Matrix Metalloproteinases Family Gene Polymorphisms Are Associated with Thrombosis Risk in Myeloproliferative Neoplasms
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Single Nucleotide Polymorphisms and Genotyping
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thapa, B.; Fazal, S.; Parsi, M.; Rogers, H.J. Myeloproliferative Neoplasms. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Greenfield, G.; McMullin, M.F.; Mills, K. Molecular pathogenesis of the myeloproliferative neoplasms. J. Hematol. Oncol. 2021, 14, 103. [Google Scholar] [CrossRef]
- Marneth, A.E.; Mullally, A. The Molecular Genetics of Myeloproliferative Neoplasms. Cold Spring Harb. Perspect. Med. 2020, 10, a034876. [Google Scholar] [CrossRef] [PubMed]
- Soyfer, E.M.; Fleischman, A.G. Myeloproliferative neoplasms—Blurring the lines between cancer and chronic inflammatory disorder. Front. Oncol. 2023, 13, 1208089. [Google Scholar] [CrossRef] [PubMed]
- Benajiba, L. A JAK2 mutant to WT prothrombotic cross talk. Blood 2024, 143, 1441–1443. [Google Scholar] [CrossRef]
- Bellosillo, B.; Doubek, M.; Tomuleasa, C.; Griesshammer, M.; Marchetti, M.; Sacha, T.; Gisslinger, H. JAK2 mutations in polycythemia vera: From molecular origins to inflammatory pathways and clinical implications. memo Mag. Eur. Med. Oncol. 2025, 17, 79–93. [Google Scholar] [CrossRef]
- Beckman, J.D.; DaSilva, A.; Aronovich, E.; Nguyen, A.; Nguyen, J.; Hargis, G.; Reynolds, D.; Vercellotti, G.M.; Betts, B.; Wood, D.K. JAK-STAT inhibition reduces endothelial prothrombotic activation and leukocyte-endothelial proadhesive interactions. J. Thromb. Haemost. 2023, 21, 1366–1380. [Google Scholar] [CrossRef]
- Chia, Y.C.; Siti Asmaa, M.J.; Ramli, M.; Woon, P.Y.; Johan, M.F.; Hassan, R.; Islam, M.A. Molecular Genetics of Thrombotic Myeloproliferative Neoplasms: Implications in Precision Oncology. Diagnostics 2023, 13, 163. [Google Scholar] [CrossRef]
- Bhuria, V.; Franz, T.; Baldauf, C.; Böttcher, M.; Chatain, N.; Koschmieder, S.; Brümmendorf, T.H.; Mougiakakos, D.; Schraven, B.; Kahlfuß, S.; et al. Activating mutations in JAK2 and CALR differentially affect intracellular calcium flux in store operated calcium entry. Cell Commun. Signal. 2024, 22, 186. [Google Scholar] [CrossRef]
- How, J.; Hobbs, G.S.; Mullally, A. Mutant calreticulin in myeloproliferative neoplasms. Blood 2019, 134, 2242–2248. [Google Scholar] [CrossRef]
- He, L.; Kang, Q.; Chan, K.I.; Zhang, Y.; Zhong, Z.; Tan, W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front. Immunol. 2022, 13, 1093990. [Google Scholar] [CrossRef]
- Yadav, P.K.; Ghosh, M.; Kataria, M. Matrix Metalloproteinases (MMPs) in Cancer Immunotherapy. In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects; Chakraborti, S., Ed.; Springer Nature: Singapore, 2022; pp. 3707–3732. [Google Scholar]
- Rooprai, H.K.; Rucklidge, G.J.; Panou, C.; Pilkington, G.J. The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br. J. Cancer 2000, 82, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef] [PubMed]
- Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006, 69, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Das, B. The role of inflammatory mediators and matrix metalloproteinases (MMPs) in the progression of osteoarthritis. Biomater. Biosyst. 2024, 13, 100090. [Google Scholar] [CrossRef]
- Luchian, I.; Goriuc, A.; Sandu, D.; Covasa, M. The Role of Matrix Metalloproteinases (MMP-8, MMP-9, MMP-13) in Periodontal and Peri-Implant Pathological Processes. Int. J. Mol. Sci. 2022, 23, 1806. [Google Scholar] [CrossRef]
- Das, S.; Amin, S.A.; Jha, T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur. J. Med. Chem. 2021, 223, 113623. [Google Scholar] [CrossRef]
- Li, D.Q.; Shang, T.Y.; Kim, H.; Solomon, A.; Lokeshwar, B.L.; Pflugfelder, S.C. Regulated expression of collagenases MMP-1, -8, and -13 and stromelysins MMP-3, -10, and -11 by human corneal epithelial cells. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2928–2936. [Google Scholar] [CrossRef]
- Piskór, B.M.; Przylipiak, A.; Dąbrowska, E.; Sidorkiewicz, I.; Niczyporuk, M.; Szmitkowski, M.; Ławicki, S. Plasma Concentrations of Matrilysins MMP-7 and MMP-26 as Diagnostic Biomarkers in Breast Cancer. J. Clin. Med. 2021, 10, 1436. [Google Scholar] [CrossRef]
- Galewska, Z.; Romanowicz, L.; Jaworski, S.; Bańkowski, E. Matrix metalloproteinases, MMP-7 and MMP-26, in plasma and serum of control and preeclamptic umbilical cord blood. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 150, 152–156. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, W.J. The Role of Matrix Metalloproteinase in Inflammation with a Focus on Infectious Diseases. Int. J. Mol. Sci. 2022, 23, 10546. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, S.; Guo, J.; Zhou, L.; You, L.; Zhang, T.; Zhao, Y. Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics (Review). Int. J. Oncol. 2016, 48, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.; Koran, S.; AlOmair, L. Insights Into the Role of Matrix Metalloproteinases in Cancer and its Various Therapeutic Aspects: A Review. Front. Mol. Biosci. 2022, 9, 896099. [Google Scholar] [CrossRef] [PubMed]
- Dofara, S.G.; Chang, S.; Diorio, C. Gene Polymorphisms and Circulating Levels of MMP-2 and MMP-9: A Review of Their Role in Breast Cancer Risk. Anticancer Res. 2020, 40, 3619–3631. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Tzeng, H.; Wu, C.; Yueh, T.; Peng, Y.; Tsai, C.; Wang, Y.; Ke, T.; Pei, J.; Chang, W.; et al. Association of Matrix Metalloproteinase-9 rs3918242 Promoter Genotypes With Colorectal Cancer Risk. Anticancer Res. 2019, 39, 6523–6529. [Google Scholar] [CrossRef]
- Fu, C.; Chang, W.; Tsai, C.; Wang, Y.; Yang, M.; Hsu, H.; Chao, C.; Yu, C.; Chen, J.; Pei, J.; et al. The Association of MMP9 Promoter Rs3918242 Genotype With Gastric Cancer. Anticancer Res. 2021, 41, 3309–3315. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Ran, R.; Liu, G.; Yang, Y.; Zhao, W.; Xie, X.; Li, J. Matrix metalloproteinase family gene polymorphisms and lung cancer susceptibility: An updated meta-analysis. J. Thorac. Dis. 2020, 12, 349–362. [Google Scholar] [CrossRef]
- Lin, C.; Zeng, Y.; Xiao, M.; Mei, X.; Shen, L.; Guo, M.; Lin, Z.; Liu, Q.; Yang, T. The Relationship Between MMP-2-1306C>T and MMP-9-1562C>T Polymorphisms and the Risk and Prognosis of T-Cell Acute Lymphoblastic Leukemia in a Chinese Population: A Case-Control Study. Cell Physiol. Biochem. 2017, 42, 1458–1468. [Google Scholar] [CrossRef]
- Said, A.H.; Hu, S.; Abutaleb, A.; Watkins, T.; Cheng, K.; Chahdi, A.; Kuppusamy, P.; Saxena, N.; Xie, G.; Raufman, J. Interacting post-muscarinic receptor signaling pathways potentiate matrix metalloproteinase-1 expression and invasion of human colon cancer cells. Biochem. J. 2017, 474, 647–665. [Google Scholar] [CrossRef]
- Kumar, J.D.; Steele, I.; Moore, A.R.; Murugesan, S.V.; Rakonczay, Z.; Venglovecz, V.; Pritchard, D.M.; Dimaline, R.; Tiszlavicz, L.; Varro, A.; et al. Gastrin stimulates MMP-1 expression in gastric epithelial cells: Putative role in gastric epithelial cell migration. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, 78. [Google Scholar] [CrossRef]
- Yu, X.F.; Han, Z.C. Matrix metalloproteinases in bone marrow: Roles of gelatinases in physiological hematopoiesis and hematopoietic malignancies. Histol. Histopathol. 2006, 21, 519–531. [Google Scholar]
- Das, S.; Amin, S.A.; Datta, S.; Adhikari, N.; Jha, T. Synthesis, biological activity, structure activity relationship study and liposomal formulation development of some arylsulfonyl pyroglutamic acid derivatives. J. Mol. Struct. 2022, 1248, 131512. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, L.; Wen, S.; Liu, X.; Luo, J. Expression and clinical significance of MMP-2 and MMP-9 in B acute lymphoblastic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2014, 22, 640–643. [Google Scholar] [PubMed]
- Hsiao, Y.; Su, S.; Lin, C.; Chao, Y.; Yang, W.; Yang, S. Pathological and therapeutic aspects of matrix metalloproteinases: Implications in childhood leukemia. Cancer Metastasis Rev. 2019, 38, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Khalil, R.A. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Adv. Pharmacol. 2018, 81, 241–330. [Google Scholar]
- Guijarro-Hernández, A.; Vizmanos, J.L. A Broad Overview of Signaling in Ph-Negative Classic Myeloproliferative Neoplasms. Cancers 2021, 13, 984. [Google Scholar] [CrossRef]
- Tan, R.; Yuan, M.; Wang, L.; Liu, J.; Jiang, G.; Liao, J.; Xia, Y.; Yin, X.; Liu, Y. The pathogenesis of aging-induced left atrial appendage thrombus formation and cardioembolic stroke in mice is influenced by inflammation-derived matrix metalloproteinases. Thromb. Res. 2023, 226, 69–81. [Google Scholar] [CrossRef]
- Montague, S.J.; Gardiner, E.E. Matrix metalloproteinase-13 unlucky for the forming thrombus. Res. Pract. Thromb. Haemost. 2018, 2, 525–528. [Google Scholar] [CrossRef]
- Yokokawa, T.; Misaka, T.; Kimishima, Y.; Wada, K.; Minakawa, K.; Sugimoto, K.; Ishida, T.; Morishita, S.; Komatsu, N.; Ikeda, K.; et al. Crucial role of hematopoietic JAK2 V617F in the development of aortic aneurysms. Haematologica 2021, 106, 1910–1922. [Google Scholar] [CrossRef]
- Sebastiano, M.; Momi, S.; Falcinelli, E.; Bury, L.; Hoylaerts, M.F.; Gresele, P. A novel mechanism regulating human platelet activation by MMP-2-mediated PAR1 biased signaling. Blood 2017, 129, 883–895. [Google Scholar] [CrossRef]
- Lane, W.J.; Dias, S.; Hattori, K.; Heissig, B.; Choy, M.; Rabbany, S.Y.; Wood, J.; Moore, M.A.; Rafii, S. Stromal-derived factor 1-induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases. Blood 2000, 96, 4152–4159. [Google Scholar] [CrossRef]
- Cecchetti, L.; Tolley, N.D.; Michetti, N.; Bury, L.; Weyrich, A.S.; Gresele, P. Megakaryocytes differentially sort mRNAs for matrix metalloproteinases and their inhibitors into platelets: A mechanism for regulating synthetic events. Blood 2011, 118, 1903–1911. [Google Scholar] [CrossRef]
- Mannello, F.; Medda, V. Differential expression of MMP-2 and MMP-9 activity in megakaryocytes and platelets. Blood 2011, 118, 6470–6473. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Cao, W.; Shi, J.; Gao, F.; Wang, M.; Xu, L.; Wang, F.; Li, Y.; Guo, R.; Bian, Z.; et al. Contributions of bone marrow monocytes/macrophages in myeloproliferative neoplasms with JAK2V617F mutation. Ann. Hematol. 2023, 102, 1745–1759. [Google Scholar] [CrossRef] [PubMed]
- de Franciscis, S.; Gallelli, L.; Amato, B.; Butrico, L.; Rossi, A.; Buffone, G.; Calio, F.G.; De Caridi, G.; Grande, R.; Serra, R. Plasma MMP and TIMP evaluation in patients with deep venous thrombosis: Could they have a predictive role in the development of post-thrombotic syndrome? Int. Wound. J. 2016, 13, 1237–1245. [Google Scholar] [CrossRef]
- Olejarz, W.; Lacheta, D.; Kubiak-Tomaszewska, G. Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int. J. Mol. Sci. 2020, 21, 3946. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Li, N.; Sheng, Y. MMP-3-1612 polymorphism—A risk factor for deep venous thrombosis formation. Vasa 2016, 45, 233–239. [Google Scholar] [CrossRef]
- Liu, G.M.; Zhang, L.J.; Fu, J.Z.; Liang, W.T.; Cheng, Z.Y.; Bai, P.; Bian, Y.S.; Wan, J.S. Regulation of Ruxolitinib on matrix metalloproteinase in JAK2V617F positive myeloroliferative neoplasms cells. Zhonghua Xue Ye Xue Za Zhi 2017, 38, 140–145. [Google Scholar]
- Zhang, T.; Li, Q.; Wang, L.; Li, G. Expression variations and clinical significance of MMP-1, MMP-2 and inflammatory factors in serum of patients with deep venous thrombosis of lower extremity. Exp. Ther. Med. 2019, 17, 181–186. [Google Scholar] [CrossRef]
- Yu, G.; Li, K.; Xu, Y.; Chu, H.; Zhan, H.; Zhong, Y. The expression of matrix metalloproteinases and their tissue inhibitors in the vein wall following superficial venous thrombosis. Phlebology 2022, 37, 63–71. [Google Scholar] [CrossRef]
- Kaireviciute, D.; Blann, A.D.; Balakrishnan, B.; Lane, D.A.; Patel, J.V.; Uzdavinys, G.; Norkunas, G.; Kalinauskas, G.; Sirvydis, V.; Aidietis, A.; et al. Characterisation and validity of inflammatory biomarkers in the prediction of post-operative atrial fibrillation in coronary artery disease patients. Thromb. Haemost. 2010, 104, 122–127. [Google Scholar] [CrossRef]
- Sag, S.O.; Gorukmez, O.; Ture, M.; Gorukmez, O.; Topak, A.; Sahinturk, S.; Ocakoglu, G.; Gulten, T.; Ali, R.; Yakut, T. MMP2 gene-735 C/T and MMP9 gene-1562 C/T polymorphisms in JAK2V617F positive myeloproliferative disorders. Asian Pac. J. Cancer Prev. 2015, 16, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Maral, S.; Acar, M.; Balcik, O.S.; Uctepe, E.; Hatipoglu, O.F.; Akdeniz, D.; Altun, H.U.; Kosar, A.; Gunduz, M.; Gunduz, E. Matrix Metalloproteinases 2 and 9 Polymorphism in Patients With Myeloproliferative Diseases: A STROBE-Compliant Observational Study. Medicine 2015, 94, e732. [Google Scholar] [CrossRef]
- Sawicki, G.; Salas, E.; Murat, J.; Miszta-Lane, H.; Radomski, M.W. Release of gelatinase A during platelet activation mediates aggregation. Nature 1997, 386, 616–619. [Google Scholar] [CrossRef]
- Skov, V.; Thomassen, M.; Kjær, L.; Riley, C.; Larsen, T.S.; Bjerrum, O.W.; Kruse, T.A.; Hasselbalch, H.C. Extracellular Matrix-Related Genes Are Deregulated in Peripheral Blood from Patients with Myelofibrosis and Related Neoplasms. Blood 2018, 132, 5491. [Google Scholar] [CrossRef]
- Kelliher, S.; Gamba, S.; Weiss, L.; Shen, Z.; Marchetti, M.; Schieppati, F.; Scaife, C.; Madden, S.; Bennett, K.; Fortune, A.; et al. Platelet proteomic profiling reveals potential mediators of immunothrombosis and proteostasis in myeloproliferative neoplasms. Blood Adv. 2024, 8, 4276–4280. [Google Scholar] [CrossRef]
- Vikman, S.; Larsson, A.; Thulin, M.; Karlsson, T. Increased levels of a subset of angiogenesis-related plasma proteins in essential thrombocythemia. Ups. J. Med. Sci. 2023, 128, 10-48101. [Google Scholar] [CrossRef] [PubMed]
- Bath, P.M.; Butterworth, R.J. Platelet size: Measurement, physiology and vascular disease. Blood Coagul. Fibrinolysis 1996, 7, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Kamath, S.; Blann, A.D.; Lip, G.Y. Platelet activation: Assessment and quantification. Eur. Heart J. 2001, 22, 1561–1571. [Google Scholar] [CrossRef]
- Kunicki, T.J.; Williams, S.A.; Nugent, D.J.; Yeager, M. Mean platelet volume and integrin alleles correlate with levels of integrins α(IIb)β(3) and α(2)β(1) in acute coronary syndrome patients and normal subjects. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 147–152. [Google Scholar] [CrossRef]
- Martin, J.F.; Trowbridge, E.A.; Salmon, G.; Plumb, J. The biological significance of platelet volume: Its relationship to bleeding time, platelet thromboxane B2 production and megakaryocyte nuclear DNA concentration. Thromb. Res. 1983, 32, 443–460. [Google Scholar] [CrossRef]
- Jakubowski, J.A.; Thompson, C.B.; Vaillancourt, R.; Valeri, C.R.; Deykin, D. Arachidonic acid metabolism by platelets of differing size. Br. J. Haematol. 1983, 53, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Gajewska, B.; Śliwińska-Mossoń, M. Association of MMP-2 and MMP-9 Polymorphisms with Diabetes and Pathogenesis of Diabetic Complications. Int. J. Mol. Sci. 2022, 23, 10571. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yu, X.; Sun, S.; Zhang, X.; Yang, W.; Zhang, J.; Zhang, X.; Jiang, Z. Increased expression of MMP-2 and MMP-9 indicates poor prognosis in glioma recurrence. Biomed. Pharmacother. 2019, 118, 109369. [Google Scholar] [CrossRef]
- Medeiros, N.I.; Gomes, J.A.S.; Fiuza, J.A.; Sousa, G.R.; Almeida, E.F.; Novaes, R.O.; Rocha, V.L.S.; Chaves, A.T.; Dutra, W.O.; Rocha, M.O.C.; et al. MMP-2 and MMP-9 plasma levels are potential biomarkers for indeterminate and cardiac clinical forms progression in chronic Chagas disease. Sci. Rep. 2019, 9, 14170. [Google Scholar] [CrossRef]
- Song, Z.; Wang, J.; Su, Q.; Luan, M.; Chen, X.; Xu, X. The Role of MMP-2 and MMP-9 in the Metastasis and Development of Hypopharyngeal Carcinoma. Braz. J. Otorhinolaryngol. 2021, 87, 521–528. [Google Scholar]
- Chaudhary, A.K.; Chaudhary, S.; Ghosh, K.; Shanmukaiah, C.; Nadkarni, A.H. Secretion and Expression of Matrix Metalloproteinase-2 and 9 from Bone Marrow Mononuclear Cells in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Asian. Pac. J. Cancer Prev. 2016, 17, 1519–1529. [Google Scholar] [CrossRef]
- Gouda, H.M.; Khorshied, M.M.; El Sissy, M.H.; Shaheen, I.A.M.; Mohsen, M.M.A. Association between matrix metalloproteinase 2 (MMP2) promoter polymorphisms and the susceptibility to non-Hodgkin’s lymphoma in Egyptians. Ann. Hematol. 2014, 93, 1313–1318. [Google Scholar] [CrossRef]
- Travaglino, E.; Benatti, C.; Malcovati, L.; Della Porta, M.G.; Gallì, A.; Bonetti, E.; Rosti, V.; Cazzola, M.; Invernizzi, R. Biological and clinical relevance of matrix metalloproteinases 2 and 9 in acute myeloid leukaemias and myelodysplastic syndromes. Eur. J. Haematol. 2008, 80, 216–226. [Google Scholar] [CrossRef]
- Pemmaraju, N.; Gerds, A.T.; Yu, J.; Parasuraman, S.; Shah, A.; Xi, A.; Kumar, S.; Scherber, R.M.; Verstovsek, S. Thrombotic events and mortality risk in patients with newly diagnosed polycythemia vera or essential thrombocythemia. Leuk. Res. 2022, 115, 106809. [Google Scholar] [CrossRef]
- Szczudlik, P.; Borratyńska, A. Association between the -1562 C/T MMP-9 polymorphism and cerebrovascular disease in a Polish population. Neurol. Neurochir. Pol. 2010, 44, 350–357. [Google Scholar] [CrossRef]
- Zhang, B.; Ye, S.; Herrmann, S.M.; Eriksson, P.; de Maat, M.; Evans, A.; Arveiler, D.; Luc, G.; Cambien, F.; Hamsten, A.; et al. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 1999, 99, 1788–1794. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Warzecha, D.; Wilcken, D.; Wang, X.L. Polymorphism in the gelatinase B gene and the severity of coronary arterial stenosis. Clin. Sci. 2001, 101, 87–92. [Google Scholar] [CrossRef]
- Malaponte, G.; Polesel, J.; Candido, S.; Sambataro, D.; Bevelacqua, V.; Anzaldi, M.; Vella, N.; Fiore, V.; Militello, L.; Mazzarino, M.C.; et al. IL-6-174 G > C and MMP-9-1562 C > T polymorphisms are associated with increased risk of deep vein thrombosis in cancer patients. Cytokine 2013, 62, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Sui, G.; Zhou, Q.; Wang, C.; Lin, J.; Chai, Z.; Zhou, J. Variants in matrix metalloproteinase-9 gene are associated with hemorrhagic transformation in acute ischemic stroke patients with atherothrombosis, small artery disease, and cardioembolic stroke. Brain Behav. 2019, 9, e01294. [Google Scholar] [CrossRef]
- Tsuei, Y.-S.; Chou, Y.-E.; Chen, W.-H.; Luo, C.-B.; Yang, S.-F. Polymorphism in dural arteriovenous fistula: Matrix metalloproteinase-2-1306 C/T as a potential risk factor for sinus thrombosis. J. Thromb. Haemost. 2018, 16, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Hałucha, K.J.; Banaszkiewicz, M.; Rak-Pasikowska, A.; Bil-Lula, I. MMP-2 inhibition prevents platelet activation in ischemia/reoxygenation conditions. Adv. Clin. Exp. Med. 2022, 31, 1375–1384. [Google Scholar] [CrossRef]
- Ding, Y.; Li, X. Resistin Promotes Thrombosis in Rats with Deep Vein Thrombosis via Up-Regulating MMP-2, MMP-9, and PAI-1. Clin. Lab. 2019, 65, 1789. [Google Scholar] [CrossRef]
- Majka, M.; Janowska-Wieczorek, A.; Ratajczak, J.; Kowalska, M.A.; Vilaire, G.; Pan, Z.K.; Honczarenko, M.; Marquez, L.A.; Poncz, M.; Ratajczak, M.Z. Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis. Blood 2000, 96, 4142–4151. [Google Scholar] [CrossRef]
- Hughes, S.; Agbaje, O.; Bowen, R.L.; Holliday, D.L.; Shaw, J.A.; Duffy, S.; Jones, J.L. Matrix metalloproteinase single-nucleotide polymorphisms and haplotypes predict breast cancer progression. Clin. Cancer Res. 2007, 13, 6673–6680. [Google Scholar] [CrossRef]
- Zhu, X.; Sun, W. Association between matrix metalloproteinases polymorphisms and ovarian cancer risk: A meta-analysis and systematic review. PLoS ONE 2017, 12, e0185456. [Google Scholar] [CrossRef]
- Hu, J.; Pan, J.; Luo, Z. MMP1 rs1799750 single nucleotide polymorphism and lung cancer risk: A meta-analysis. Asian Pac. J. Cancer Prev. 2012, 13, 5981–5984. [Google Scholar] [CrossRef]
- Geng, R.; Xu, Y.; Hu, W.; Zhao, H. The association between MMP-1 gene rs1799750 polymorphism and knee osteoarthritis risk. Biosci. Rep. 2018, 38, BSR20181257. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Wang, L.; Wu, B.; Han, R.; Han, L.; Wang, T.; Yang, J.; Ni, C. Associations of MMP1, MMP2 and MMP3 Genes Polymorphism with Coal Workers’ Pneumoconiosis in Chinese Han Population. Int. J. Environ. Res. Public Health 2015, 12, 13901–13912. [Google Scholar] [CrossRef] [PubMed]
- Kurzawski, M.; Modrzejewski, A.; Pawlik, A.; Droździk, M. Polymorphism of matrix metalloproteinase genes (MMP1 and MMP3) in patients with varicose veins. Clin. Exp. Dermatol. 2009, 34, 613–617. [Google Scholar] [CrossRef]
- Pei, J.; Hsu, P.; Chou, A.; Tsai, C.; Chang, W.; Hsiao, C.; Hsu, Y.; Cheng, S.; Bau, D. Matrix Metalloproteinase-1 Genotype Contributes to the Risk of Non-solid Tumor in Childhood Leukemia. Anticancer Res. 2016, 36, 5127–5132. [Google Scholar] [CrossRef] [PubMed]
- Gobin, E.; Bagwell, K.; Wagner, J.; Mysona, D.; Sandirasegarane, S.; Smith, N.; Bai, S.; Sharma, A.; Schleifer, R.; She, J. A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer 2019, 19, 581. [Google Scholar] [CrossRef]
- Austin, K.M.; Covic, L.; Kuliopulos, A. Matrix metalloproteases and PAR1 activation. Blood 2013, 121, 431–439. [Google Scholar] [CrossRef]
- Huang, H.; Wu, S.; Hsu, L.; Teng, M.; Lin, J.; Sun, Y.; Ko, Y. Genetic variants associated with circulating MMP1 levels near matrix metalloproteinase genes on chromosome 11q21-22 in Taiwanese: Interaction with obesity. BMC Med. Genet. 2013, 14, 30. [Google Scholar] [CrossRef]
- Shadrina, A.S.; Smetanina, M.A.; Sevost’yanova, K.S.; Shevela, A.I.; Seliverstov, E.I.; Zakharova, E.A.; Voronina, E.N.; Ilyukhin, E.A.; Zolotukhin, I.A.; Kirienko, A.I.; et al. Polymorphism of Matrix Metalloproteinases Genes MMP1, MMP2, MMP3, and MMP7 and the Risk of Varicose Veins of Lower Extremities. Bull. Exp. Biol. Med. 2017, 163, 650–654. [Google Scholar] [CrossRef]
- Krishnaveni, D.; Bhayal, A.C.; Shravan, K.P.; Jyothy, A.; Pratibha, N.; Venkateshwari, A. Heterozygosity of stromelysin-1 (rs3025058) promoter polymorphism is associated with gastric cancer. Indian J. Cancer 2015, 52, 251–254. [Google Scholar]
- Brzóska, K.; Bartłomiejczyk, T.; Sochanowicz, B.; Cymerman, M.; Grudny, J.; Kołakowski, J.; Kapka-Skrzypczak, L.; Kruszewski, M.; Sliwiński, P.; Roszkowski-Śliż, K. Matrix metalloproteinase 3 polymorphisms as a potential marker of enhanced susceptibility to lung cancer in chronic obstructive pulmonary disease subjects. Ann. Agric. Environ. Med. 2014, 21, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Pleskovič, A.; Letonja, M.Š.; Vujkovac, A.C.; Starčević, J.N.; Caprnda, M.; Curilla, E.; Mozos, I.; Kruzliak, P.; Prosecky, R.; Petrovič, D. Matrix metalloproteinase-3 gene polymorphism (rs3025058) affects markers atherosclerosis in type 2 diabetes mellitus. Vasa 2017, 46, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Aizezi, A.; Fan, Y.; Ji, Z.; Li, W.; Li, Y.; Wang, Z.; Ning, K. Association between matrix metalloproteinase-3 gene polymorphisms and tendon-ligament injuries: Evidence from a meta-analysis. BMC Sports Sci. Med. Rehabil. 2022, 14, 26. [Google Scholar] [CrossRef] [PubMed]
- Nehring, P.; Gromadzka, G.; Jastrzębski, M.; Przybyłkowski, A. Genetic Variants in Matrix Metalloproteinases MMP3 (rs3025058) and MMP9 (rs3918242) Associated with Colonic Diverticulosis. Medicina 2023, 59, 2031. [Google Scholar] [CrossRef]
- Zee, R.Y.L.; Bubes, V.; Shrivastava, S.; Ridker, P.M.; Glynn, R.J. Genetic risk factors in recurrent venous thromboembolism: A multilocus, population-based, prospective approach. Clin. Chim. Acta 2009, 402, 189–192. [Google Scholar] [CrossRef]
- Li, X.; Wan, G.; Wang, G.; Li, J. MMP3-1171 5A/6A Promoter Genotype Influences Serum MMP3 Levels and Is Associated with Deep Venous Thrombosis. Ann. Vasc. Surg. 2016, 34, 261–267. [Google Scholar] [CrossRef]
- Wen, D.; Du, X.; Nie, S.; Dong, J.; Ma, C. Association between matrix metalloproteinase family gene polymorphisms and ischemic stroke: A meta-analysis. Mol. Neurobiol. 2014, 50, 979–985. [Google Scholar] [CrossRef]
- Zhang, Q. Association of the matrix metalloproteinase-3 polymorphisms rs679620 and rs3025058 with ischemic stroke risk: A meta-analysis. Neuropsychiatr. Dis. Treat. 2018, 14, 419–427. [Google Scholar] [CrossRef]
- Manshouri, T.; Veletic, I.; Li, P.; Yin, C.C.; Post, S.M.; Verstovsek, S.; Estrov, Z. GLI1 activates pro-fibrotic pathways in myelofibrosis fibrocytes. Cell Death Dis. 2022, 13, 481. [Google Scholar] [CrossRef]
- Tsironi, E.E.; Pefkianaki, M.; Tsezou, A.; Kotoula, M.G.; Dardiotis, E.; Almpanidou, P.; Papathanasiou, A.A.; Rodopoulou, P.; Chatzoulis, D.Z.; Hadjigeorgiou, G.M. Evaluation of MMP1 and MMP3 gene polymorphisms in exfoliation syndrome and exfoliation glaucoma. Mol. Vis. 2009, 15, 2890–2895. [Google Scholar]
- Zhang, J.; Jin, X.; Fang, S.; Li, Y.; Wang, R.; Guo, W.; Wang, N.; Wang, Y.; Wen, D.; Wei, L.; et al. The functional SNP in the matrix metalloproteinase-3 promoter modifies susceptibility and lymphatic metastasis in esophageal squamous cell carcinoma but not in gastric cardiac adenocarcinoma. Carcinogenesis 2004, 25, 2519–2524. [Google Scholar] [CrossRef] [PubMed]
- Gremlich, S.; Fratta, S.; Rebellato, E.; Uras, R.; Reymondin, D.; Damnon, F.; Germond, M.; Gerber, S. Interleukin-1 receptor antagonist gene (IL-1RN) polymorphism is a predictive factor of clinical pregnancy after IVF. Hum. Reprod. 2008, 23, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chien, C.; Tai, C.; Kuo, W.; Hsi, E.; Juo, S.H. Matrix metalloproteinase-9 gene polymorphisms in nasal polyposis. BMC Med. Genet. 2010, 11, 85. [Google Scholar] [CrossRef] [PubMed]
Type of MMP | Polymorphism | Genotype | Frequency, (%) | HWE p-Value |
---|---|---|---|---|
Collagenase | MMP-1 rs1799750 | 1G1G | 26 (29.6) | χ2 = 3.123 p = 0.08 |
1G2G | 37 (42.0) | |||
2G2G | 25 (28.4) | |||
Gelatinase | MMP-2 rs243865 | CC | 55 (62.5) | χ2 = 1.077 p = 0.299 |
CT | 27 (30.7) | |||
TT | 6 (6.8) | |||
Stromelysin | MMP-3 rs3025058 | 5A5A | 20 (22.7) | χ2 = 0.0004 p = 0.985 |
5A6A | 44 (50.0) | |||
6A6A | 24 (27.3) | |||
Gelatinase | MMP-9 rs3918242 | CC | 66 (75.0) | χ2 = 1.147 p = 0.284 |
CT | 19 (21.6) | |||
TT | 3 (3.4) | |||
MMP-9 rs17576 | AA | 37 (42.0) | χ2 = 0.395 p = 0.530 | |
AG | 38 (43.2) | |||
GG | 13 (14.8) |
Characteristic | Polymorphism | Genotype | OR | 95% CI | p-Value |
---|---|---|---|---|---|
Arterial thrombosis | MMP-1 rs1799750 | 2G2G | 1.000 | Reference | - |
1G2G | 3.200 | 0.956–10.714 | 0.059 | ||
Arterial thrombosis | MMP-3 rs3025058 | 5A5A | 1.000 | Reference | - |
6A6A | 0.400 | 0.155–1.031 | 0.058 | ||
Arterial thrombosis | MMP-9 rs3918242 | CC | 1.000 | Reference | - |
CT | 4.206 | 1.337–13.234 | 0.014 | ||
Thrombotic events (both arterial and venous thromboses combined) | MMP-9 rs3918242 | CC | 1.000 | Reference | - |
CT | 3.200 | 1.110–9.258 | 0.031 |
Characteristics | Patients with Thrombosis (n = 36) | Patients without Thrombosis (n = 52) | p Value |
---|---|---|---|
Median age in years (min–max) | 73 (35–87) | 63 (27–86) | 0.684 a |
Males: n (%) | 18 (48.6) | 19 (51.4) | 0.208 a |
Females: n (%) | 18 (35.3) | 33 (64.7) | |
Hb (g/dL): mean (SD) | 149.09 (36.98) | 148.17 (36.16) | 0.908 b |
Ht (%): mean (SD) | 50.17 (30.42) | 47.76 (12.19) | 0.625 b |
RBC count (1012/L): median (min–max) | 5.37 (10.47) | 5.17 (1.23) | 0.625 c |
MCV (fL): median (min–max) | 82 (8.43) | 86 (18.56) | 0.016 c |
MCH (pg): median (min–max) | 27 (3.89) | 28 (9.33) | 0.013 c |
MPV (fL): median (min–max) | 8.70 (7.10–12.50) | 9.70 (0.12–11.20) | 0.633 c |
PLT count (109/L): median (min–max) | 549 (327.64) | 581 (304.91) | 0.694 c |
WBC count (109/L): mean (SD) | 10.89 (3.54) | 10.61 (5.26) | 0.791 b |
Monocyte count (109/L): median (min–max) | 0.59 (0.31) | 0.58 (0.69) | 0.593 c |
Basophils (109/L): median (min–max) | 0.07 (0.38) | 0.10 (0.39) | 0.272 c |
Smokers: n (%) | 2 (50.0) | 2 (50.0) | 0.695 a |
JAK2 p.V617F-positive: n (%) | 27 (51.9) | 25 (48.1) | 0.061 a |
Substitution | Primer Sequence | Restriction Enzyme | Fragment Size |
---|---|---|---|
MMP-1 rs1799750 | F: 5′-TGACTTTTAAAACATAGTCTATGTTCA-3′ R: 5′-TCTTGGATTGATTTGAGATAAGTCATAGC-3′ | AluI | 1G1G-241, 28 bp |
1G2G-270, 241, 28 bp | |||
2G2G-270 bp | |||
MMP-2 rs243865 | F: 5′-ATATTCCCCACCCAGCAGTC-3′ R: 5′-TTGGGAACGCCTGACTTCAG-3′ | AccI | CC-122 bp |
CT-122, 103, 19 bp | |||
TT-103, 19 bp | |||
MMP-3 rs3025058 | F: 5′-GGTTCTCCATTCCTTTGATGGGGGGAAAGA-3′ R: 5′- CTTCCTGGAATTCACATCACTGCCACCACT-3′ | PsyI | 5A5A-97, 32 bp |
5A6A-129, 97, 32 bp | |||
6A6A-129 bp | |||
MMP-9 rs3918242 | F: 5′-GCCTGGCACATAGTAGGCCC-3′ R: 5′-CTTCCTAGCCAGCCGGCATC-3′ | SphI | CC-436 bp |
CT-436, 242, 194 bp | |||
TT-242, 194 bp | |||
MMP-9 rs17576 | F: 5′- AGACCATCCATGGGTCAAAG-3′ R: 5′- GATTGGCCTTGGAAGATGAA-3′ | SmaI | AA-105, 58 bp |
AG-168, 105, 58 bp | |||
GG-168 bp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadeikienė, R.; Savukaitytė, A.; Laukaitienė, D.; Dambrauskienė, R.; Gerbutavičius, R.; Juozaitytė, E.; Ugenskienė, R. Matrix Metalloproteinases Family Gene Polymorphisms Are Associated with Thrombosis Risk in Myeloproliferative Neoplasms. Int. J. Mol. Sci. 2025, 26, 6646. https://doi.org/10.3390/ijms26146646
Vadeikienė R, Savukaitytė A, Laukaitienė D, Dambrauskienė R, Gerbutavičius R, Juozaitytė E, Ugenskienė R. Matrix Metalloproteinases Family Gene Polymorphisms Are Associated with Thrombosis Risk in Myeloproliferative Neoplasms. International Journal of Molecular Sciences. 2025; 26(14):6646. https://doi.org/10.3390/ijms26146646
Chicago/Turabian StyleVadeikienė, Roberta, Aistė Savukaitytė, Danguolė Laukaitienė, Rūta Dambrauskienė, Rolandas Gerbutavičius, Elona Juozaitytė, and Rasa Ugenskienė. 2025. "Matrix Metalloproteinases Family Gene Polymorphisms Are Associated with Thrombosis Risk in Myeloproliferative Neoplasms" International Journal of Molecular Sciences 26, no. 14: 6646. https://doi.org/10.3390/ijms26146646
APA StyleVadeikienė, R., Savukaitytė, A., Laukaitienė, D., Dambrauskienė, R., Gerbutavičius, R., Juozaitytė, E., & Ugenskienė, R. (2025). Matrix Metalloproteinases Family Gene Polymorphisms Are Associated with Thrombosis Risk in Myeloproliferative Neoplasms. International Journal of Molecular Sciences, 26(14), 6646. https://doi.org/10.3390/ijms26146646