinal phenotypes: Evidence of glutamate-glutamine metabolic cycle impairment. Exp. Eye Res. 2022, 224, 109238. [Google Scholar] [CrossRef]
- Attallah, A.; Ardourel, M.; Gallazzini, F.; Lesne, F.; De Oliveira, A.; Togbé, D.; Briault, S.; Perche, O. Lack of FMRP in the retina: Evidence of a retinal specific transcriptomic profile. Exp. Eye Res. 2024, 246, 110015. [Google Scholar] [CrossRef]
- Guimarães-Souza, E.M.; Perche, O.; Morgans, C.W.; Duvoisin, R.M.; Calaza, K.C. Fragile X Mental Retardation Protein expression in the retina is regulated by light. Exp. Eye Res. 2016, 146, 72–82. [Google Scholar] [CrossRef]
- Wang, X.; Mu, Y.; Sun, M.; Han, J. Bidirectional regulation of fragile X mental retardation protein phosphorylation controls rhodopsin homoeostasis. J. Mol. Cell Biol. 2017, 9, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Perche, O.; Lesne, F.; Patat, A.; Raab, S.; Twyman, R.; Ring, R.H.; Briault, S. Electroretinography and contrast sensitivity, complementary translational biomarkers of sensory deficits in the visual system of individuals with fragile X syndrome. J. Neurodev. Disord. 2021, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Ardourel, M.; Ranchon-Cole, I.; Pâris, A.; Felgerolle, C.; Acar, N.; Lesne, F.; Briault, S.; Perche, O. FMR protein: Evidence of an emerging role in retinal aging? Exp. Eye Res. 2022, 225, 109282. [Google Scholar] [CrossRef] [PubMed]
- Felgerolle, C.; Hébert, B.; Ardourel, M.; Meyer-Dilhet, G.; Menuet, A.; Pinto-Morais, K.; Bizot, J.-C.; Pichon, J.; Briault, S.; Perche, O. Visual Behavior Impairments as an Aberrant Sensory Processing in the Mouse Model of Fragile X Syndrome. Front. Behav. Neurosci. 2019, 13, 228. [Google Scholar] [CrossRef]
- Rossignol, R.; Ranchon-Cole, I.; Pâris, A.; Herzine, A.; Perche, A.; Laurenceau, D.; Bertrand, P.; Cercy, C.; Pichon, J.; Mortaud, S.; et al. Visual Sensorial Impairments in Neurodevelopmental Disorders: Evidence for a Retinal Phenotype in Fragile X Syndrome. PLoS ONE 2014, 9, e105996. [Google Scholar] [CrossRef]
- Roth, M.; Ronco, L.; Cadavid, D.; Durbin-Johnson, B.; Hagerman, R.J.; Tassone, F. FMRP Levels in Human Peripheral Blood Leukocytes Correlates with Intellectual Disability. Diagnostics 2021, 11, 1780. [Google Scholar] [CrossRef]
- Biag, H.M.B.; Santos, E.R.; Hasan, H.; Randol, J.L.; Hwang, Y.H.; Schneider, A.; Tassone, F.; Hagerman, P.; Hagerman, R. Exploring electroretinogram (ERG) alterations as a novel biomarker for fragile X syndrome: Comparative analysis of ERG and FMRP levels among full mutation, premutation, and healthy controls. J. Intellect. Disabil. Res. 2024, 68, 1016. [Google Scholar]
- Rosner, B. Fundamentals of Biostatistics, 8th ed.; Cengage Learning: Boston, MA, USA, 2015. [Google Scholar]
- Viswanathan, S.; Frishman, L.J.; Robson, J.G.; Walters, J.W. The Photopic Negative Response of the Flash Electroretinogram in Primary Open Angle Glaucoma. Vis. Neurosci. 2001, 42, 514–522. [Google Scholar]
- Chrysostomou, V.; Ellis, S.; Fry, L.E.; Hatch, R.J.; Fahy, E.T.; Bell, K.C.; Trounce, I.A.; van Wijngaarden, P.; Petrou, S.; Crowston, J.G. The Effect of Advancing Age and Intraocular Pressure Injury on Retinal Ganglion Cell Function and Synaptic Connectivity. Aging Cell 2025, 24, e70005. [Google Scholar] [CrossRef]
- Khandjian, E.W.; Fortin, A.; Thibodeau, S.; Tremblay, F.; Côté, D.; Devys, J.L.; Mandel, F. Rousseau A heterogeneous set of FMR1 proteins is widely distributed in mouse tissues and is modulated in cell culture. Hum. Mol. Genet. 1995, 4, 783–789. [Google Scholar] [CrossRef]
- Pu, Q.; Sekhar, T.; Stanley, M.; Berry-Kravis, E. Electroretinography Biomarkers Indicate Disrupted Visual Processing in Fragile X Syndrome: A Comparative Study with Healthy Controls (P2-6.015). Neurology 2025, 104, 1873. [Google Scholar] [CrossRef]
- Dubois, M.A.; Pelletier, C.A.; Mérette, C.; Jomphe, V.; Turgeon, R.; Bélanger, R.E.; Grondin, S.; Hébert, M. Evaluation of electroretinography (ERG) parameters as a biomarker for ADHD. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2023, 127, 110807. [Google Scholar] [CrossRef] [PubMed]
- Constable, P.A.; Lee, I.O.; Marmolejo-Ramos, F.; Skuse, D.H.; Thompson, D.A. The photopic negative response in autism spectrum disorder. Clin. Exp. Optom. 2021, 104, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Constable, P.A.; Ritvo, E.R.; Ritvo, A.R.; Lee, I.O.; McNair, M.L.; Stahl, D.; Sowden, J.; Quinn, S.; Skuse, D.H.; Dorothy, A.; et al. Thompson Light-Adapted Electroretinogram Differences in Autism Spectrum Disorder. J. Autism Dev. Disord. 2020, 50, 2874–2885. [Google Scholar] [CrossRef]
- van Elst, L.T.; Bach, M.; Blessing, J.; Riedel, A.; Bubl, E. Normal Visual Acuity and Electrophysiological Contrast Gain in Adults with High-Functioning Autism Spectrum Disorder. Front. Hum. Neurosci. 2015, 9, 460. [Google Scholar] [CrossRef]
- Lee, I.O.; Skuse, D.H.; Constable, P.A.; Marmolejo-Ramos, F.; Olsen, L.R.; Thompson, D.A. The electroretinogram b-wave amplitude: A differential physiological measure for Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder. J. Neurodev. Disord. 2022, 14, 30. [Google Scholar] [CrossRef]
- Asakawa, K.; Amino, K.; Iwase, M.; Kusayanagi, Y.; Nakamura, A.; Suzuki, R.; Yuuki, T.; Ishikawa, H. New Mydriasis-Free Electroretinogram Recorded with Skin Electrodes in Healthy Subjects. BioMed Res. Int. 2017, 2017, 8539747. [Google Scholar] [CrossRef]
- Liu, H.; Dhaliwal, S.; Rahman, S.N.; McFarlane, M.; Tumber, A.; Locke, J.; Wright, T.; Vincent, A.; Westall, C. Evaluation of light- and dark-adapted ERGs using a mydriasis-free, portable system: Clinical classifications and normative data. Doc. Ophthalmol. 2018, 137, 169–181. [Google Scholar] [CrossRef]
- Somfai, G.M.; Zoellin, J.R.T.; Barboni, M.T.S.; Gießer, S.D.; Saad, A.; Sommer, C.; Turgut, F.; Becker, M. The impact of daytime differences on the test-retest reliability of retinal function and morphology measurements. ARVO Annual Meeting Abstract. Investig. Ophthalmol. Vis. Sci. 2024, 65, 2379. [Google Scholar]
- Boggs, A.E.; Schmitt, L.M.; McLane, R.D.; Adayev, T.; LaFauci, G.; Horn, P.S.; Dominick, K.C.; Gross, C. Optimization, validation and initial clinical implications of a Luminex-based immunoassay for the quantification of Fragile X Protein from dried blood spots. Sci. Rep. 2022, 12, 5617. [Google Scholar] [CrossRef]
- Iwahashi, C.; Tassone, F.; Hagerman, R.J.; Yasui, D.; Parrott, G.; Nguyen, D.; Mayeur, G.; Hagerman, P.J. A Quantitative ELISA Assay for the Fragile X Mental Retardation 1 Protein. J. Mol. Diagn. 2009, 11, 281–289. [Google Scholar] [CrossRef]
- Tang, J.; Edwards, T.; Crowston, J.G.; Sarossy, M. The Test–Retest Reliability of the Photopic Negative Response (PhNR). Transl. Vis. Sci. Technol. 2014, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.R.; Ly, E.; Viswanathan, S. Intensity response function of the photopic negative response (PhNR): Effect of age and test–retest reliability. Doc. Ophthalmol. 2017, 135, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Jiraanont, P.; Zafarullah, M.; Sulaiman, N.; Espinal, G.M.; Randol, J.L.; Durbin-Johnson, B.; Schneider, A.; Hagerman, R.J.; Hagerman, P.J.; Tassone, F. FMR1 Protein Expression Correlates with Intelligence Quotient in Both Peripheral Blood Mononuclear Cells and Fibroblasts from Individuals with an FMR1 Mutation. J. Mol. Diagn. 2024, 26, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Hessl, D.; Randol, J.L.; Espinal, G.M.; Schneider, A.; Protic, D.; Aydin, E.Y.; Hagerman, R.J.; Hagerman, P.J. Association between IQ and FMR1 protein (FMRP) across the spectrum of CGG repeat expansions. PLoS ONE 2019, 14, e0226811. [Google Scholar] [CrossRef]
- Schmitt, L.M.; Nelson, M.; Shaffer, R.C.; Erickson, C.A. A near normal distribution of IQ in Fragile X Syndrome. Sci. Rep. 2024, 14, 23058. [Google Scholar] [CrossRef]
- Baker, E.K.; Arpone, M.; Kraan, C.; Bui, M.; Rogers, C.; Field, M.; Bretherton, L.; Ling, L.; Ure, A.; Cohen, J.; et al. FMR1 mRNA from full mutation alleles is associated with ABC-CFX scores in males with fragile X syndrome. Sci. Rep. 2020, 10, 11701. [Google Scholar] [CrossRef]
- Aishworiya, R.; Tak, Y.E.; Ponzini, M.D.; Biag, H.M.B.; Salcedo-Arellano, M.J.; Kim, K.; Tassone, F.; Schneider, A.; Thurman, A.J.; Abbeduto, L.; et al. Adaptive, behavioral, and cognitive outcomes in individuals with fragile X syndrome with varying autism severity. Int. J. Dev. Neurosci. 2023, 83, 715–727. [Google Scholar] [CrossRef]
- Aishworiya, R.; Chi, M.-H.; Zafarullah, M.; Mendoza, G.; Ponzini, M.D.; Kim, K.; Biag, H.M.B.; Thurman, A.J.; Abbeduto, L.; Hessl, D.; et al. Intercorrelation of Molecular Biomarkers and Clinical Phenotype Measures in Fragile X Syndrome. Cells 2023, 12, 1920. [Google Scholar] [CrossRef]
- Carter, P.; Gordon-Reid, A.; Shawkat, F.; Self, J.E. Comparison of the handheld RETeval ERG system with a routine ERG system in healthy adults and in paediatric patients. Eye 2021, 35, 2180–2189. [Google Scholar] [CrossRef]
- Flitcroft, D.I.; Adams, G.G.W.; Robson, A.G.; Holder, G.E. Retinal dysfunction and refractive errors: An electrophysiological study of children. Br. J. Ophthalmol. 2005, 89, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Major, E.; Sieck, E.G.; Pedler, M.G.; Enzenauer, R.W. Induced Myopia and Hyperopia Effect on a Normal Electroretinogram. Acta Sci. Ophthalmol. 2023, 6, 24–29. [Google Scholar] [CrossRef]
- Hatton, D.D.; Buckley, E.; Lachiewicz, A.; Roberts, J. Ocular status of boys with fragile X syndrome: A prospective study. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 1998, 2, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Maino, D.M.; Wesson, M.; Schlange, D.; Cibis, G.; Mainoh, J.H. Optometric Findings in the Fragile X Syndrome. Optom. Vis. Sci. 1991, 68, 634–640. [Google Scholar] [CrossRef]
- Correll, J.; Mellinger, C.; McClelland, G.H.; Judd, C.M. Avoid Cohen’s ‘Small’, ‘Medium’, and ‘Large’ for Power Analysis. Trends Cogn. Sci. 2020, 24, 200–207. [Google Scholar] [CrossRef]
- Awwad, M.H.; Nada, O.T.; Hamdi, M.; El-Shazly, A.A.-F.; Elwan, S. Correlation Between Optical Coherence Tomography and Photopic Negative Response of Flash Electroretinography in Ganglion Cell Complex Assessment in Glaucoma Patients. Clin. Ophthalmol. 2022, 16, 893–904. [Google Scholar] [CrossRef]
- Han, J.W.; Woo, S.E.; Choi, E.W.; Ohn, Y.-H. Correlations between Optical Coherence Tomography Angiography Findings and Multifocal Electroretinogram Parameters in Retinitis Pigmentosa Patients. J. Retin. 2020, 5, 71–78. [Google Scholar] [CrossRef]
- Huang, C.-W.; Yang, J.-J.; Yang, C.-H.; Yang, C.-M.; Hu, F.-R.; Ho, T.-C.; Chen, T.-C. The structure–function correlation analysed by OCT and full field ERG in typical and pericentral subtypes of retinitis pigmentosa. Sci. Rep. 2021, 11, 16883. [Google Scholar] [CrossRef]
- Sener, H.; Sevim, D.G.; Oner, A.; Erkilic, K. Correlation between optical coherence tomography angiography and multifocal electroretinogram findings in patients with diabetes mellitus. Photodiagnosis Photodyn. Ther. 2021, 36, 102558. [Google Scholar] [CrossRef]
- Friedel, E.B.N.; Tebartz van Elst, L.; Schäfer, M.; Maier, S.; Runge, K.; Küchlin, S.; Reich, M.; Lagrèze, W.A.; Kornmeier, J.; Ebert, D.; et al. Retinal Thinning in Adults with Autism Spectrum Disorder. J. Autism Dev. Disord. 2024, 54, 1143–1156. [Google Scholar] [CrossRef]
- Modrzejewska, M.; Bosy-Gąsior, W. The Use of Optical Coherence Tomography and Electrophysiological Tests in the Early Diagnosis of Inflammatory Changes in the CNS in children with ASD—A Review of Contemporary Literature. Int. J. Environ. Res. Public Health 2023, 20, 3591. [Google Scholar] [CrossRef] [PubMed]
- Al-Otaibi, H.; Al-Otaibi, M.D.; Khandekar, R.; Souru, C.; Al-Abdullah, A.A.; Al-Dhibi, H.; Stone, D.U.; Kozak, I. Validity, Usefulness and Cost of RET eval System for Diabetic Retinopathy Screening. Transl. Vis. Sci. Technol. 2017, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Arias-Alvarez, M.; Tomas-Grasa, C.; Sopeña-Pinilla, M.; Orduna-Hospital, E.; Fernandez-Espinosa, G.; Bielsa-Alonso, S.; Acha-Perez, J.; Rodriguez-Mena, D.; Pinilla, I. Electrophysiological findings in long-term type 1 diabetes patients without diabetic retinopathy using different ERG recording systems. Sci. Rep. 2024, 14, 3520. [Google Scholar] [CrossRef] [PubMed]
- Osigian, C.J.; Grace, S.F.; Cavuoto, K.M.; Feuer, W.J.; Tavakoli, M.; Saksiriwutto, P.; Liu, M.; Capo, H.; Lam, B.L. Assessing nonsedated handheld cone flicker electroretinogram as a screening test in pediatric patients: Comparison to sedated conventional cone flicker electroretinogram. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2019, 23, 34.e1–34.e5. [Google Scholar] [CrossRef]
- Akula, J.D.; Ambrosio, L.; Howard, F.I.; Hansen, R.M.; Fulton, A.B. Extracting the ON and OFF contributions to the full-field photopic flash electroretinogram using summed growth curves. Exp. Eye Res. 2019, 189, 107827. [Google Scholar] [CrossRef]
- Friedburg, C.; Allen, C.P.; Mason, P.J.; Lamb, T.D. Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram. J. Physiol. 2004, 556, 819–834. [Google Scholar] [CrossRef]
- Paupoo, A.A.V.; Mahroo, O.A.R.; Friedburg, C.; Lamb, T.D. Human cone photoreceptor responses measured by the electroretinogram a-wave during and after exposure to intense illumination. J. Physiol. 2000, 529, 469–482. [Google Scholar] [CrossRef]
- McAnany, J.J.; Park, J.C. Cone Photoreceptor Dysfunction in Early-Stage Diabetic Retinopathy: Association Between the Activation Phase of Cone Phototransduction and the Flicker Electroretinogram. Investig. Opthalmology Vis. Sci. 2019, 60, 64. [Google Scholar] [CrossRef]
- McAnany, J.J.; Park, J.C.; Cao, D. Rod- and cone-isolated flicker electroretinograms and their response summation characteristics. Vis. Neurosci. 2015, 32, E018. [Google Scholar] [CrossRef]
- Tanimoto, N.; Sothilingam, V.; Kondo, M.; Biel, M.; Humphries, P.; Seeliger, M.W. Electroretinographic assessment of rod- and cone-mediated bipolar cell pathways using flicker stimuli in mice. Sci. Rep. 2015, 5, 10731. [Google Scholar] [CrossRef]
- Dmitriev, A.V.; Dmitriev, A.A.; Linsenmeier, R.A. K+ -dependent Müller cell-generated components of the electroretinogram. Vis. Neurosci. 2021, 38, E010. [Google Scholar] [CrossRef]
- Abed, E.; Piccardi, M.; Rizzo, D.; Chiaretti, A.; Ambrosio, L.; Petroni, S.; Parrilla, R.; Dickmann, A.; Riccardi, R.; Falsini, B. Functional Loss of the Inner Retina in Childhood Optic Gliomas Detected by Photopic Negative Response. Investig. Opthalmology Vis. Sci. 2015, 56, 2469. [Google Scholar] [CrossRef]
- Hidaka, T.; Chuman, H.; Ikeda, Y. Evaluation of inner retinal function at different stages of primary open angle glaucoma using the photopic negative response (PhNR) measured by RETeval electroretinography. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024, 262, 161–169. [Google Scholar] [CrossRef]
- Takada, S.; Kinoshita, J.; Iwata, N.; Imaoka, M.; Tani, Y. Response Characteristics and Retinal Origin of the Photopic Negative Response of the Electroretinogram in Dogs. Curr. Eye Res. 2017, 42, 1302–1307. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, H.; Hu, Y.-S.; Tang, R.A.; Frishman, L.J. The Photopic Negative Response of the Flash Electroretinogram in Multiple Sclerosis. Investig. Opthalmology Vis. Sci. 2012, 53, 1315. [Google Scholar] [CrossRef] [PubMed]
- Aiba, T.S.; Alpern, M.; Maaseidvaag, F. The electroretinogram evoked by the excitation of human foveal cones. J. Physiol. 1967, 189, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Rangaswamy, N.V.; Shirato, S.; Kaneko, M.; Digby, B.I.; Robson, J.G.; Frishman, L.J. Effects of Spectral Characteristics of Ganzfeld Stimuli on the Photopic Negative Response (PhNR) of the ERG. Investig. Opthalmology Vis. Sci. 2007, 48, 4818. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Kato, K.; Kondo, M.; Miki, A.; Araki, S.; Goto, K.; Ieki, Y.; Kiryu, J. Photopic negative response recorded with RETeval system in eyes with optic nerve disorders. Sci. Rep. 2022, 12, 9091. [Google Scholar] [CrossRef]
- Filipovic-Sadic, S.; Sah, S.; Chen, L.; Krosting, J.; Sekinger, E.; Zhang, W.; Hagerman, P.J.; Stenzel, T.T.; Hadd, A.G.; Latham, G.J.; et al. A Novel FMR1 PCR Method for the Routine Detection of Low Abundance Expanded Alleles and Full Mutations in Fragile X Syndrome. Clin. Chem. 2010, 56, 399–408. [Google Scholar] [CrossRef]
- Tassone, F.; Pan, R.; Amiri, K.; Taylor, A.K.; Hagerman, P.J. A Rapid Polymerase Chain Reaction-Based Screening Method for Identification of All Expanded Alleles of the Fragile X (FMR1) Gene in Newborn and High-Risk Populations. J. Mol. Diagn. 2008, 10, 43–49. [Google Scholar] [CrossRef]
- Taffé, P.; Zuppinger, C.; Burger, G.M.; Nusslé, S.G. The Bland-Altman method should not be used when one of the two measurement methods has negligible measurement errors. PLoS ONE 2022, 17, e0278915. [Google Scholar] [CrossRef]
Variable | Premutation | Fragile X | Control |
---|---|---|---|
Age (years) Median (IQR) | 53 (24) | 16 (20) | 35 (19) |
2 Hz a-wave time to peak (ms) | 11.9 (1.3) | 11.6 (1.5) | 11.9 (1.5) |
2 Hz a-wave amplitude (μV) | −7.6 (3.9) | −6.7 (3.6) | −6.5 (4.5) |
2 Hz b-wave time to peak (ms) | 29.1 (2.2) | 28.6 (1.4) | 28.8 (1.7) |
2 Hz b-wave amplitude (μV) | 26.1 (14.2) | 24.3 (14.4) | 26.3 (17.1) |
28.3 Hz flash time to peak (ms) | 25.5 (2.0) | 25.3 (1.3) | 25.3 (1.0) |
28.3 Hz flash combined amplitude (μV) | 27.9 (12.7) | 27.2 (14.6) | 26.6 (19) |
28.3 Hz flash best amplitude (μV) | 28.9 (14.5) | 28.8 (13.3) | 32.9 (19.5) |
3.4 Hz red/blue flash a-wave time to peak (ms) | 12.0 (1.0) | 12.1 (1.3) | 12 (1.6) |
3.4 Hz red/blue flash a-wave amplitude (μV) | −5.0 (2.7) | −4.2 (2.0) | −4.5 (2.7) |
3.4 Hz red/blue flash b-wave time to peak (ms) | 28.7 (2.5) | 28.3 (2.6) | 28.1 (2.7) |
3.4 Hz red/blue flash b-wave amplitude (μV) | 20.8 (11) | 17.3 (8.7) | 20.8 (8.8) |
PhNR time to peak (ms) | 78 (50) | 82.5 (65) | 73 (12) |
PhNR amplitude (μV) | −7.6 (4.5) | −6.5 (4.4) | −6.6 (4.8) |
W-ratio | 1.13 (0.22) | 1.1 (0.17) | 1.11 (0.12) |
FMRP | 0.86 (0.73) | 0.22 (0.58) | 1.19 (0.53) |
ERG Parameter | Correlated Measure | Spearman’s ρ | p-Value |
---|---|---|---|
2 Hz b-wave flicker average amplitude (μV) | FMRP | 0.06 | 0.59 |
IQ | −0.15 | 0.34 | |
ABCFX composite | 0.19 | 0.25 | |
SEQ | 0.18 | 0.31 | |
SNAP-IV | 0.15 | 0.36 | |
ADAMS | −0.12 | 0.56 | |
Vineland III | 0.27 | 0.19 | |
28.3 Hz b-wave flash average amplitude (μV) | FMRP | 0.05 | 0.62 |
IQ | 0.04 | 0.78 | |
ABCFX composite | −0.0002 | 0.99 | |
SEQ | −0.09 | 0.63 | |
SNAP-IV | 0.05 | 0.77 | |
ADAMS | −0.19 | 0.36 | |
Vineland III | 0.43 | 0.06 | |
3.4 Hz red/blue flash b-wave amplitude (μV) | FMRP | 0.15 | 0.16 |
IQ | 0.05 | 0.74 | |
ABCFX composite | 0.04 | 0.78 | |
SEQ | −0.23 | 0.21 | |
SNAP-IV | −0.01 | 0.92 | |
ADAMS | −0.36 | 0.07 | |
Vineland III | 0.12 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, H.; Biag, H.M.B.; Santos, E.R.; Randol, J.L.; Ring, R.; Tassone, F.; Hagerman, P.J.; Hagerman, R.J. Electroretinographic Findings in Fragile X, Premutation, and Controls: A Study of Biomarker Correlations. Int. J. Mol. Sci. 2025, 26, 6830. https://doi.org/10.3390/ijms26146830
Hasan H, Biag HMB, Santos ER, Randol JL, Ring R, Tassone F, Hagerman PJ, Hagerman RJ. Electroretinographic Findings in Fragile X, Premutation, and Controls: A Study of Biomarker Correlations. International Journal of Molecular Sciences. 2025; 26(14):6830. https://doi.org/10.3390/ijms26146830
Chicago/Turabian StyleHasan, Hasan, Hazel Maridith Barlahan Biag, Ellery R. Santos, Jamie Leah Randol, Robert Ring, Flora Tassone, Paul J. Hagerman, and Randi Jenssen Hagerman. 2025. "Electroretinographic Findings in Fragile X, Premutation, and Controls: A Study of Biomarker Correlations" International Journal of Molecular Sciences 26, no. 14: 6830. https://doi.org/10.3390/ijms26146830
APA StyleHasan, H., Biag, H. M. B., Santos, E. R., Randol, J. L., Ring, R., Tassone, F., Hagerman, P. J., & Hagerman, R. J. (2025). Electroretinographic Findings in Fragile X, Premutation, and Controls: A Study of Biomarker Correlations. International Journal of Molecular Sciences, 26(14), 6830. https://doi.org/10.3390/ijms26146830