Autistic Traits in Schizophrenia: Immune Mechanisms and Inflammatory Biomarkers
Abstract
1. Introduction
2. Materials and Methods
3. The Role of Inflammation in the Pathophysiology of Schizophrenia
Th1/Th2 Profile in Schizophrenia
4. The Potential of Th1/Th2 Response as a Biomarker for the Diagnosis of Schizophrenia and in Predicting Response to Treatment
5. Autistic Phenotype in Schizophrenia
The Molecular Basis of Autistic Traits in Schizophrenia
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lozupone, M.; La Montagna, M.; D’Urso, F.; Picardi, A.; Sardella, A.; Lepore, A.; Daniele, A.; Seripa, D.; Panza, F. The Role of Biomarkers in Psychiatry. Adv. Exp. Med. Biol. 2019, 1118, 135–162. [Google Scholar] [CrossRef] [PubMed]
- Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [CrossRef]
- Tandon, R.; Gaebel, W.; Barch, D.M.; Bustillo, J.; Gur, R.E.; Heckers, S.; Malaspina, D. Definition and description of schizophrenia in the DSM-5. Schizophr. Res. 2013, 150, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Loch, A.A. Schizophrenia, not a psychotic disorder: Bleuler revisited. Front. Psychiatry 2019, 10, 328. [Google Scholar] [CrossRef]
- Kästner, A.; Begemann, M.; Michel, T.M.; Everts, S.; Stepniak, B.; Bach, C.; Ruhrmann, S.; Ettinger, U.; Rujescu, D. Autism beyond diagnostic categories: Characterization of autistic phenotypes in schizophrenia. BMC Psychiatry 2015, 15, 115. [Google Scholar] [CrossRef]
- Barlati, S.; Deste, G.; Gregorelli, M.; Vita, A. Autistic traits in a sample of adult patients with schizophrenia: Prevalence and correlates. Psychol. Med. 2019, 49, 140–148. [Google Scholar] [CrossRef]
- Palumbo, D.; Cella, M.; Calì, P.; Arzarello, S.; Galderisi, S.; Mucci, A. Autism Rating Scale: A new tool for characterizing the schizophrenia phenotype. Front. Psychiatry 2021, 12, 622359. [Google Scholar] [CrossRef]
- Kincaid, D.L.; Doris, M.; Shannon, C.; Mulholland, C. What is the prevalence of autism spectrum disorder and ASD traits in psychosis? A systematic review. Psychiatry Res. 2017, 250, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Buckley, P.F. Neuroinflammation and schizophrenia. Curr. Psychiatry Rep. 2019, 21, 72. [Google Scholar] [CrossRef]
- Fan, X.; Goff, D.C.; Henderson, D.C. Inflammation and schizophrenia. Expert Rev. Neurother. 2007, 7, 789–796. [Google Scholar] [CrossRef]
- Na, K.-S.; Jung, H.-Y.; Kim, Y.-K. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Debnath, M.; Berk, M. Functional implications of the IL-23/IL-17 immune axis in schizophrenia. Mol. Neurobiol. 2017, 54, 8170–8178. [Google Scholar] [CrossRef]
- Steen, R.G.; Mull, C.; McClure, R.; Hamer, R.M.; Lieberman, J.A. Brain volume in first-episode schizophrenia: Systematic review and meta-analysis of magnetic resonance imaging studies. Br. J. Psychiatry 2006, 188, 510–518. [Google Scholar] [CrossRef]
- Gogtay, N.; Greenstein, D.; Lenane, M.; Clasen, L.; Sharp, W.; Giedd, J.; Lalonde, F.; Vaituzis, A.C.; Toga, A.W.; Thompson, P.M.; et al. Three-dimensional brain growth abnormalities in childhood-onset schizophrenia visualized by using tensor-based morphometry. Proc. Natl. Acad. Sci. USA 2008, 105, 15979–15984. [Google Scholar] [CrossRef]
- Laskaris, L.E.; Di Biase, M.A.; Everall, I.; Chana, G.; Christopoulos, A.; Skafidas, E.; Cropley, V.; Pantelis, C.; Weickert, C.S. Microglial activation and progressive brain changes in schizophrenia. Br. J. Pharmacol. 2016, 173, 666–680. [Google Scholar] [CrossRef] [PubMed]
- Monji, A.; Kato, T.A.; Mizoguchi, Y.; Horikawa, H.; Seki, Y.; Kasai, M.; Yamauchi, Y.; Yamada, S.; Kanba, S. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 42, 115–121. [Google Scholar] [CrossRef]
- Miller, B.J.; Gassama, B.; Sebastian, D.; Buckley, P.; Mellor, A. Meta-analysis of lymphocytes in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry 2013, 73, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Zhou, D.F.; Zhang, P.Y.; Wu, G.Y.; Su, J.M.; Cao, L.Y. Lower serum cytokine levels in smokers than nonsmokers with chronic schizophrenia on long-term treatment with antipsychotics. Psychopharmacology 2008, 201, 383–389. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.Y.; Wei, W.; Tan, Y.L.; Chen, D.C.; Li, L.H.; Yang, F.D.; Luo, X.; Kosten, T.R. Lower serum interleukin-2 levels in schizophrenic patients with tardive dyskinesia. Psychiatry Res. 2012, 198, 329–331. [Google Scholar] [CrossRef]
- Hope, S.; Ueland, T.; Steen, N.E.; Dieset, I.; Lorentzen, S.; Berg, A.O.; Aminoff, S.R.; Aukrust, P.; Andreassen, O.A.; Melle, I. Inflammatory markers are associated with general cognitive abilities in schizophrenia and bipolar disorder patients and healthy controls. Schizophr. Res. 2015, 165, 188–194. [Google Scholar] [CrossRef]
- Tausk, F.; Elenkov, I.; Moynihan, J. Psychoneuroimmunology. Dermatol. Ther. 2008, 21, 22–31. [Google Scholar] [CrossRef] [PubMed]
- D’Elios, M.; Del Prete, G. Th1/Th2 balance in human disease. Transplant. Proc. 1998, 30, 2373–2377. [Google Scholar] [CrossRef]
- Berger, A. Science commentary: Th1 and Th2 responses: What are they? BMJ 2000, 321, 424. [Google Scholar] [CrossRef]
- Corthay, A. How do regulatory T cells work? Scand. J. Immunol. 2009, 70, 326–336. [Google Scholar] [CrossRef]
- Sumirtanurdin, R.; Wahyuni, E.S.; Asmara, W.; Adnyana, I.K. Single-nucleotide polymorphism of CTLA-4 (rs5742909) in correlation with schizophrenia risk factor. J. Pharm. Bioallied Sci. 2019, 11, 605. [Google Scholar] [CrossRef]
- Müller, N.; Krause, D.; Weidinger, E.; Schwarz, M. Immunologische Behandlungsoptionen bei schizophrenen Störungen. Fortschr. Neurol. Psychiatr. 2014, 82, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Reale, M.; Costantini, E.; Greig, N.H. Cytokine imbalance in schizophrenia. From research to clinic: Potential implications for treatment. Front. Psychiatry 2021, 12, 536257. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, C.; Wang, Y.; Feng, B.; Zhang, X. Role of T helper lymphokines in the immune-inflammatory pathophysiology of schizophrenia: Systematic review and meta-analysis. Nord. J. Psychiatry 2015, 69, 364–372. [Google Scholar] [CrossRef]
- Srinivas, L.; Vellichirammal, N.N.; Alex, A.M.; Nair, C.; Nair, I.V.; Banerjee, M. Pro-inflammatory cytokines and their epistatic interactions in genetic susceptibility to schizophrenia. J. Neuroinflamm. 2016, 13, 105. [Google Scholar] [CrossRef]
- Riedel, M.; Strassnig, M.; Schwarz, M.J.; Müller, N. Decreased T cellular immune response in schizophrenic patients. J. Psychiatr. Res. 2007, 41, 3–7. [Google Scholar] [CrossRef]
- Jafarinia, M.; Lotfi, N.; Rezaei, N.; Rastgoo, E.; Khodadoustan Shahraki, B.; Zahedi, G. Schizophrenia etiological factors and their correlation with the imbalance of the immune system: An update. GMJ 2023, 12, e3109. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.S.; Riedel, M.; Schwarz, M.; Mueller, N. Is T-helper type 2 shift schizophrenia-specific? Primary results from a comparison of related psychiatric disorders and healthy controls. Psychiatry Clin. Neurosci. 2013, 67, 228–236. [Google Scholar] [CrossRef]
- Malashenkova, I.K.; Morozova, O.V.; Vasilieva, E.Y. A role of the immune system in the pathogenesis of schizophrenia. Zhurnal nevrologii i psikhiatrii imeni SS Korsakova 2018, 118, 72. [Google Scholar] [CrossRef]
- El Kissi, Y.; Samoud, S.; Letaief, L.; Gaha, L. Increased interleukin-17 and decreased BAFF serum levels in drug-free acute schizophrenia. Psychiatry Res. 2015, 225, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Fila-Danilow, A.; Talarowska, M.; Orzechowska, A.; Szemraj, J.; Galecki, P. Association study of interleukin-4 polymorphisms with paranoid schizophrenia in the Polish population: A critical approach. Mol. Biol. Rep. 2012, 39, 7941–7947. [Google Scholar] [CrossRef]
- Roomruangwong, C.; Sirivichayakul, S.; Carvalho, A.F.; Solmi, M.; Maes, M. The role of aberrations in the immune-inflammatory response system (IRS) and the compensatory immune-regulatory reflex system (CIRS) in different phenotypes of schizophrenia: The IRS-CIRS theory of schizophrenia. Mol. Neurobiol. 2020, 57, 778–797. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry 2011, 70, 663–671. [Google Scholar] [CrossRef]
- Noto, M.N.; Ota, V.K.; Gouvea, E.S.; Noto, C.; Braz, G.R.F.; Brisaferro, C.; Spindola, L.M.; Gadelha, A.; Bressan, R.A.; Belangero, S.I. Activation of the immune-inflammatory response system and the compensatory immune-regulatory system in antipsychotic naive first episode psychosis. Eur. Neuropsychopharmacol. 2019, 29, 416–431. [Google Scholar] [CrossRef]
- Gadani, S.P.; Cronk, J.C.; Norris, G.T.; Kipnis, J. IL-4 in the brain: A cytokine to remember. J. Immunol. 2012, 189, 4213–4219. [Google Scholar] [CrossRef]
- Şimşek, Ş.; Yıldırım, V.; Çim, A.; Kaya, S. Serum IL-4 and IL-10 levels correlate with the symptoms of the drug-naive adolescents with first episode, early onset schizophrenia. J. Child Adolesc. Psychopharmacol. 2016, 26, 721–726. [Google Scholar] [CrossRef]
- Iyer, S.S.; Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef] [PubMed]
- León-Ortiz, P.; Borgan, F.; Sethi, A.; Froudist-Walsh, S.; Bloomfield, M.A.P.; McGuire, P.; Egerton, A. Systemic inflammation and cortical neurochemistry in never-medicated first episode-psychosis individuals. Brain Behav. Immun. 2023, 111, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Potvin, S.; Stip, E.; Sepehry, A.A.; Gendron, A.; Bah, R.; Kouassi, E. Inflammatory cytokine alterations in schizophrenia: A systematic quantitative review. Biol. Psychiatry 2008, 63, 801–808. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, L.; Yang, D.; Song, Y.; Liu, S.; Zhao, Q.; Xu, Y.; Shan, L.; Chen, B.; Tang, W.; et al. Correlations between omega-3 fatty acids and inflammatory/glial abnormalities: The involvement of the membrane and neurotransmitter dysfunction in schizophrenia. Front. Cell. Neurosci. 2023, 17, 1163764. [Google Scholar] [CrossRef]
- Momtazmanesh, S.; Zare-Shahabadi, A.; Rezaei, N. Cytokine alterations in schizophrenia: An updated review. Front. Psychiatry 2019, 10, 892. [Google Scholar] [CrossRef] [PubMed]
- Upthegrove, R.; Manzanares-Teson, N.; Barnes, N.M. Cytokine function in medication-naive first episode psychosis: A systematic review and meta-analysis. Schizophr. Res. 2014, 155, 101–108. [Google Scholar] [CrossRef]
- Goldsmith, D.R.; Rapaport, M.H.; Miller, B.J. A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry 2016, 21, 1696–1709. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, J.; Lan, Y.; Zhang, Y.; Wang, C.; Lu, L.; Tang, Y. Serum IL-1ra, a novel biomarker predicting olanzapine-induced hypercholesterolemia and hyperleptinemia in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 84, 71–78. [Google Scholar] [CrossRef]
- Ding, M.; Song, X.; Chen, Y.; Wang, X.; Lu, Z.; Li, L.; Zhang, X. Activation of Th17 cells in drug naïve, first episode schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 51, 78–82. [Google Scholar] [CrossRef]
- Reale, M.; Patruno, A.; De Lutiis, M.A.; Pesce, M.; Felaco, M.; Di Giannantonio, M.; Grilli, A. Dysregulation of chemo-cytokine production in schizophrenic patients versus healthy controls. BMC Neurosci. 2011, 12, 13. [Google Scholar] [CrossRef]
- Kovács, M.Á.; Fekete, S.; Szabó, E.; Endre, T.; Gácsi, Á.; Faludi, G.; Rihmer, Z.; Gonda, X.; Dome, P. Elevated osteopontin and interferon gamma serum levels and increased neutrophil-to-lymphocyte ratio are associated with the severity of symptoms in schizophrenia. Front. Psychiatry 2020, 10, 996. [Google Scholar] [CrossRef]
- Maxeiner, H.-G.; Schneider, E.M.; Kurfiss, S.-T.; Brettschneider, J.; Tumani, H.; Bechter, K. Cerebrospinal fluid and serum cytokine profiling to detect immune control of infectious and inflammatory neurological and psychiatric diseases. Cytokine 2014, 69, 62–67. [Google Scholar] [CrossRef]
- Frydecka, D.; Krzystanek, M.; Adamowicz, A.; Misiak, B. Profiling inflammatory signatures of schizophrenia: A cross-sectional and meta-analysis study. Brain Behav. Immun. 2018, 71, 28–36. [Google Scholar] [CrossRef]
- Chen, M.-L.; Tsai, H.-C.; Ma, H.-I.; Hsieh, S.-L.; Chen, Y.-C.; Chen, C.-H. Antipsychotic drugs suppress the AKT/NF-κB pathway and regulate the differentiation of T-cell subsets. Immunol. Lett. 2011, 140, 81–91. [Google Scholar] [CrossRef]
- Sahbaz, C.; Yildiz, M.; Kalelioglu, T.; Guloksuz, S.; Cicek, E.; Eryilmaz, G.; Camkurt, M.A. Reduced regulatory T cells with increased proinflammatory response in patients with schizophrenia. Psychopharmacology 2020, 237, 1861–1871. [Google Scholar] [CrossRef]
- McGuirk, P.; Mills, K.H.G. Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases. Trends Immunol. 2002, 23, 450–455. [Google Scholar] [CrossRef]
- Mostafa, M.; Fathy, A.A.; Elwasify, M.; Abdelsalam, M. Analysis of selected polymorphisms in FOXP3 gene in a cohort of Egyptian patients with schizophrenia. J. Genet. Eng. Biotechnol. 2022, 20, 83. [Google Scholar] [CrossRef]
- Drexhage, R.C.; van der Heul-Nieuwenhuijsen, L.; Padmos, R.C.; van Stralen, M.; Hooijkaas, H.; Eland, A.M.; Cohen, D.; Versnel, M.A.; Nolen, W.A.; Drexhage, H.A. An activated set point of T-cell and monocyte inflammatory networks in recent-onset schizophrenia patients involves both pro- and anti-inflammatory forces. Int. J. Neuropsychopharmacol. 2011, 14, 746–755. [Google Scholar] [CrossRef]
- Galińska-Skok, B.; Waszkiewicz, N. Markers of schizophrenia—A critical narrative update. J. Clin. Med. 2022, 11, 3964. [Google Scholar] [CrossRef]
- Luo, Y.; He, H.; Zhang, J.; Ou, Y.; Fan, N. Changes in serum TNF-α, IL-18, and IL-6 concentrations in patients with chronic schizophrenia at admission and at discharge. Compr. Psychiatry 2019, 90, 82–87. [Google Scholar] [CrossRef]
- Dawidowski, B.; Górniak, A.; Podwalski, P.; Lebiecka, Z.; Misiak, B.; Samochowiec, J. The role of cytokines in the pathogenesis of schizophrenia. J. Clin. Med. 2021, 10, 3849. [Google Scholar] [CrossRef]
- Malashenkova, I.; Krynskiy, S.; Ogurtsov, D.; Khailov, N.; Druzhinina, P.; Bernstein, A.; Artemov, A.; Mamedova, G.; Zakharova, N.; Kostyuk, G.; et al. Identification of diagnostic schizophrenia biomarkers based on the assessment of immune and systemic inflammation parameters using machine learning modeling. Sovrem. Tekhnol. Med. 2023, 15, 5. [Google Scholar] [CrossRef]
- de Campos-Carli, S.M.; Miranda, A.S.; Dias, I.C.S.; de Oliveira, A.; Cruz, B.F.; Vieira, É.L.M.; Rocha, N.P.; Barbosa, I.G.; Salgado, J.V.; Teixeira, A.L. Serum levels of interleukin-33 and its soluble form receptor (sST2) are associated with cognitive performance in patients with schizophrenia. Compr. Psychiatry 2017, 74, 96–101. [Google Scholar] [CrossRef]
- Noto, M.N.; Maes, M.; Nunes, S.O.V.; Ota, V.K.; Cavalcante, D.; Oliveira, G.; Rossaneis, A.C.; Verri, W.A.; Cordeiro, Q.; Belangero, S.I.; et al. BDNF in antipsychotic naive first episode psychosis: Effects of risperidone and the immune-inflammatory response system. J. Psychiatr. Res. 2021, 141, 206–213. [Google Scholar] [CrossRef]
- Freudenreich, O.; Brockman, M.A.; Henderson, D.C.; Evins, A.E.; Fan, X.; Walsh, J.P.; Goff, D.C. Analysis of peripheral immune activation in schizophrenia using quantitative reverse-transcription polymerase chain reaction (RT-PCR). Psychiatry Res. 2010, 176, 99–102. [Google Scholar] [CrossRef]
- Noto, C.; Maes, M.; Ota, V.K.; Teixeira, A.L.; Bressan, R.A.; Gadelha, A.; Brietzke, E. High predictive value of immune-inflammatory biomarkers for schizophrenia diagnosis and association with treatment resistance. World J. Biol. Psychiatry 2015, 16, 422–429. [Google Scholar] [CrossRef]
- Tomasik, J.; Rahmoune, H.; Guest, P.C.; Bahn, S. Neuroimmune biomarkers in schizophrenia. Schizophr. Res. 2016, 176, 3–13. [Google Scholar] [CrossRef]
- Tourjman, V.; Kouassi, É.; Koue, M.-E.; Rocchetti, M.; Fortin-Fournier, S.; Fusar-Poli, P.; Potvin, S. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: A meta-analysis. Schizophr. Res. 2013, 151, 43–47. [Google Scholar] [CrossRef]
- Dimitrov, D.H.; Lee, S.; Yantis, J.; Honaker, C.; Braida, N. Cytokine serum levels as potential biological markers for the psychopathology in schizophrenia. Adv. Psychiatry 2014, 2014, 493505. [Google Scholar] [CrossRef]
- Asevedo, E.; Rizzo, L.B.; Gadelha, A.; Mansur, R.B.; Ota, V.K.; Berberian, A.A.; Scarpato, B.S.; Teixeira, A.L.; Bressan, R.A.; Brietzke, E. Peripheral interleukin-2 level is associated with negative symptoms and cognitive performance in schizophrenia. Physiol. Behav. 2014, 129, 194–198. [Google Scholar] [CrossRef]
- Boll, K.M.; Noto, C.; Bonifácio, K.L.; Bortolasci, C.C.; Gadelha, A.; Bressan, R.A.; Barbosa, D.S.; Maes, M.; Moreira, E.G. Oxidative and nitrosative stress biomarkers in chronic schizophrenia. Psychiatry Res. 2017, 253, 43–48. [Google Scholar] [CrossRef]
- Dunleavy, C.; Elsworthy, R.J.; Upthegrove, R.; Wood, S.J.; Aldred, S. Inflammation in first-episode psychosis: The contribution of inflammatory biomarkers to the emergence of negative symptoms, a systematic review and meta-analysis. Acta Psychiatr. Scand. 2022, 146, 6–20. [Google Scholar] [CrossRef]
- De Crescenzo, F.; Ciabattini, M.; D’Alo, G.L.; Papa, G.; Armando, M.; Mazzone, L. Autistic Symptoms in Schizophrenia Spectrum Disorders: A Systematic Review and Meta-Analysis. Front. Psychiatry 2019, 10, 78. [Google Scholar] [CrossRef]
- Ruzich, E.; Allison, C.; Smith, P.; Watson, P.; Auyeung, B.; Ring, H.; Baron-Cohen, S. Measuring Autistic Traits in the General Population: A Systematic Review of the Autism-Spectrum Quotient (AQ) in a Nonclinical Population Sample of 6,900 Typical Adult Males and Females. Mol. Autism 2015, 6, 2. [Google Scholar] [CrossRef]
- Fusar-Poli, L.; Brondino, N.; Politi, P.; Aguglia, E. Self-Reported Autistic Traits Using the AQ: A Comparison between Individuals with ASD, Psychosis, and Non-Clinical Controls. Brain Sci. 2020, 10, 291. [Google Scholar] [CrossRef]
- Zheng, S.; Woodberry, K.A.; Seidman, L.J.; Uzenoff, S.; Tsuang, M.T.; Bearden, C.E. Autistic Traits in First-Episode Psychosis: Rates and Association with 1-Year Recovery Outcomes. Early Interv. Psychiatry 2021, 15, 849–855. [Google Scholar] [CrossRef]
- Matsuo, J.; Kamio, Y.; Takahashi, H.; Ota, M.; Teraishi, T.; Hori, H.; Nagashima, A.; Takei, R.; Higuchi, T.; Kunugi, H. Autistic-Like Traits in Adult Patients with Mood Disorders and Schizophrenia. PLoS ONE 2015, 10, e0122711. [Google Scholar] [CrossRef]
- Nakata, Y.; Kanahara, K.; Kimura, K.; Watanabe, K.; Eguchi, T.; Iyo, Y. Autistic traits and cognitive profiles of treatment-resistant schizophrenia. Schizophr. Res. Cogn. 2020, 22, 100186. [Google Scholar] [CrossRef]
- Chisholm, K.; Lin, A.; Armando, M. Schizophrenia Spectrum Disorders and Autism Spectrum Disorder. In Psychiatric Symptoms and Comorbidities in Autism Spectrum Disorder; Mazzone, L., Vitiello, B., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 51–66. [Google Scholar] [CrossRef]
- Barneveld, P.S.; Pieters, S.; van der Molen, M.J.; van Berckelaer-Onnes, I.A.; van Nieuwenhuizen, C. Overlap of autistic and schizotypal traits in adolescents with Autism Spectrum Disorders. Schizophr. Res. 2011, 126, 231–236. [Google Scholar] [CrossRef]
- Ziermans, T.B.; Schirmbeck, F.; Oosterwijk, F.; Geurts, H.M.; De Haan, L.; Genetic Risk and Outcome of Psychosis (GROUP) Investigators. Autistic traits in psychotic disorders: Prevalence, familial risk, and impact on social functioning. Psychol. Med. 2021, 51, 1704–1713. [Google Scholar] [CrossRef]
- Bevan Jones, R.; Thapar, A.; Lewis, G.; Zammit, S. The association between early autistic traits and psychotic experiences in adolescence. Schizophr. Res. 2012, 135, 164–169. [Google Scholar] [CrossRef]
- Komatsu, H.; Ono, T.; Onouchi, Y.; Onoguchi, G.; Maita, Y.; Ishida, Y.; Maki, T.; Oba, A.; Tomita, H.; Kakuto, Y. Polydipsia and autistic traits in patients with schizophrenia spectrum disorders. Front. Psychiatry 2023, 14, 1205138. [Google Scholar] [CrossRef]
- Wada, A.; Yamada, R.; Yamada, Y.; Sumiyoshi, C.; Hashimoto, R.; Matsumoto, J.; Kikuchi, A.; Kubota, R.; Matsui, M.; Nakachi, K.; et al. Autistic trait severity in early schizophrenia: Role in subjective quality of life and social functioning. Schizophr. Res. 2025, 275, 131–136. [Google Scholar] [CrossRef]
- Bechi, M.; Agostoni, G.; Buonocore, M.; Gritti, D.; Mascia, M.; Spangaro, M.; Bianchi, L.; Cocchi, F.; Guglielmino, C.; Bosia, M.; et al. The association of autistic traits with Theory of Mind and its training efficacy in patients with schizophrenia. Schizophr. Res. Cogn. 2020, 19, 100164. [Google Scholar] [CrossRef]
- Goldani, A.A.S.; Downs, S.R.; Widjaja, F.; Lawton, B.; Hendren, R.L. Biomarkers in autism. Front. Psychiatry 2014, 5, 100. [Google Scholar] [CrossRef]
- Nisar, S.; Hashem, S.; Bhat, A.A.; Syed, N.; Yadav, S.K.; Azeem, M.W.; Bagga, P.; Reddy, R.; Naseer, M.I. Association of genes with phenotype in autism spectrum disorder. Aging 2019, 11, 10742–10770. [Google Scholar] [CrossRef]
- Zhou, Y.; Kaiser, T.; Monteiro, P.; Zhang, X.; Van der Goes, M.-S.; Wang, D.; Barak, B.; Hattori, D.; He, Z.; Feng, G. Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron 2016, 89, 147–162. [Google Scholar] [CrossRef]
- Mooney, C.; Chu, C.; Watson, C.; Gordon, A.; Carl, S.; Pearce, D.; Lintner, K. Deregulated mRNA and microRNA expression patterns in the prefrontal cortex of the BTBR mouse model of autism. Mol. Neurobiol. [CrossRef]
- Kondo, H.M.; Lin, I.-F. Excitation-inhibition balance and auditory multistable perception are correlated with autistic traits and schizotypy in a non-clinical population. Sci. Rep. 2020, 10, 8171. [Google Scholar] [CrossRef]
- Ford, T.C.; Crewther, D.P.; Abu-Akel, A. Psychosocial deficits across autism and schizotypal spectra are interactively modulated by excitatory and inhibitory neurotransmission. Autism 2020, 24, 364–373. [Google Scholar] [CrossRef]
- Ford, T.C.; Nibbs, R.; Crewther, D.P. Increased glutamate/GABA+ ratio in a shared autistic and schizotypal trait phenotype termed Social Disorganisation. NeuroImage Clin. 2017, 16, 125–131. [Google Scholar] [CrossRef]
- Sasamoto, A.; Miyata, J.; Hirao, K.; Fujiwara, H.; Kawada, R.; Fujimoto, S.; Tanaka, Y.; Kubota, M.; Sawamoto, N.; Fukuyama, H.; et al. Social impairment in schizophrenia revealed by Autism-Spectrum Quotient correlated with gray matter reduction. Soc. Neurosci. 2011, 6, 548–558. [Google Scholar] [CrossRef]
- Hughes, H.K.; Moreno, R.J.; Ashwood, P. Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain Behav. Immun. 2023, 108, 245–254. [Google Scholar] [CrossRef]
- Usui, N.; Kobayashi, H.; Shimada, S. Neuroinflammation and oxidative stress in the pathogenesis of autism spectrum disorder. Int. J. Mol. Sci. 2023, 24, 5487. [Google Scholar] [CrossRef]
- De Giacomo, A.; Portoghese, F.; Fanizza, I.; Lavopa, S.; Pedaci, C.; De Nitto, E.; Margari, L. Differential diagnosis in children with autistic symptoms and subthreshold ADOS total score: An observational study. Neuropsychiatr. Dis. Treat. 2021, 17, 2163–2172. [Google Scholar] [CrossRef]
- Yang, F.; Wu, Q.; Wang, C.; Zhao, J.; Li, L.; Su, Y. Unconscious and conscious gaze-triggered attentional orienting: Distinguishing innate and acquired components of social attention in children and adults with autistic traits and autism spectrum disorders. Research 2024, 7, 0417. [Google Scholar] [CrossRef]
- Van Der Doef, T.F.; Doorduin, J.; Van Berckel, B.N.M.; Cervenka, S. Assessing brain immune activation in psychiatric disorders: Clinical and preclinical PET imaging studies of the 18-kDa translocator protein. Clin. Transl. Imaging 2015, 3, 449–460. [Google Scholar] [CrossRef]
Th1 | Th2 |
---|---|
⬆ CRP—psychotic symptoms (acute phase) [10] ⬇ IL-6—response to treatment [67], ⬆ IL-6—treatment-resistant schizophrenia, longer hospitalizations [60] TNF-α—treatment-resistance schizophrenia, longer hospitalizations, predisposition marker [68] ⬆ IL-12—negative symptoms and cognition [70], increased cognitive deficits [45] ⬇ IFN-γ—trait marker [67] | ⬆ IL-33—exacerbated cognitive dysfunction [63] ⬆ IL-17, ⬇ BAFF—relapse or first-episode psychosis [34] ⬆ sTNF-R1, sTNF-R2, CCL11, and ⬇ IP-10, IL-4—psychosis [66] ⬇ IL-4—chronic schizophrenia in relapse [47], ⬆ IL-4—more negative symptoms and depressive symptoms [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suprunowicz, M.; Zwierz, M.; Konarzewska, B.; Waszkiewicz, N. Autistic Traits in Schizophrenia: Immune Mechanisms and Inflammatory Biomarkers. Int. J. Mol. Sci. 2025, 26, 6619. https://doi.org/10.3390/ijms26146619
Suprunowicz M, Zwierz M, Konarzewska B, Waszkiewicz N. Autistic Traits in Schizophrenia: Immune Mechanisms and Inflammatory Biomarkers. International Journal of Molecular Sciences. 2025; 26(14):6619. https://doi.org/10.3390/ijms26146619
Chicago/Turabian StyleSuprunowicz, Maria, Mateusz Zwierz, Beata Konarzewska, and Napoleon Waszkiewicz. 2025. "Autistic Traits in Schizophrenia: Immune Mechanisms and Inflammatory Biomarkers" International Journal of Molecular Sciences 26, no. 14: 6619. https://doi.org/10.3390/ijms26146619
APA StyleSuprunowicz, M., Zwierz, M., Konarzewska, B., & Waszkiewicz, N. (2025). Autistic Traits in Schizophrenia: Immune Mechanisms and Inflammatory Biomarkers. International Journal of Molecular Sciences, 26(14), 6619. https://doi.org/10.3390/ijms26146619