CD20+ T Cells in Multiple Sclerosis: From Pathogenesis to Treatment-Induced Depletion
Abstract
1. Introduction
2. Materials and Methods
3. Origin of CD20+ T Cells
3.1. Trogocytosis: Acquired Expression of CD20 via Intercellular Transfer
3.2. Distinct T Cell Lineage: Evidence of Intrinsic CD20 Expression
3.3. Reconciling the Models: Complementary Mechanisms?
4. Features of CD20+ T Cells
5. CD20+ T Cells and MS Pathogenesis
5.1. Role of CD20+ T Cells in EAE
5.2. Role of CD20+ T Cells in MS
5.2.1. Pro-Inflammatory Phenotype and CNS Migratory Potential
5.2.2. Enrichment in the Brain and CSF
Study [Ref] | Average Baseline Characteristics of the Population (MS/Controls or HD) | Findings in the Compartment Analyzed (Peripheral Blood and/or CSF) |
---|---|---|
Hultin et al., 1993 [4] | HD: 17. | Peripheral blood: Frequency of CD20+ T cells: 2.4 ± 1.5%; 83% CD3+, 12% CD56+, 8% CD19+, 6% HLA-DR. Expression of CD2, CD5, CD56, CD57, HLA-DR similar to CD20− T cells. ↓ CD4:CD8 ratio compared to the CD20− T compartment. |
Storie et al., 1995 [21] | HD: 41, categorized as: elderly (n = 10, mean age: 76 y); adults (n = 18, mean age: 35 y) and cord blood (n = 13, full term normal deliveries). | Peripheral blood: Frequency of CD20+ T increasing with age: 0.3 ± 0.1% in the cord blood, 2.1 ± 1.1% in the 20–60 years-old group, 6.9 ± 3.2%. in the >60 year-old cohort. CD20dim expression restricted to 84 ± 11% CD8+ and 21 ± 9% of CD4 + T lymphocytes. |
Henry et al., 2010 [20] | HD: 28; mean age: 44.6 y (± 8.3). | Peripheral blood: Mean frequency of CD20+CD3+ 2.2 (±0.4%), range 0.11–5.7%. No correlation with donors’ age. |
Holley et al., 2014 [19] | MS: 11 RR- (91% F); age: 22–53 y; mean EDSS: 2.2; ≥1 relapse in the previous y. HD: 12 (92% F); age 21–51 y. | Peripheral blood: no significant difference between MS and HD in CD20+CD3+ frequency (2–6%) and CD4+CD20+:CD8+CD20+ ratio. ↑ proportion of CD20+ T cells secreted IFN-γ compared to CD20− ones (97.9% vs. 11.8%, respectively). |
Palanichamy et al., 2014 [7] | MS: 11 untreated (64% F): 8 RR-, 2 CIS, 1 PP-; mean age: 44 y (range 25–61). HD: 18 (50% F); mean age: 36.8 (range 21–64). | Peripheral blood: Frequency of CD20+ T cells slightly higher in MS (7.2 ± 3.6% vs. 5.4 ± 2.4%) compared to HD in the whole CD3+ T cell pool. No significant differences between MS and HD for the T cell subsets naïve, TCM, TEM. |
Schuh et al., 2016 [5] | MS: 6 untreated RR- during relapse. Controls: 8 OND without signs of CNS inflammation. | CSF: Similar frequency of CD3+CD20+ between groups. Predominance of CD20+ T compared to CD20+ B cells in OND; similar rate of CD20+ B and CD20+ T cells in MS. |
Gingele et al., 2018 [17] | MS: 21 (62% F): 17 RR- and 4 PP-; median disease duration: 14.6 y and 5.6 y, respectively; free from prior DMTs (≥2 m) or not treated (respectively); mean age: 43 y (range 22–65). | Peripheral blood: CD20+ T cells constituted 18.4 ± 2.3% of all CD20+ cells. Larger expression of CD20+ on CD8+ than CD4+ T cells. |
Von Essen et al., 2019 [13] | MS: -11 alemtuzumab-treated (2 years) RR-; mean age: 42 y (range 33–58); -25 untreated RR-, including 23 treatment-naïve, and 2 previously treated (IFN-β1a and teriflunomide; DMF); ≥1 m since last steroid treatment. Mean age: 36 y (range 22–52); -Replication cohort: 12 untreated PP-; mean age: 55. HD: 25; mean age: 37 y (range 24–56); -Replication cohort: 12 (mean age: 46). | Peripheral blood: ↑ frequency of CD20+ T cells and ↓ CD4+CD20+:CD8+CD20+ ratio in MS compared to HD. Features of high differentiation (less naïve and stem cell memory cells, more TEM and terminal differentiated cells) and high intrinsic pathogenicity and CNS invasion potential (↑ expression of chemokine receptors CCR2, CCR5, CCR6, CXCR3, and adhesion molecules CD49dhi, MCAM-1 compared to CD20-CD3+ (both groups). CSF: Enrichment of CD20+ T cells compared to the blood. ↑ expression of CNS migration molecules (CCR2, CCR5, CCR6, MCAM-1) on CD20+ T compared to CD20− T cells in both MS and HD. Positive correlation between CSF CD20+CD3+ frequency and MBP levels and EDSS. |
Quendt et al., 2021 [16] | MS: 15 untreated RR- (80% F). Mean disease duration: 3 (±1.2) y. Mean age at the time of diagnosis/blood sampling: 37 (±2.8)/39.3 (±2.8) y. | Peripheral blood: Frequency of CD20+:6.6 ± 0.6% in CD4+ and 18.8 ± 2.8% in CD8+ compartment. Highly differentiated and proinflammatory phenotypes effector T cells compared with CD20− T cells. ↑ CD49d and production of GM-CSF, IFN-γ, IL-17, TNF-α, and regulatory cytokines (IL-4, IL-10) compared to CD20-. |
Ochs et al., 2022 [6] | MS: 11 untreated RR- from a cohort of 14 (57% F, mean age: 40.36 ± 9.09 y, median EDSS score: 3 ± 2.5, mean time since MS diagnosis: 11 ± 6.54 y, mean wash-out 8.15 ± 4.85). | Peripheral blood: CD4+CD20+ T cells exhibit a more activated CD69+ phenotype and ↑ CXCR3+ Th1 and CCR4+ Th2 cells frequency compared to CD4+CD20-. ↑ CD49d expression and ↑ frequencies of IFNγ, GM-CSF, and TNFα–producing cells in both CD4+ and CD8+CD3+. ↓ frequency of immature, naïve, and stem cell–like CD4+ and CD8+ memory cells, and ↑ frequencies of TCM and TEM cells compared to CD20− cells. |
Von Essen et al., 2023 [32] | MS: 25 + 16 (validation cohort) untreated PP-. | CSF: Enrichment of CD20+ T compared to blood. Positive correlation between CSF CD8+CD20+ T cells prevalence and concentration of MBP (p = 0.0005; rs = 0.53). |
Konen et al., 2024 [18] | MS: 53 relapsing (72% F); median age: 36 y (IQR: 29–46); median MS duration: 20 m (IQR: 2–84); median EDSS: 2.0 (IQR: 1–3.5). | Peripheral blood: T CD20+ represent 13% (±6%) of CD20+ cells, being composed by 54% (±20%) CD3+CD4+T helper cells and by 46% (±17%) CD3+CD8+cytotoxic T cells. |
Oliveira Pinho et al., 2024 [22] | HD: 17 (76% F); mean age: 41 ± 10.8 y. | Peripheral blood: CD20+ T cells represent 4.44% ± 3.81 of total T cells, with particular enrichment in the CD8+ T compartment. ↑ proportion of TEM and TCM CD8+ T cells compared to CD20− T cells; ↑ frequency of CD45RO+ T cells in the central and TEM compartments of CD4+ and CD8+ CD20+ T cells. ↑ expression of CCR5, CD25 and PD-1 and ↓ expression of TIM-3 compared to CD20− T cells; ↑ proportion of Th1/Th17 phenotype. ↑ production of TNF-α, IFN-γ, and IL-17; highest proportion of T cells producing simultaneously TNF-α, IFN-γ, and IL-17 among the CD20+ T cell compartment. |
Van Puijfelik et al., 2024 [33] | MS: 13 untreated PP- (69% F); median age: 50 y; disease duration: 7.1 y; median EDSS: 4. Relapses/MRI activity the year before in 15.4% of cases. | CSF: ↑ proportion of CD4+ and CD8+ CD45RA- memory CD20+ T cells compared to peripheral blood, with ↑ CCR5 and CXCR3 production. Age correlated inversely with the frequency of B cells (r = −0.6603, p = 0.0140) and directly with the percentage of CD4+CD20+ (r = 0.6799, p = 0.0150), but not of CD8+CD20+ memory T cells. |
6. Effect of DMTs on CD20+ T Cells
6.1. CD20-Depleting Monoclonal Antibodies
6.2. Sequestering DMTs
6.3. Pulsed Therapies
6.4. Platform DMTs
Ref. | DMT/Control Group a | Timepoint b | Effect on CD20+ T Cells Isolated from Peripheral Blood and/or CSF |
---|---|---|---|
Piccio et al., 2010 [35] | Rituximab: 30 RR-MS (73% F); four weekly doses (375 mg/m2 each). | −1 w, +24–30 w | Peripheral blood: ↓ CD3+ T cells (−12%); ↓ CXCL13, CCL19. CSF: ↓ CD3+ levels (>50%) with a suggestive correlation with the decrease of CSF CXCL13. |
Palanichamy et al., 2014 [7] | Rituximab: 11 untreated MS (64% F): 1 PP-, 2 CIS, 8 RR-; age: 44 y (25–61). Two IV infusions (1 g each) two weeks apart. Control Group: 18 HD (50% F), age 36 y (21–64). | +1–12 w (n = 7), +13–24 w (n = 8), +25–36 w (n = 5), +37–52 w (n = 5) | Peripheral blood: near-complete depletion of CD20+CD3+ during w 1–12 (mean frequencies 0.36 ± 0.36% vs. 7.8 ± 3.7% in untreated; major impact on CD8+), partial repletion during w 25–36 (2.7 ± 2.3%) and w 37–52 (2.8 ± 1.5%). |
Schuh et al., 2016 [5] | Alemtuzumab: 4 RR-MS (50% F), age: 24.5 y (24–37). Natalizumab: 9 RR-MS (56% F), age: 46 y (25–61). Fingolimod: 6 RR-MS (67% F), age: 44.5 y (29–62). Dimethyl-fumarate: 9 RR-MS (44% F), age: 46 y (33–60). Control Group: 10 untreated RR-MS (70% F), age: 40.5 y (20–67). | N.R. | Peripheral blood: Alemtuzumab, Fingolimod and Dimethyl-fumarate: ↓ absolute number of CD20+ T cells, but not of their relative frequency vs. controls. Natalizumab: ↑ relative frequency and absolute number (p < 0.0001) of CD20+ T cells vs. controls. |
Gingele et al., 2018 [17] | Ocrelizumab: 21 MS (62% F), age: 43 y (22–65); 17 RR- and 9 PP- (disease duration: 14.6 y and 5.6 y, respectively). | Pre-treatment, +2 w (before 2nd dose) | Peripheral blood: Complete depletion of CD20+ cells (from 224.9 ± 24.6/μL to 0.57 ± 0.18/μL), confirmed in both the CD19+ and CD3+CD20+ populations. |
Lovett-Racke et al., 2019 [39] | Ublituximab: 47 RR-MS (65% F); disease duration: 7.4 y (18–55); EDSS ≤ 5.5; ≥2 relapses in prior 2 years or 1 relapse in the past year and/or ≥ 1 Gd+ lesion, stability ≥30 d. | w 0 (pre-infusion), +2 d, +2 w, +3 w, +every 4 w up to w 24 | Peripheral blood: Change in the ratio of naïve to memory T cells in the CD8+ compartment on +2 d; ↓ percentage of Th1; ↑ Treg frequency. |
Sabatino et al., 2019 [8] | Rituximab or Ocrelizumab: 9 RR-MS. | Baseline, +1–6 m after latest infusion | Peripheral blood: No significant difference in frequencies of myelin- and influenza-specific CD8+ T cells; ↓ myelin-specific epitopes and MOG181–189 individual epitope specific-T cell frequency in CD20+CD8+ subpopulation. |
Von Essen et al., 2019 [13] | Alemtuzumab: 11 RR-MS; age: 42 y (33–58). Control Group: 25 untreated RR-MS; age: 36 y (22–52). | +2 y | Peripheral blood: ↓ CD20+ T cells vs. controls (1.99% vs. 7.73%), with a trend for ↑ CD4/CD8 CD20+ T cells ratio compared to untreated; ↓ expression of CD49dhi, CCR2 and CXCR3 in CD20+ T cells. CSF: ↓ CSF CD20+ T cell pool in ATZ cohort, with greater relative ↓ of CD20+ T cells compared to CD20+ B cells within total CSF lymphocytes. |
Quendt et al., 2021 [16] | Natalizumab: 16 RR-MS (56% F); disease duration/age at diagnosis: 4.8 (±1.1) y/28.7 (±2.3) y. Fingolimod: 22 RR-MS (50% F); disease duration/age at diagnosis: 9 (±1.3) y/37 (±2.8) y. Dimethyl-fumarate: 20 RR-MS (50% F); disease duration/age at diagnosis: 4.3 (±0.9) y/33.3 (±2.3) y. Rituximab or ocrelizumab: 10 RR-MS (60% F); disease duration/age at diagnosis: 8.6 (±1.5 y)/40.2 (±5.7) y. Control Group: 15 untreated RR-MS (80% F); disease duration/age at diagnosis: 3 (±1.2) y/37 (±2.8) y. | N.R. | Peripheral blood: Natalizumab: ↑ in CD8+CD20+ T cell frequency; Relative ↓ expression of adhesion molecules (CD49d) and activation marker CD69. Fingolimod: ↓ CD8+CD20+ frequency, slighter ↓ of CD4+CD20+ frequency; ↓ activation levels of CD8+CD20+ cells (↓ CD69, CXCR3, CCR6); ↑ relative frequency of differentiated CD20+ T cells; No significant difference in CD49d expression and in GM-CSF, IL-17, IFN-γ, and TNF-α CD20+ T cells production. Dimethyl-fumarate: ↓ CD8+CD20+ frequency, no significant difference for CD4+CD20+; ↓ differentiation level (↓ in TEM CD4+CD20+ cells, but ↑ naïve and stem cells-like memory CD4+CD20+); ↓ activation (CXCR3, CCR6, Cd69, CD49d); ↓ IL-17, GM-CSF, IFN-γ, and TNF-α CD4+CD20+ producing cells. Rituximab or ocrelizumab: complete eradication of CD20+ T cells. |
Ochs et al., 2022 [6] | Rituximab: 14 MS (57% F); EDSS 3 (±2.5); age: 40.36 (±9.09) y; disease duration: 11 (±6.54) y; wash out from previous treatment (3 DMT, 4 FTY, 1 azathioprine, 1 NTZ, 1 glatiramer acetate, 3 CCS, 1 naïve): 8.15 (±4.85) w. | Baseline, +0–3 m, +3–14 m | Peripheral blood: Depletion of both CD20+ B and T cells; earlier reappearance of CD20+ T than B cells in the blood; On an individual basis, ↑ frequency of CD49dhi cells and proinflammatory cytokines IFNγ, GM-CSF, TNFα, and IL-17–producing cells. |
Von Essen et al., 2023 [32] | Dimethyl-fumarate: -blood: 21 PP-MS; -CSF: 15 PP-MS. Control Group: -Blood: 24 placebo-treated PP-MS; -CSF: 14 placebo-treated PP-MS. | Baseline, +48 w | Peripheral blood: ↓ frequency and absolute number of CD4+ and CD8+CD20+ cells. CSF: ↑ absolute number and relative frequency of CD8+CD20+, ↑ relative frequency of CD4+CD20+. |
Shinoda et al., 2023 [34] | Ocrelizumab: -Discovery cohort: 23 MS (13 RR-, 10 SP-/PP-) (52.2% F); age: 48.2 (±13.3) y; EDSS: 2.7 (±1.8); treatment-naïve: 100%. -Validation cohort: 35 RR-MS (60% F); age: 37.3 (±10.3) y; EDSS: 2.1 (±1.2); treatment-naïve: 54.3%. | Baseline, +2–4 m | Peripheral blood: inverse association between baseline frequency of circulating CD20+ T cells (particularly CD8+) and with Gd+ lesions; no correlation with disease activity during treatment; ↓ frequencies of T TEM and ↓ expression of the proinflammatory cytokines IFN-γ and TNF-α in the reemerging CD20+CD8+ T cell pool. |
Konen et al., 2024 [18] | Ofatumumab: 53 relapsing MS (72% F); age: 36 y (29–46); MS duration: 20 m (2–84); EDSS: 2.0 (1–3.5). | Pre-treatment, +1 w, +2 w, +3 m | Peripheral blood: Complete depletion of CD3+CD20+ T cells after the first administration in all the patients, persisting after 3 m of treatment. |
Moser et al., 2024 [43] | Cladribine: 18 MS (83% F); age: 36.4 (±11.7) y; disease duration: 8.8 (0–25) y; EDSS 2.25 (±1.7). | Every 3 months from baseline to +2 y | Peripheral blood: ↑ frequency of CD20+ T cells (+127% at m 21). |
Van Puijfelik et al., 2024 [33] | Ocrelizumab: 12 PP-MS (58% F); age: 57.6 y; disease duration: 8.1 y; EDSS 4.25; 8.3% had a relapse and 50% had MRI activity during the previous y. Control Group: 13 untreated PP-MS (69% F); age: 50 y; disease duration: 7.1 y; EDSS: 4; 15.4% had relapses and MRI activity the previous y. | + median 117 d (14–189) after latest OCR dose in the treatment group (except for 3 cases: +33, 35, or 38 w) | Peripheral blood: ↓ CXCR3+ and CCR5+ T cell memory fractions compared to the control group. CSF: ↓ CCR5+, CXCR3+, CCR6+, and CCR4+ CD4+CD20+ memory T cells in treated vs. untreated patients. |
7. CD20+ T Cells as Potential Biomarkers of Disease Activity
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ATZ | Alemtuzumab |
CCS | Corticosteroids |
CD | Cluster of differentiation |
CCR | Chemokine receptor |
CIS | Clinically isolated syndrome |
CLAD | Cladribine |
CSF | Cerebrospinal fluid |
DMF | dimethyl-fumarate |
DMT | Disease-modifying therapies |
EDSS | Expanded Disability Status Scale |
FTY | Fingolimod |
GM-CSF | Granulocyte-monocyte colony-stimulating factor |
HD | Healthy donor |
IFN | Interferon |
IL | Interleukin |
MRI | Magnetic resonance imaging |
MS | Multiple sclerosis |
NAWM | Normal appearing white matter |
NTZ | Natalizumab |
OCR | Ocrelizumab |
OFA | Ofatumumab |
OND | Other neurological diseases |
PD-1 | Programmed-cell death protein 1 |
PP- | Primary-progressive |
RTX | Rituximab |
RR- | Relapsing-remitting |
TCM | T central memory |
TEM, | T effector memory |
Th | T helper |
TIM-3 | T cell immunoglobulin and mucin domain-3 |
TNF | Tumour necrosis factor |
TRM | Tissue resident memory |
WM | White matter |
References
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet Lond. Engl. 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Li, R.; Patterson, K.R.; Bar-Or, A. Reassessing B cell contributions in multiple sclerosis. Nat. Immunol. 2018, 19, 696–707. [Google Scholar] [CrossRef] [PubMed]
- Mariottini, A.; Muraro, P.A.; Lünemann, J.D. Antibody-mediated cell depletion therapies in multiple sclerosis. Front. Immunol. 2022, 13, 953649. [Google Scholar] [CrossRef]
- Hultin, L.E.; Hausner, M.A.; Hultin, P.M.; Giorgi, J.V. CD20 (pan-B cell) antigen is expressed at a low level on a subpopulation of human T lymphocytes. Cytometry 1993, 14, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Schuh, E.; Berer, K.; Mulazzani, M.; Feil, K.; Meinl, I.; Lahm, H.; Krane, M.; Lange, R.; Pfannes, K.; Subklewe, M.; et al. Features of Human CD3+CD20+ T Cells. J. Immunol. Baltim. Md. 1950 2016, 197, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Ochs, J.; Nissimov, N.; Torke, S.; Freier, M.; Grondey, K.; Koch, J.; Klein, M.; Feldmann, L.; Gudd, C.; Bopp, T.; et al. Proinflammatory CD20+ T cells contribute to CNS-directed autoimmunity. Sci. Transl. Med. 2022, 14, eabi4632. [Google Scholar] [CrossRef]
- Palanichamy, A.; Jahn, S.; Nickles, D.; Derstine, M.; Abounasr, A.; Hauser, S.L.; Baranzini, S.E.; Leppert, D.; von Büdingen, H.-C. Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J. Immunol. Baltim. Md. 1950 2014, 193, 580–586. [Google Scholar] [CrossRef]
- Sabatino, J.J.; Wilson, M.R.; Calabresi, P.A.; Hauser, S.L.; Schneck, J.P.; Zamvil, S.S. Anti-CD20 therapy depletes activated myelin-specific CD8+ T cells in multiple sclerosis. Proc. Natl. Acad. Sci. USA 2019, 116, 25800–25807. [Google Scholar] [CrossRef]
- von Essen, M.R.; Stolpe, L.E.; Søndergaard, H.B.; Sellebjerg, F. The origin of human CD20+ T cells: A stolen identity? Front. Immunol. 2024, 15, 1487530. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Kim, J.; Kim, Y.; Yoon, H.M.; Rayhan, B.R.; Jeong, J.; Bothwell, A.L.M.; Shin, J.H. Trogocytosis-mediated immune evasion in the tumor microenvironment. Exp. Mol. Med. 2025, 57, 1–12. [Google Scholar] [CrossRef]
- de Bruyn, M.; Wiersma, V.R.; Wouters, M.C.A.; Samplonius, D.F.; Klip, H.G.; Helfrich, W.; Nijman, H.W.; Eggleton, P.; Bremer, E. CD20+ T cells have a predominantly Tc1 effector memory phenotype and are expanded in the ascites of patients with ovarian cancer. Oncoimmunology 2015, 4, e999536. [Google Scholar] [CrossRef] [PubMed]
- Wilk, E.; Witte, T.; Marquardt, N.; Horvath, T.; Kalippke, K.; Scholz, K.; Wilke, N.; Schmidt, R.E.; Jacobs, R. Depletion of functionally active CD20+ T cells by rituximab treatment. Arthritis Rheum. 2009, 60, 3563–3571. [Google Scholar] [CrossRef] [PubMed]
- von Essen, M.R.; Ammitzbøll, C.; Hansen, R.H.; Petersen, E.R.S.; McWilliam, O.; Marquart, H.V.; Damm, P.; Sellebjerg, F. Proinflammatory CD20+ T cells in the pathogenesis of multiple sclerosis. Brain J. Neurol. 2019, 142, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Brohee, D.; Vanhaeverbeek, M.; Kennes, B.; Neve, P. Changing pattern of CD5+ CD20+ double positive lymphocytes with ageing and cytotoxic chemotherapy. Mech. Ageing Dev. 1991, 58, 127–138. [Google Scholar] [CrossRef]
- Landay, A.; Ohlsson-Wilhelm, B.; Giorgi, J.V. Application of flow cytometry to the study of HIV infection. AIDS 1990, 4, 479–497. [Google Scholar] [CrossRef]
- Quendt, C.; Ochs, J.; Häusser-Kinzel, S.; Häusler, D.; Weber, M.S. Proinflammatory CD20+ T Cells are Differentially Affected by Multiple Sclerosis Therapeutics. Ann. Neurol. 2021, 90, 834–839. [Google Scholar] [CrossRef]
- Gingele, S.; Jacobus, T.L.; Konen, F.F.; Hümmert, M.W.; Sühs, K.-W.; Schwenkenbecher, P.; Ahlbrecht, J.; Möhn, N.; Müschen, L.H.; Bönig, L.; et al. Ocrelizumab Depletes CD20+ T Cells in Multiple Sclerosis Patients. Cells 2018, 8, 12. [Google Scholar] [CrossRef]
- Konen, F.F.; Gingele, S.; Hümmert, M.W.; Möhn, N.; Streichert, A.L.; Kretschmer, J.R.; Grote-Levi, L.; Nay, S.; Seeliger, T.; Ratuszny, D.; et al. Rapid depletion of CD20+ B and T cells following ofatumumab therapy onset. Mult. Scler. Relat. Disord. 2024, 91, 105886. [Google Scholar] [CrossRef]
- Holley, J.E.; Bremer, E.; Kendall, A.C.; de Bruyn, M.; Helfrich, W.; Tarr, J.M.; Newcombe, J.; Gutowski, N.J.; Eggleton, P. CD20+inflammatory T-cells are present in blood and brain of multiple sclerosis patients and can be selectively targeted for apoptotic elimination. Mult. Scler. Relat. Disord. 2014, 3, 650–658. [Google Scholar] [CrossRef]
- Henry, C.; Ramadan, A.; Montcuquet, N.; Pallandre, J.-R.; Mercier-Letondal, P.; Deschamps, M.; Tiberghien, P.; Ferrand, C.; Robinet, E. CD3+CD20+ cells may be an artifact of flow cytometry: Comment on the article by Wilk et al. Arthritis Rheum. 2010, 62, 2561–2563, author reply 2563–2565. [Google Scholar] [CrossRef]
- Storie, I.; Wilson, G.A.; Granger, V.; Barnett, D.; Reilly, J.T. Circulating CD20dim T-lymphocytes increase with age: Evidence for a memory cytotoxic phenotype. Clin. Lab. Haematol. 1995, 17, 323–328. [Google Scholar]
- Pinho, A.C.O.; Barbosa, P.; Pereira, M.J.; Paiva, A.; Carvalho, E.; Laranjeira, P. The role of CD20+ T cells: Insights in human peripheral blood. Cytometry B Clin. Cytom. 2024, 106, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Vlaming, M.; Bilemjian, V.; Freile, J.Á.; Lourens, H.J.; van Rooij, N.; Huls, G.; van Meerten, T.; de Bruyn, M.; Bremer, E. CD20 positive CD8 T cells are a unique and transcriptionally-distinct subset of T cells with distinct transmigration properties. Sci. Rep. 2021, 11, 20499. [Google Scholar] [CrossRef]
- Lassmann, H. Pathogenic Mechanisms Associated with Different Clinical Courses of Multiple Sclerosis. Front. Immunol. 2018, 9, 3116. [Google Scholar] [CrossRef] [PubMed]
- Sospedra, M.; Martin, R. Immunology of Multiple Sclerosis. Semin. Neurol. 2016, 36, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Attfield, K.E.; Jensen, L.T.; Kaufmann, M.; Friese, M.A.; Fugger, L. The immunology of multiple sclerosis. Nat. Rev. Immunol. 2022, 22, 734–750. [Google Scholar] [CrossRef]
- Frischer, J.M.; Weigand, S.D.; Guo, Y.; Kale, N.; Parisi, J.E.; Pirko, I.; Mandrekar, J.; Bramow, S.; Metz, I.; Brück, W.; et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 2015, 78, 710–721. [Google Scholar] [CrossRef]
- Serafini, B.; Rosicarelli, B.; Magliozzi, R.; Stigliano, E.; Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. Zurich Switz. 2004, 14, 164–174. [Google Scholar] [CrossRef]
- Smolders, J.; Remmerswaal, E.B.M.; Schuurman, K.G.; Melief, J.; van Eden, C.G.; van Lier, R.A.W.; Huitinga, I.; Hamann, J. Characteristics of differentiated CD8 (+) and CD4 (+) T cells present in the human brain. Acta Neuropathol. 2013, 126, 525–535. [Google Scholar] [CrossRef]
- Smolders, J.; Heutinck, K.M.; Fransen, N.L.; Remmerswaal, E.B.M.; Hombrink, P.; Ten Berge, I.J.M.; van Lier, R.A.W.; Huitinga, I.; Hamann, J. Tissue-resident memory T cells populate the human brain. Nat. Commun. 2018, 9, 4593. [Google Scholar] [CrossRef]
- Hsiao, C.-C.; Fransen, N.L.; van den Bosch, A.M.R.; Brandwijk, K.I.M.; Huitinga, I.; Hamann, J.; Smolders, J. White matter lesions in multiple sclerosis are enriched for CD20dim CD8+ tissue-resident memory T cells. Eur. J. Immunol. 2021, 51, 483–486. [Google Scholar] [CrossRef] [PubMed]
- von Essen, M.R.; Talbot, J.; Hansen, R.H.H.; Chow, H.H.; Lundell, H.; Siebner, H.R.; Sellebjerg, F. Intrathecal CD8+CD20+ T Cells in Primary Progressive Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200140. [Google Scholar] [CrossRef] [PubMed]
- van Puijfelik, F.; Blok, K.M.; Kranenbarg, R.A.M.K.; Rip, J.; de Beukelaar, J.; Wierenga-Wolf, A.F.; Wokke, B.; van Luijn, M.M.; Smolders, J. Ocrelizumab associates with reduced cerebrospinal fluid B and CD20dim CD4+ T cells in primary progressive multiple sclerosis. Brain Commun. 2024, 6, fcae021. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, K.; Li, R.; Rezk, A.; Mexhitaj, I.; Patterson, K.R.; Kakara, M.; Zuroff, L.; Bennett, J.L.; von Büdingen, H.C.; Carruthers, R.; et al. Differential effects of anti-CD20 therapy on CD4 and CD8 T cells and implication of CD20-expressing CD8 T cells in MS disease activity. Proc. Natl. Acad. Sci. USA 2023, 120, e2207291120. [Google Scholar] [CrossRef]
- Piccio, L.; Naismith, R.T.; Trinkaus, K.; Klein, R.S.; Parks, B.J.; Lyons, J.A.; Cross, A.H. Changes in B- and T-lymphocyte and chemokine levels with rituximab treatment in multiple sclerosis. Arch. Neurol. 2010, 67, 707–714. [Google Scholar] [CrossRef]
- Theil, D.; Smith, P.; Huck, C.; Gilbart, Y.; Kakarieka, A.; Leppert, D.; Rauld, C.; Schmid, C.; Baumgartner, R.; Stuber, N.; et al. Imaging Mass Cytometry and Single-Cell Genomics Reveal Differential Depletion and Repletion of B-Cell Populations Following Ofatumumab Treatment in Cynomolgus Monkeys. Front. Immunol. 2019, 10, 1340. [Google Scholar] [CrossRef]
- Häusler, D.; Häusser-Kinzel, S.; Feldmann, L.; Torke, S.; Lepennetier, G.; Bernard, C.C.A.; Zamvil, S.S.; Brück, W.; Lehmann-Horn, K.; Weber, M.S. Functional characterization of reappearing B cells after anti-CD20 treatment of CNS autoimmune disease. Proc. Natl. Acad. Sci. USA 2018, 115, 9773–9778. [Google Scholar] [CrossRef]
- Le Garff-Tavernier, M.; Herbi, L.; de Romeuf, C.; Nguyen-Khac, F.; Davi, F.; Grelier, A.; Boudjoghra, M.; Maloum, K.; Choquet, S.; Urbain, R.; et al. Antibody-dependent cellular cytotoxicity of the optimized anti-CD20 monoclonal antibody ublituximab on chronic lymphocytic leukemia cells with the 17p deletion. Leukemia 2014, 28, 230–233. [Google Scholar] [CrossRef]
- Lovett-Racke, A.E.; Gormley, M.; Liu, Y.; Yang, Y.; Graham, C.; Wray, S.; Racke, M.K.; Shubin, R.; Twyman, C.; Alvarez, E.; et al. B cell depletion with ublituximab reshapes the T cell profile in multiple sclerosis patients. J. Neuroimmunol. 2019, 332, 187–197. [Google Scholar] [CrossRef]
- McGinley, M.P.; Cohen, J.A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet Lond. Engl. 2021, 398, 1184–1194. [Google Scholar] [CrossRef]
- Boyko, A.N.; Boyko, O.V. Cladribine tablets’ potential role as a key example of selective immune reconstitution therapy in multiple sclerosis. Degener. Neurol. Neuromuscul. Dis. 2018, 8, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Voo, V.T.F.; Butzkueven, H.; Stankovich, J.; O’Brien, T.; Monif, M. The development and impact of cladribine on lymphoid and myeloid cells in multiple sclerosis. Mult. Scler. Relat. Disord. 2021, 52, 102962. [Google Scholar] [CrossRef] [PubMed]
- Moser, T.; Schwenker, K.; Seiberl, M.; Feige, J.; Akgün, K.; Haschke-Becher, E.; Ziemssen, T.; Sellner, J. Long-term peripheral immune cell profiling reveals further targets of oral cladribine in MS. Ann. Clin. Transl. Neurol. 2020, 7, 2199–2212. [Google Scholar] [CrossRef] [PubMed]
- Hansen, R.H.; Chow, H.H.; Christensen, J.R.; Sellebjerg, F.; von Essen, M.R. Dimethyl fumarate therapy reduces memory T cells and the CNS migration potential in patients with multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 37, 101451. [Google Scholar] [CrossRef]
- Popescu, B.F.G.; Lucchinetti, C.F. Pathology of demyelinating diseases. Annu. Rev. Pathol. Mech. Dis. 2012, 7, 185–217. [Google Scholar] [CrossRef]
- BenDavid, E.; Bangayan, J.; Standley, K.; Foord, O.; Munguia, M.; Reyes, J.; Cui, J. Manufacturing of CD19/20 Bispecific CAR T-Cell Therapy (IMPT-514) for the Treatment of Multiple Sclerosis. ImmPACT Bio. 2024. Available online: https://immpact-bio.com/publications/manufacturing-of-cd19-20-bispecific-car-t-cell-therapy-impt-514-for-the-treatment-of-multiple-sclerosis/ (accessed on 4 July 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzeo, A.C.; Calabresi, L.; Damato, V.; Spagni, G.; Massacesi, L.; Mariottini, A. CD20+ T Cells in Multiple Sclerosis: From Pathogenesis to Treatment-Induced Depletion. Int. J. Mol. Sci. 2025, 26, 6655. https://doi.org/10.3390/ijms26146655
Mazzeo AC, Calabresi L, Damato V, Spagni G, Massacesi L, Mariottini A. CD20+ T Cells in Multiple Sclerosis: From Pathogenesis to Treatment-Induced Depletion. International Journal of Molecular Sciences. 2025; 26(14):6655. https://doi.org/10.3390/ijms26146655
Chicago/Turabian StyleMazzeo, Anna Chiara, Laura Calabresi, Valentina Damato, Gregorio Spagni, Luca Massacesi, and Alice Mariottini. 2025. "CD20+ T Cells in Multiple Sclerosis: From Pathogenesis to Treatment-Induced Depletion" International Journal of Molecular Sciences 26, no. 14: 6655. https://doi.org/10.3390/ijms26146655
APA StyleMazzeo, A. C., Calabresi, L., Damato, V., Spagni, G., Massacesi, L., & Mariottini, A. (2025). CD20+ T Cells in Multiple Sclerosis: From Pathogenesis to Treatment-Induced Depletion. International Journal of Molecular Sciences, 26(14), 6655. https://doi.org/10.3390/ijms26146655