The Spectrum and Carrier Frequencies of Common Pathogenic Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations in Men from the General Population: The Role of Ethnicity
Abstract
1. Introduction
2. Results
2.1. Characteristics of the Entire Study Population
2.2. Spectrum and Carrier Frequency of Identified CFTR Variants in the Entire Study Population and Selected Ethnic Groups
2.3. Search for Associations of Identified Pathogenic CFTR Variants with Semen Quality and Hormonal Status
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Physical Examination, Blood and Semen Collection, and Semen and Hormonal Analysis
4.3. Genetic Testing
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krausz, C.; Riera-Escamilla, A. Genetics of Male Infertility. Nat. Rev. Urol. 2018, 15, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Cioppi, F.; Rosta, V.; Krausz, C. Genetics of Azoospermia. Int. J. Mol. Sci. 2021, 22, 3264. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, D.V.S.; Shah, R.; Gajbhiye, R.K. Genetics of Male Infertility—Present and Future: A Narrative Review. J. Hum. Reprod. Sci. 2021, 14, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Gunes, S.; Esteves, S.C. Role of Genetics and Epigenetics in Male Infertility. Andrologia 2021, 53, e13586. [Google Scholar] [CrossRef]
- Batista, R.L.; Costa, E.M.F.; Rodrigues, A.S.; Gomes, N.L.; Faria, J.A., Jr.; Nishi, M.Y.; Arnhold, I.J.P.; Domenice, S.; de Mendonca, B.B. Androgen Insensitivity Syndrome: A Review. Arch. Endocrinol. Metab. 2018, 62, 227–235. [Google Scholar] [CrossRef]
- Millar, A.C.; Faghfoury, H.; Bieniek, J.M. Genetics of Hypogonadotropic Hypogonadism. Transl. Androl. Urol. 2021, 10, 1401–1409. [Google Scholar] [CrossRef]
- Butz, H.; Nyírő, G.; Kurucz, P.A.; Likó, I.; Patócs, A. Molecular Genetic Diagnostics of Hypogonadotropic Hypogonadism: From Panel Design Towards Result Interpretation in Clinical Practice. Hum. Genet. 2021, 140, 113–134. [Google Scholar] [CrossRef]
- Bieniek, J.M.; Lapin, C.D.; Jarvi, K.A. Genetics of CFTR and Male Infertility. Transl. Androl. Urol. 2021, 10, 1391–1400. [Google Scholar] [CrossRef]
- Naz Khan, F.; Mason, K.; Roe, A.H.; Tangpricha, V. CF and Male Health: Sexual and Reproductive Health, Hypogonadism, and Fertility. J. Clin. Transl. Endocrinol. 2022, 27, 100288. [Google Scholar] [CrossRef]
- Campbell, K.; Zarli, M.; Schuppe, K.; Passarelli, R.; Velez, D.; Ramasamy, R. Sexual and Reproductive Health Among Men with Cystic Fibrosis. Urology 2023, 179, 9–15. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, Y.; Yang, X.; Zhang, Y. Heterogeneous Spectrum of CFTR Gene Mutations in Chinese Patients with CAVD and the Dilemma of Genetic Blocking Strategy. Reproduction 2022, 164, 47–56. [Google Scholar] [CrossRef] [PubMed]
- De Boeck, K. Cystic Fibrosis in the Year 2020: A Disease with a New Face. Acta Paediatr. 2020, 109, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Scotet, V.; L’Hostis, C.; Férec, C. The Changing Epidemiology of Cystic Fibrosis: Incidence, Survival and Impact of the CFTR Gene Discovery. Genes 2020, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Amelina, E.L.; Kashirskaya, N.Y.; Kondratieva, E.I.; Krasovsky, S.A.; Starinova, M.A.; Voronkova, A.Y.; Ginter, E.K. (Eds.) The Register of Patients with Cystic Fibrosis in the Russian Federation. 2023 Year; MEDPRAKTIKA-M: Moscow, Russia, 2025; 70p. (In Russian) [Google Scholar]
- Ni, Q.; Chen, X.; Zhang, P.; Yang, L.; Yang, L.; Lu, Y.; Xiao, F.; Wang, H.; Zhou, W.; Dong, X. Systematic Estimation of Cystic Fibrosis Prevalence in Chinese and Genetic Spectrum Comparison to Caucasians. Orphanet J. Rare Dis. 2022, 17, 129. [Google Scholar] [CrossRef]
- Singh, M.; Rebordosa, C.; Bernholz, J.; Sharma, N. Epidemiology and Genetics of Cystic Fibrosis in Asia: In Preparation for the Next-Generation Treatments. Respirology 2015, 20, 1172–1181. [Google Scholar] [CrossRef]
- The Clinical and Functional Translation of CFTR (CFTR2). 25 September 2024. Available online: http://cftr2.org (accessed on 6 June 2025).
- Ayupova, G.; Litvinov, S.; Akhmetova, V.; Minniakhmetov, I.; Mokrysheva, N.; Khusainova, R. Population Characteristics of the Spectrum and Frequencies of CFTR Gene Mutations in Patients with Cystic Fibrosis from the Republic of Bashkortostan (Russia). Genes 2024, 15, 1335. [Google Scholar] [CrossRef]
- Kiseleva, A.; Klimushina, M.; Sotnikova, E.; Skirko, O.; Divashuk, M.; Kurilova, O.; Ershova, A.; Khlebus, E.; Zharikova, A.; Efimova, I.; et al. Cystic Fibrosis Polymorphic Variants in a Russian Population. Pharmgenom. Pers. Med. 2020, 13, 679–686. [Google Scholar] [CrossRef]
- Chernykh, V.; Krasovsky, S.; Solovova, O.; Adyan, T.; Stepanova, A.; Marnat, E.; Shtaut, M.; Sedova, A.; Sorokina, T.; Beskorovainaya, T.; et al. Pathogenic Variants and Genotypes of the CFTR Gene in Russian Men with Cystic Fibrosis and CBAVD Syndrome. Int. J. Mol. Sci. 2023, 24, 16287. [Google Scholar] [CrossRef]
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic Fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef]
- Bareil, C.; Bergougnoux, A. CFTR Gene Variants, Epidemiology and Molecular Pathology. Arch. Pediatr. 2020, 27 (Suppl. 1), eS8–eS12. [Google Scholar] [CrossRef]
- Cheng, H.; Yang, S.; Meng, Q.; Zheng, B.; Gu, Y.; Wang, L.; Song, T.; Xu, C.; Wang, G.; Han, M.; et al. Genetic Analysis and Intracytoplasmic Sperm Injection Outcomes of Chinese Patients with Congenital Bilateral Absence of Vas Deferens. J. Assist. Reprod. Genet. 2022, 39, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.C.; Casella, J.L.; Litvin, M.; Dobs, A.S. Male Reproductive Health in Cystic Fibrosis. J. Cyst. Fibros. 2019, 18 (Suppl. 2), S105–S110. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Zhuang, X.J.; An, J.T.; Jiang, H.; Li, R.; Qiao, J.; Yan, L.Y.; Zhi, X. Identification of Risk Genes in Chinese Nonobstructive Azoospermia Patients Based on Whole-Exome Sequencing. Asian J. Androl. 2023, 25, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Yefimova, M.; Bourmeyster, N.; Becq, F.; Burel, A.; Lavault, M.T.; Jouve, G.; Veau, S.; Pimentel, C.; Jégou, B.; Ravel, C. Update on the Cellular and Molecular Aspects of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Male Fertility. Morphologie 2019, 103, 4–10. [Google Scholar] [CrossRef]
- Groman, J.D.; Hefferon, T.W.; Casals, T.; Bassas, L.; Estivill, X.; Des Georges, M.; Guittard, C.; Koudova, M.; Fallin, M.D.; Nemeth, K.; et al. Variation in a Repeat Sequence Determines Whether a Common Variant of the Cystic Fibrosis Transmembrane Conductance Regulator Gene is Pathogenic or Benign. Am. J. Hum. Genet. 2004, 74, 176–179. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Z.; Yang, B.; Zhou, J.; Peng, Z.; Fang, K.; Wang, L.; Liu, S.; Lu, D.; Dong, Q. The Association Between Variants in the CFTR Gene and Nonobstructive Male Infertility: A Meta-Analysis. Andrologia 2020, 52, e13475. [Google Scholar] [CrossRef]
- Yu, J.; Chen, Z.; Ni, Y.; Li, Z. CFTR Mutations in Men with Congenital Bilateral Absence of the Vas Deferens (CBAVD): A Systemic Review and Meta-Analysis. Hum. Reprod. 2012, 27, 25–35. [Google Scholar] [CrossRef]
- Adyan, T.A.; Stepanova, A.A.; Krasovskiy, S.A.; Polyakova, A.V. Updating Diagnostic Spectrum of Recurring CFTR Mutations. Russ. J. Genet. 2018, 54, 1235–1244. (In Russian) [Google Scholar] [CrossRef]
- Stepanova, A.A.; Krasovsky, S.A.; Polyakov, A.V. Reliability of the Search for 19 Common Mutations in the CFTR Gene in Russian Cystic Fibrosis Patients and the Calculated Frequency of the Disease in Russian Federation. Genetika 2016, 52, 231–241. (In Russian) [Google Scholar] [CrossRef]
- Petrova, N.V.; Kashirskaya, N.Y.; Vasilyeva, T.A.; Kondratyeva, E.I.; Zhekaite, E.K.; Voronkova, A.Y.; Sherman, V.D.; Galkina, V.A.; Ginter, E.K.; Kutsev, S.I.; et al. Analysis of CFTR Mutation Spectrum in Ethnic Russian Cystic Fibrosis Patients. Genes 2020, 11, 554. [Google Scholar] [CrossRef]
- Ilenkova, N.A.; Chikunov, V.V.; Kondratyeva, E.I. Features of Spectrum of Pathogenic Genetic Variants of the CFTR Gene in Patients with Cystic Fibrosis from Krasnoyarsk Territory. Med. News North Cauc. 2020, 15, 178–181. (In Russian) [Google Scholar] [CrossRef]
- Abramov, D.D.; Kadochnikova, V.V.; Yakimova, E.G.; Belousova, M.V.; Marle, A.V.; Sergeev, I.V.; Ragimov, A.A.; Donnikov, A.E.; Trofimov, D.Y. High Carrier Frequency of CFTR Gene Mutations Associated with Cystic Fibrosis, and PAH Gene Mutations Associated with Phenylketonuria in Russian Population. Vestnik RGMU 2015, 4, 32–35. (In Russian) [Google Scholar]
- Zobkova, G.Y.; Kadochnikova, V.V.; Abramov, D.D.; Donnikov, A.E.; Demikova, N.S. Determination of the Carrier Frequency of Mutations in the CFTR, PAH, GALT and GJB2 Genes Among 2168 Individuals Without Clinical Signs of Hereditary Diseases. Med. Genet. 2019, 18, 30–35. (In Russian) [Google Scholar]
- Makarova, M.; Nemtsova, M.; Danishevich, A.; Chernevskiy, D.; Belenikin, M.; Krinitsina, A.; Baranova, E.; Sagaydak, O.; Vorontsova, M.; Khatkov, I.; et al. The CFTR Gene Germline Heterozygous Pathogenic Variants in Russian Patients with Malignant Neoplasms and Healthy Carriers: 11,800 WGS Results. Int. J. Mol. Sci. 2023, 24, 7940. [Google Scholar] [CrossRef]
- Petrova, N.; Balinova, N.; Marakhonov, A.; Vasilyeva, T.; Kashirskaya, N.; Galkina, V.; Ginter, E.; Kutsev, S.; Zinchenko, R. Ethnic Differences in the Frequency of CFTR Gene Mutations in Populations of the European and North Caucasian Part of the Russian Federation. Front. Genet. 2021, 12, 678374. [Google Scholar] [CrossRef]
- WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2010; 272p.
- WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; World Health Organization: Geneva, Switzerland, 2021; 276p.
- Osadchuk, L.; Shantanova, L.; Troev, I.; Kleshchev, M.; Osadchuk, A. Regional and Ethnic Differences in Semen Quality and Reproductive Hormone Levels in Russia: A Siberian Population-Based Cohort Study. Andrology 2021, 9, 1512–1525. [Google Scholar] [CrossRef]
- Ideozu, J.E.; Liu, M.; Riley-Gillis, B.M.; Paladugu, S.R.; Rahimov, F.; Krishnan, P.; Tripathi, R.; Dorr, P.; Levy, H.; Singh, A.; et al. Diversity of CFTR Variants Across Ancestries Characterized Using 454,727 UK Biobank Whole Exome Sequences. Genome Med. 2024, 16, 43. [Google Scholar] [CrossRef]
- Shahin, W.A.; Mehaney, D.A.; El-Falaki, M.M. Mutation Spectrum of Egyptian Children with Cystic Fibrosis. Springerplus 2016, 5, 686. [Google Scholar] [CrossRef]
- Gaikwad, A.; Khan, S.; Kadam, S.; Shah, R.; Kulkarni, V.; Kumaraswamy, R.; Kadam, K.; Dighe, V.; Gajbhiye, R. Cystic Fibrosis Transmembrane Conductance Regulator-Related Male Infertility: Relevance of Genetic Testing & Counselling in Indian Population. Indian J. Med. Res. 2020, 152, 575–583. [Google Scholar]
- Abdul-Qadir, A.G.; Al-Musawi, B.M.; Thejeal, R.F.; Al-Omar, S.A. Molecular Analysis of CFTR Gene Mutations Among Iraqi Cystic Fibrosis Patients. Egypt J. Med. Hum. Genet. 2021, 22, 45. [Google Scholar] [CrossRef]
- Al-Abadi, B.; Al-Hiary, M.; Khasawneh, R.; Al-Momani, A.; Bani-Salameh, A.; Al-Saeidat, S.; Al-Khlaifat, A.; Aboalsondos, O. Cystic Fibrosis Gene Mutation Frequency Among a Group of Suspected Children in King Hussein Medical Center. Med. Arch. 2019, 73, 118–120. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.; Macek, M., Jr.; Cassiman, J.J.; Duff, A.; Massie, J.; ten Kate, L.P.; Barton, D.; Cutting, G.; Dallapiccola, B.; Dequeker, E.; et al. Benchmarks for Cystic Fibrosis Carrier Screening: A European Consensus Document. J. Cyst. Fibros. 2010, 9, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Bobadilla, J.L.; Macek, M., Jr.; Fine, J.P.; Farrell, P.M. Cystic Fibrosis: A Worldwide Analysis of CFTR Mutations—Correlation with Incidence Data and Application to Screening. Hum. Mutat. 2002, 19, 575–606. [Google Scholar] [CrossRef] [PubMed]
- Picci, L.; Cameran, M.; Marangon, O.; Marzenta, D.; Ferrari, S.; Frigo, A.C.; Scarpa, M. A 10-year Large-Scale Cystic Fibrosis Carrier Screening in the Italian Population. J. Cyst. Fibros. 2010, 9, 29–35. [Google Scholar] [CrossRef]
- Molina, M.; Yoldi, A.; Navas, P.; Gañán, M.; Vaquero, Á.; Del Pico, J.L.; Ramírez, J.P.; Castilla, J.A. Carriers of Cystic Fibrosis Among Sperm Donors: Complete CFTR Gene Analysis Versus CFTR Genotyping. Fertil. Steril. 2020, 114, 524–534. [Google Scholar] [CrossRef]
- Grangeia, A.; Alves, S.; Gonçalves, L.; Gregório, I.; Santos, A.C.; Barros, H.; Barros, A.; Carvalho, F.; Moura, C. Spectrum of CFTR Gene Sequence Variants in a Northern Portugal Population. Pulmonology 2018, 24, 3–9. [Google Scholar] [CrossRef]
- Çolak, Y.; Nordestgaard, B.G.; Afzal, S. Morbidity and Mortality in Carriers of the Cystic Fibrosis Mutation CFTR Phe508del in the General Population. Eur. Respir. J. 2020, 56, 2000558. [Google Scholar] [CrossRef]
- Westemeyer, M.; Saucier, J.; Wallace, J.; Prins, S.A.; Shetty, A.; Malhotra, M.; Demko, Z.P.; Eng, C.M.; Weckstein, L.; Boostanfar, R.; et al. Clinical Experience with Carrier Screening in a General Population: Support for a Comprehensive Pan-Ethnic Approach. Genet. Med. 2020, 22, 1320–1328. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Yang, X.; Yan, H.; Zhang, Y. Chinese data of the CFTR mutation: A report from West China Hospital and literature review. Int. J. Clin. Exp. Med. 2018, 11, 6293–6301. [Google Scholar]
- Mikhaylenko, D.S.; Sobol, I.Y.; Safronova, N.Y.; Simonova, O.A.; Efremov, E.A.; Efremov, G.D.; Alekseev, B.Y.; Kaprin, A.D.; Nemtsova, M.V. The Incidence of AZF Deletions, CFTR Mutations and Long Alleles of the AR CAG Repeats During the Primary Laboratory Diagnostics in a Heterogeneous Group of Infertility Men. Urologiia 2019, 3, 101–107. [Google Scholar] [CrossRef]
- Solovyova, E.V.; Tataru, D.A.; Preda, O.G.; Artyukhova, V.G.; Sekira, A.G.; Derevjeva, V.Y.; Makhalova, N.A.; Novoseltseva, A.V.; Rendashkin, I.V.; Zaitseva, T.A.; et al. CFTR Mutations in Male Infertility. Med. Genet. 2018, 17, 28–38. [Google Scholar]
- Polgreen, P.M.; Brown, G.D.; Hornick, D.B.; Ahmad, F.; London, B.; Stoltz, D.A.; Comellas, A.P. CFTR Heterozygotes are at Increased Risk of Respiratory Infections: A Population-Based Study. Open Forum Infect. Dis. 2018, 5, ofy219. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.C.; Comellas, A.P.; Hornick, D.B.; Stoltz, D.A.; Cavanaugh, J.E.; Gerke, A.K.; Welsh, M.J.; Zabner, J.; Polgreen, P.M. Cystic Fibrosis Carriers are at Increased Risk for a Wide Range of Cystic Fibrosis-Related Conditions. Proc. Natl. Acad. Sci. USA 2020, 117, 1621–1627. [Google Scholar] [CrossRef] [PubMed]
- Levkova, M.; Chervenkov, T.; Hachmeriyan, M.; Angelova, L. CFTR Gene Variants as a Reason for Impaired Spermatogenesis: A Pilot Study and a Meta-Analysis of Published Data. Hum. Fertil. 2022, 25, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Jin, J.; Wang, S.; Zhang, F.; Dai, Y.; Shi, L.; Zhang, S. CFTR Gene Mutations and Polymorphism Are Associated with Non-Obstructive Azoospermia: From Case-Control Study. Gene 2017, 626, 282–289. [Google Scholar] [CrossRef]
- De Geyter, J.; Gallati-Kraemer, S.; Zhang, H.; De Geyter, C. Identification and Selection of Healthy Spermatozoa in Heterozygous Carriers of the Phe508del-Variant of the CFTR-Gene in Assisted Reproduction. Sci. Rep. 2022, 12, 1866. [Google Scholar] [CrossRef]
- Li, C.Y.; Jiang, L.Y.; Chen, W.Y.; Li, K.; Sheng, H.Q.; Ni, Y.; Lu, J.X.; Xu, W.X.; Zhang, S.Y.; Shi, Q.X. CFTR is Essential for Sperm Fertilizing Capacity and Is Correlated with Sperm Quality in Humans. Hum. Reprod. 2010, 25, 317–327. [Google Scholar] [CrossRef]
- Yu, J.; Chen, Z.; Zhang, T.; Li, Z.; Ni, Y.; Li, Z. Association of Genetic Variants in CFTR Gene, IVS8 c.1210-12T [5_9] and c.1210-35_1210-12GT [8_12], with Spermatogenetic Failure: Case-Control Study and Meta-Analysis. Mol. Hum. Reprod. 2011, 17, 594–603. [Google Scholar] [CrossRef]
- Asadi, F.; Mirfakhraie, R.; Mirzajani, F.; Khedri, A.A. A Survey of the Common Mutations and IVS8-Tn Polymorphism of Cystic Fibrosis Transmembrane Conductance Regulator Gene in Infertile Men with Nonobstructive Azoospermia and CBAVD in Iranian Population. Iran. Biomed. J. 2019, 23, 92–98. [Google Scholar] [CrossRef]
- Ghorbel, M.; Baklouti-Gargouri, S.; Keskes, R.; Sellami-Ben Hamida, A.; Feki-Chakroun, N.; Bahloul, A.; Fakhfakh, F.; Ammar-Keskes, L. Screening of ΔF508 Mutation and IVS8-poly T Polymorphism in CFTR Gene in Tunisian Infertile Men without CBAVD. Andrologia 2012, 44 (Suppl. 1), 376–382. [Google Scholar] [CrossRef]
- Maksimova, N.R.; Sukhomyasova, A.L.; Nogovitsyna, A.N.; Puzyrev, V.P. Nonspecific Hereditary Pathology in the Republic of Sakha (Yakutia). Yakut Med. J. 2009, 2, 15–19. (In Russian) [Google Scholar]
- Nogovitsyna, A.N.; Sukhomyasova, A.L.; Maksimova, N.R.; Stepanova, S.K.; Zakharova, V.A.; Pavlova, K.K.; Tapyev, E.V.; Gurinova, E.E. Genetic Testing for Hereditary Diseases with Autosomal Recessive Type of Inheritance in the RS (Y). Yakut Med. J. 2014, 2, 40–44. (In Russian) [Google Scholar]
- Bieth, E.; Hamdi, S.M.; Mieusset, R. Genetics of the Congenital Absence of the Vas Deferens. Hum. Genet. 2021, 140, 59–76. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, K.A.; Johansen Taber, K.A.; Grauman, P.V.; Spurka, L.; Lim-Harashima, J.; Svenson, A.; Goldberg, J.D.; Muzzey, D. Sequencing as a First-Line Methodology for Cystic Fibrosis Carrier Screening. Genet. Med. 2019, 21, 2569–2576. [Google Scholar] [CrossRef]
- Coward, R.M.; Davis, E.L.; Young, S.L. Cystic Fibrosis Carrier Screening Using Next Generation Sequencing: A Cautionary Tale. Fertil. Steril. 2020, 114, 495–496. [Google Scholar] [CrossRef]
- Karafet, T.M.; Osipova, L.P.; Gubina, M.A.; Posukh, O.L.; Zegura, S.L.; Hammer, M.F. High Levels of Y-Chromosome Differentiation Among Native Siberian Populations and the Genetic Signature of a Boreal Hunter-Gatherer Way of Life. Hum. Biol. 2002, 74, 761–789. [Google Scholar] [CrossRef]
- Triska, P.; Chekanov, N.; Stepanov, V.; Khusnutdinova, E.K.; Kumar, G.P.A.; Akhmetova, V.; Babalyan, K.; Boulygina, E.; Kharkov, V.; Gubina, M.; et al. Between Lake Baikal and the Baltic Sea: Genomic History of the Gateway to Europe. BMC Genet. 2017, 18 (Suppl. 1), 110. [Google Scholar] [CrossRef]
- Har’kov, V.N.; Hamina, K.V.; Medvedeva, O.F.; Simonova, K.V.; Eremina, E.R.; Stepanov, V.A. Gene Pool of Buryats: Clinal Variability and Territorial Subdivision Based on Data of Y-Chromosome Markers. Genetika 2014, 50, 203–213. (In Russian) [Google Scholar]
- Fedorova, S.A.; Reidla, M.; Metspalu, E.; Metspalu, M.; Rootsi, S.; Tambets, K.; Trofimova, N.; Zhadanov, S.I.; Hooshiar Kashani, B.; Olivieri, A.; et al. Autosomal and Uniparental Portraits of the Native Populations of Sakha (Yakutia): Implications for the Peopling of Northeast Eurasia. BMC Evol. Biol. 2013, 13, 127. [Google Scholar] [CrossRef]
- Khar’kov, V.N.; Stepanov, V.A.; Medvedev, O.F.; Spiridonova, M.G.; Maksimova, N.R.; Nogovitsyna, A.N.; Puzyrev, V.P. The Origin of Yakuts: Analysis of Y-Chromosome Haplotypes. Mol. Biol. 2008, 42, 226–237. (In Russian) [Google Scholar] [CrossRef]
- Osadchuk, L.; Vasiliev, G.; Kleshchev, M.; Osadchuk, A. Androgen Receptor Gene CAG Repeat Length Varies and Affects Semen Quality in an Ethnic-Specific Fashion in Young Men from Russia. Int. J. Mol. Sci. 2022, 23, 10594. [Google Scholar] [CrossRef] [PubMed]
- Toni, L.S.; Garcia, A.M.; Jeffrey, D.A.; Jiang, X.; Stauffer, B.L.; Miyamoto, S.D.; Sucharov, C.C. Optimization of Phenol-Chloroform RNA Extraction. MethodsX 2018, 5, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Kondratieva, E.I.; Voronkova, A.Y.; Bobrovnichiy, V.I.; Sherman, V.D.; Zhekayte, E.K.; Nikonova, V.S.; Kras’ko, O.V.; Krasovskiy, S.A.; Petrova, N.V.; Chakova, N.N.; et al. Clinical, Molecular, and Microbiological Characteristics of Cystic Fibrosis Patients at Moscow Region and Belarus’ Republic. Pulmonologiya 2018, 28, 296–306. (In Russian) [Google Scholar]
- Efremova, A.; Melyanovskaya, Y.; Krasnova, M.; Voronkova, A.; Mokrousova, D.; Zhekaite, E.; Bulatenko, N.; Makhnach, O.; Bukharova, T.; Kutsev, S.; et al. Estimation of Chloride Channel Residual Function and Assessment of Targeted Drugs Efficiency in the Presence of a Complex Allele [L467F.; F508del] in the CFTR Gene. Int. J. Mol. Sci. 2024, 25, 10424. [Google Scholar] [CrossRef]
- Prasolova, M.A.; Dymshits, G.M.; Shchepotina, E.G. Development of a High-Throughput Fluorescence Assay for Detecting SNPs in Hemostasis and Folate Metabolism Genes for Clinical Use. Mol. Gen. Mikrobiol. Virusol. 2013, 28, 24–31. (In Russian) [Google Scholar] [CrossRef]
CFTR Genotype | Entire Study Population, n = 1895 | Slavs, n = 1186 | Buryats, n = 223 | Yakuts, n = 147 |
---|---|---|---|---|
F508del/N | 29/0.0153 (0.0098–0.0208) | 24/0.0202 (0.0122–0.0282) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
G542X/N | 1/0.0005 (0.0000–0.0016) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
N1303K/N | 2/0.0011 (0.0000–0.0025) | 2/0.0017 (0.0000–0.0040) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
3849+10kbC>T/N | 2/0.0011 (0.0000–0.0025) | 1/0.0008 (0.0000–0.0025) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 0.0000–0.0000 |
CFTRdele2,3/N | 1/0.0005 (0.0000–0.0016) | 1/0.0008 (0.0000–0.0025) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
R117C/N | 1/0.0005 (0.0000–0.0016) | 1/0.0008 (0.0000–0.0025) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
F508del/5T | 1/0.0005 (0.0000–0.0016) | 1/0.0008 (0.0000–0.0025) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
F508del/5T-12TG | 1/0.0005 (0.0000–0.0016) | 1/0.0008 (0.0000–0.0025) | 0/0.0000 (0.0000–0.000)0 | 0/0.0000 (0.0000–0.0000) |
R117C/5T | 1/0.0005 (0.0000–0.0016) | 1/0.0008 (0.0000–0.0025) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
Total heterozygotes | 39/0.0206 (0.0142–0.0270) | 32/0.0270 (0.0178–0.0362) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
IVS9-5T/N | 104/0.0549 (0.0446–0.0651) | 90/0.0759 (0.0608–0.0910) | 3/0.0135 (0.0000–0.0286) | 1/0.0068 (0.0000–0.0201) |
5T/5T | 1/0.0005 (0.0000–0.0016) | 1/0.0008 (0.0000–0.0025) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
5T-12TG/N | 11/0.0058 (0.0024–0.0092) | 8/0.0047 (0.0021–0.0114) | 0/0.0000 (0.0000–0.0000) | 1/0.0068 (0.0000–0.0201) |
5T-13TG/N | 10/0.0053 (0.0020–0.0085) | 0/0.0000 (0.0000–0.0000) | 10/0.0448 (0.0177–0.0720) | 0/0.0000 (0.0000–0.0000) |
Total polymorphisms | 126/0.0665 (0.0553–0.0777) | 99/0.0835 (0.0677–0.0992) | 13/0.0583 (0.0275–0.0890) | 2/0.0136 (0.0000–0.0323) |
CFTR Genotype | Normozoospermia n = 1119 | Pathozoospermia n = 675 | Azoospermia n = 37 |
---|---|---|---|
F508del/N | 19/0.0170 (0.0094–0.0245) | 8/0.0119 (0.0037–0.0200) | 0/0.0000 (0.0000–0.0000) |
G542X/N | 0/0.0000 (0.0000–0.0000) | 1/0.0015 (0.0000–0.0044) | 0/0.0000 (0.0000–0.0000) |
N1303K/N | 1/0.0009 (0.0000–0.0026) | 1/0.0015 (0.0000–0.0044) | 0/0.0000 (0.0000–0.0000) |
3849+10kbC>T/N | 2/0.0018 (0.0000–0.0043) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
CFTRdele2,3/N | 1/0.0009 (0.0000–0.0026) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
R117C/N | 1/0.0009 (0.0000–0.0026) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
F508del/5T | 1/0.0009 (0.0000–0.0026) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
F508del/5T-12TG | 1/0.0009 (0.0000–0.0026) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
R117C/5T | 1/0.0009 (0.0000–0.0026) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
Total heterozygotes | 27/0.0241 (0.0151–0.0331) | 10/0.0148 (0.0057–0.0239) | 0/0.0000 (0.0000–0.0000) |
IVS9-5T/N | 58/0.0518 (0.0388–0.0648) | 42/0.0622 (0.0440–0.0804) | 1/0.0270 (0.0000–0.0793) |
5T/5T | 1/0.0009 (0.0000–0.0026) | 0/0.0000 (0.0000–0.0000) | 0/0.0000 (0.0000–0.0000) |
5T-12TG/N | 6/0.0054 (0.0011–0.0096) | 6/0.0089 (0.0018–0.0160) | 0/0.0000 (0.0000–0.0000) |
5T-13TG/N | 8/0.0071 (0.0022–0.0121) | 1/0.0015 (0.0000–0.0044) | 0/0.0000 (0.0000–0.0000) |
Total polymorphisms | 73/0.0652 (0.0508–0.0797) | 49/0.0726 (0.0530–0.0922) | 1/0.0270 (0.0000–0.0793) |
Parameter | Slavs, n = 1186 | Buryats, n = 206 | ||||
---|---|---|---|---|---|---|
Control n = 1055 | Heterozygotes n = 29 | IVS9-5T n = 90 | 5T-12TG n = 8 | Control n = 196 | 5T-TG13 n = 10 | |
Age (years) | 24.8 ± 0.2 | 25.0 ± 1.5 | 25.7 ± 0.7 | 27.6 ± 2.1 | 23.9 ± 0.5 | 23.3 ± 1.7 |
Weight (kg) | 78.4 ± 0.4 | 73.1 ± 1.7 | 79.6 ± 1.4 | 78.1 ± 3.5 | 70.7 ± 0.9 | 66.3 ± 2.9 |
Height (cm) | 179.4 ± 0.2 | 178.4 ± 1.1 | 179.2 ± 0.8 | 178.5 ± 2.5 | 175.0 ± 0.4 | 173.2 ± 1.6 |
BTV (mL) | 42.5 ± 0.3 | 42.9 ± 1.3 | 42.6 ± 0.9 | 43.5 ± 2.8 | 35.6 ± 0.5 | 34.5 ± 2.5 |
Semen volume (mL) | 3.7 ± 0.1 | 3.7 ± 0.4 | 3.9 ± 0.2 | 3.5 ± 0.4 | 3.2 ± 0.1 | 2.9 ± 0.4 |
TSC (106/ejaculate) | 242.4 ± 7.3 | 217.2 ± 36.6 | 201.5 ± 17.7 | 263.9 ± 130.5 | 135.2 ± 8.6 | 134.3 ± 23.2 |
Sperm concentration (106/mL) | 66.35 ± 1.68 | 59.11 ± 7.77 | 54.10 ± 4.67 | 61.44 ± 23.43 | 44.49 ± 2.62 | 48.01 ± 6.96 |
Sperm motility (%) | 48.0 ± 0.8 | 44.8 ± 4.6 | 43.1 ± 3.0 | 34.6 ± 12.0 | 45.7 ± 2.0 | 55.8 ± 8.8 |
Normal morphology (%) | 6.96 ± 0.10 | 6.40 ± 0.49 | 6.67 ± 0.37 | 5.08 ± 1.22 | 6.79 ± 0.205 | 7.69 ± 0.48 |
LH (IU/L) | 3.24 ± 0.04 | 3.31 ± 0.31 | 3.37 ± 0.13 | 2.89 ± 0.46 | 4.03 ± 0.12 | 3.21 ± 0.25 |
FSH (IU/L) | 3.68 ± 0.09 | 3.17 ± 0.22 | 3.81 ± 0.23 | 2.73 ± 0.39 | 4.73 ± 0.21 | 3.50 ± 0.55 |
Testosterone (nmol/L) | 22.81 ± 0.25 | 22.94 ± 1.29 | 22.36 ± 0.77 | 20.77 ± 2.54 | 18.83 ± 0.438 | 17.00 ± 1.92 |
Estradiol (nmol/L) | 0.207 ± 0.002 | 0.196 ± 0.011 | 0.200 ± 0.009 | 0.169 ± 0.018 | 0.234 ± 0.008 | 0.237 ± 0.017 |
Inhibin B (pg/mL) | 188.9 ± 2.1 | 188.0 ± 10.8 | 190.3 ± 7.4 | 217.6 ± 24.47 | 146.2 ± 4.5 | 168.7 ± 10.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osadchuk, L.; Ivanov, M.; Komova, E.; Osadchuk, A. The Spectrum and Carrier Frequencies of Common Pathogenic Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations in Men from the General Population: The Role of Ethnicity. Int. J. Mol. Sci. 2025, 26, 6625. https://doi.org/10.3390/ijms26146625
Osadchuk L, Ivanov M, Komova E, Osadchuk A. The Spectrum and Carrier Frequencies of Common Pathogenic Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations in Men from the General Population: The Role of Ethnicity. International Journal of Molecular Sciences. 2025; 26(14):6625. https://doi.org/10.3390/ijms26146625
Chicago/Turabian StyleOsadchuk, Ludmila, Mikhail Ivanov, Elena Komova, and Alexander Osadchuk. 2025. "The Spectrum and Carrier Frequencies of Common Pathogenic Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations in Men from the General Population: The Role of Ethnicity" International Journal of Molecular Sciences 26, no. 14: 6625. https://doi.org/10.3390/ijms26146625
APA StyleOsadchuk, L., Ivanov, M., Komova, E., & Osadchuk, A. (2025). The Spectrum and Carrier Frequencies of Common Pathogenic Cystic Fibrosis Transmembrane Conductance Regulator Gene Mutations in Men from the General Population: The Role of Ethnicity. International Journal of Molecular Sciences, 26(14), 6625. https://doi.org/10.3390/ijms26146625