Bacterial Amyloids as Hubs for Nucleic Acid Interactions: Implications and Mechanisms
Abstract
1. Introduction
2. Methods Used in This Work
3. Bacterial Amyloid–Nucleic Acid Interactions: Mechanisms and Roles in Microbial Cells
4. Roles of Bacterial Amyloids and Their Interactions with Nucleic Acids in the Development of Neurodegenerative Diseases
5. Bacterial Amyloids Interacting with Nucleic Acids as Factors Playing Roles in Inflammatory Disorders
6. Methodology of Studies on Interactions Between Bacterial Amyloids and Nucleic Acids
7. Computational Approaches to Study Interactions Between Bacterial Amyloids and Nucleic Acids
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Fitzpatrick, A.W.; Debelouchina, G.T.; Bayro, M.J.; Clare, D.K.; Caporini, M.A.; Bajaj, V.S.; Jaroniec, C.P.; Wang, L.; Ladizhansky, V.; Muller, S.A.; et al. Atomic structure and hierarchical assembly of a cross-beta amyloid fibril. Proc. Natl. Acad. Sci. USA 2013, 110, 5468–5473. [Google Scholar] [CrossRef]
- Matiiv, A.B.; Trubitsina, N.P.; Matveenko, A.G.; Barbitoff, Y.A.; Zhouravleva, G.A.; Bondarev, S.A. Amyloid and amyloid-like aggregates: Diversity and the term crisis. Biochem. Mosc. 2020, 85, 1011–1034. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.; Sawaya, M.R.; Balbirnie, M.; Madsen, A.O.; Riekel, C.; Grothe, R.; Eisenberg, D. Structure of the cross-beta spine of amyloid-like fibrils. Nature 2005, 435, 773–778. [Google Scholar] [CrossRef] [PubMed]
- McKinley, M.P.; Bolton, D.C.; Prusiner, S.B. A protease-resistant protein is a structural component of the scrapie prion. Cell 1983, 35, 57–62. [Google Scholar] [CrossRef]
- Nizhnikov, A.A.; Alexandrov, A.I.; Ryzhova, T.A.; Mitkevich, O.V.; Dergalev, A.A.; Ter-Avanesyan, M.D.; Galkin, A.P. Proteomic screening for amyloid proteins. PLoS ONE 2014, 9, e116003. [Google Scholar] [CrossRef] [PubMed]
- Biancalana, M.; Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 2010, 1804, 1405–1412. [Google Scholar] [CrossRef]
- Linse, S.; Knowles, T. Amyloids and protein aggregation. Chem. Sci. 2023, 14, 6491–6492. [Google Scholar] [CrossRef]
- Almeida, Z.L.; Brito, R.M.M. Structure and aggregation mechanisms in amyloids. Molecules 2020, 25, 1195. [Google Scholar] [CrossRef]
- Matiiv, A.B.; Trubitsina, N.P.; Matveenko, A.G.; Barbitoff, Y.A.; Zhouravleva, G.A.; Bondarev, S.A. Structure and polymorphism of amyloid and amyloid-Like Aggregates. Biochem. Mosc. 2022, 87, 450–463. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Huang, H.; Yang, J.; Kratochvil, H.T.; Lolicato, M.; Liu, Y.; Shu, X.; Liu, L.; DeGrado, W.F. Designed peptides that assemble into cross-alpha amyloid-like structures. Nat. Chem. Biol. 2018, 14, 870–875. [Google Scholar] [CrossRef]
- Tayeb-Fligelman, E.; Salinas, N.; Tabachnikov, O.; Landau, M. Staphylococcus aureus PSMalpha3 Cross-alpha fibril polymorphism and determinants of cytotoxicity. Structure 2020, 28, 301–313.e6. [Google Scholar] [CrossRef]
- De-Paula, V.J.; Radanovic, M.; Diniz, B.S.; Forlenza, O.V. Alzheimer’s disease. Subcell. Biochem. 2012, 65, 329–352. [Google Scholar] [CrossRef]
- Levkovich, S.A.; Gazit, E.; Laor Bar-Yosef, D. Two decades of studying functional amyloids in microorganisms. Trends Microbiol. 2021, 29, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Otzen, D.; Riek, R. Functional amyloids. Cold Spring Harb. Perspect. Biol. 2019, 11, a033860. [Google Scholar] [CrossRef] [PubMed]
- Marcoleta, A.; Wien, F.; Arluison, V.; Lagos, R.; Giraldo, R. Bacterial amyloids. eLS 2019. [Google Scholar] [CrossRef]
- Camero, S.; Benitez, M.J.; Jimenez, J.S. Anomalous protein-DNA interactions behind neurological disorders. Adv. Protein Chem. Struct. Biol. 2013, 91, 37–63. [Google Scholar] [CrossRef] [PubMed]
- Azam, T.A.; Hiraga, S.; Ishihama, A. Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes Cells 2000, 5, 613–626. [Google Scholar] [CrossRef]
- Sawyer, I.A.; Bartek, J.; Dundr, M. Phase separated microenvironments inside the cell nucleus are linked to disease and regulate epigenetic state, transcription and RNA processing. Semin. Cell Dev. Biol. 2019, 90, 94–103. [Google Scholar] [CrossRef]
- Shapiro, D.M.; Ney, M.; Eghtesadi, S.A.; Chilkoti, A. Protein phase separation arising from intrinsic disorder: First-principles to bespoke applications. J. Phys. Chem. B 2021, 125, 6740–6759. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Chen, X.; Ma, L.; Li, P.; Yu, H. Protein phase separation and its role in chromatin organization and diseases. Biomed. Pharmacother. 2021, 138, 111520. [Google Scholar] [CrossRef]
- Gupta, A.; Joshi, A.; Arora, K.; Mukhopadhyay, S.; Guptasarma, P. The bacterial nucleoid-associated proteins, HU and Dps, condense DNA into context-dependent biphasic or multiphasic complex coacervates. J. Biol. Chem. 2023, 299, 104637. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, S.; Manohar, A.; Mani, E. Liquid-liquid phase separation (LLPS)-driven fibrilization of amyloid-beta protein. ACS Chem. Neurosci. 2023, 14, 3655–3664. [Google Scholar] [CrossRef]
- Laskowska, E.; Kuczynska-Wisnik, D.; Stojowska-Swedrzynska, K. Role of protein aggregates in bacteria. Adv. Protein Chem. Struct. Biol. 2025, 145, 73–112. [Google Scholar] [CrossRef] [PubMed]
- Nesterov, S.V.; Ilyinsky, N.S.; Uversky, V.N. Liquid-liquid phase separation as a common organizing principle of intracellular space and biomembranes providing dynamic adaptive responses. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 119102. [Google Scholar] [CrossRef]
- Alberti, S.; Gladfelter, A.; Mittag, T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 2019, 176, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Chen, X.; Wu, X.; Zhang, M. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. J. Biol. Chem. 2019, 294, 14823–14835. [Google Scholar] [CrossRef]
- Babinchak, W.M.; Surewicz, W.K. Liquid-Liquid Phase separation and its mechanistic role in pathological protein aggregation. J. Mol. Biol. 2020, 432, 1910–1925. [Google Scholar] [CrossRef]
- Cossa, A.; Wien, F.; Turbant, F.; Kaczorowski, T.; Wegrzyn, G.; Arluison, V.; Perez-Berna, A.J.; Trepout, S.; Pereiro, E. Evaluation of the role of bacterial amyloid on nucleoid structure using cryo-soft X-ray tomography. Methods Mol. Biol. 2022, 2538, 319–333. [Google Scholar] [CrossRef]
- Wosten, H.A.; de Vocht, M.L. Hydrophobins, the fungal coat unravelled. Biochim. Biophys. Acta 2000, 1469, 79–86. [Google Scholar] [CrossRef]
- Chapman, M.R.; Robinson, L.S.; Pinkner, J.S.; Roth, R.; Heuser, J.; Hammar, M.; Normark, S.; Hultgren, S.J. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 2002, 295, 851–855. [Google Scholar] [CrossRef]
- Sleutel, M.; Pradhan, B.; Volkov, A.N.; Remaut, H. Structural analysis and architectural principles of the bacterial amyloid curli. Nat. Commun. 2023, 14, 2822. [Google Scholar] [CrossRef] [PubMed]
- Sonderby, T.V.; Najarzadeh, Z.; Otzen, D.E. Functional bacterial amyloids: Understanding fibrillation, regulating biofilm fibril formation and organizing surface assemblies. Molecules 2022, 27, 4080. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, R. Defined DNA sequences promote the assembly of a bacterial protein into distinct amyloid nanostructures. Proc. Natl. Acad. Sci. USA 2007, 104, 17388–17393. [Google Scholar] [CrossRef]
- Gasset-Rosa, F.; Mate, M.J.; Davila-Fajardo, C.; Bravo, J.; Giraldo, R. Binding of sulphonated indigo derivatives to RepA-WH1 inhibits DNA-induced protein amyloidogenesis. Nucleic Acids Res. 2008, 36, 2249–2256. [Google Scholar] [CrossRef]
- Fernandez-Tresguerres, M.E.; de la Espina, S.M.; Gasset-Rosa, F.; Giraldo, R. A DNA-promoted amyloid proteinopathy in Escherichia coli. Mol. Microbiol. 2010, 77, 1456–1469. [Google Scholar] [CrossRef]
- Lewis, K. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 2000, 64, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Ramisetty, B.C.M.; Sudhakari, P.A. ‘Bacterial Programmed Cell Death’: Cellular altruism or genetic selfism? FEMS Microbiol. Lett. 2020, 367, fnaa141. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D.G. Programmed Cell Death in Bacterial Community: Mechanisms of Action, Causes and Consequences. J. Microbiol. Biotechnol. 2019, 29, 1014–1021. [Google Scholar] [CrossRef]
- Delcourte, L.; Sanchez, C.; Morvan, E.; Berbon, M.; Grelard, A.; Saragaglia, C.; Dakhli, T.; Thore, S.; Bardiaux, B.; Habenstein, B.; et al. NMR resonance assignment of the cell death execution domain BELL2 from multicellular bacterial signalosomes. Biomol. NMR Assign. 2024, 18, 159–164. [Google Scholar] [CrossRef]
- Torreira, E.; Moreno-Del Alamo, M.; Fuentes-Perez, M.E.; Fernandez, C.; Martin-Benito, J.; Moreno-Herrero, F.; Giraldo, R.; Llorca, O. Amyloidogenesis of bacterial prionoid RepA-WH1 recapitulates dimer to monomer transitions of RepA in DNA replication initiation. Structure 2015, 23, 183–189. [Google Scholar] [CrossRef]
- Moreno-Del Alamo, M.; de la Espina, S.M.; Fernandez-Tresguerres, M.E.; Giraldo, R. Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid. Sci. Rep. 2015, 5, 14669. [Google Scholar] [CrossRef] [PubMed]
- Molina-Garcia, L.; Gasset-Rosa, F.; Moreno-Del Alamo, M.; Fernandez-Tresguerres, M.E.; Moreno-Diaz de la Espina, S.; Lurz, R.; Giraldo, R. Functional amyloids as inhibitors of plasmid DNA replication. Sci. Rep. 2016, 6, 25425. [Google Scholar] [CrossRef]
- Salgado-Pabon, W.; Herrera, A.; Vu, B.G.; Stach, C.S.; Merriman, J.A.; Spaulding, A.R.; Schlievert, P.M. Staphylococcus aureus beta-toxin production is common in strains with the beta-toxin gene inactivated by bacteriophage. J. Infect. Dis. 2014, 210, 784–792. [Google Scholar] [CrossRef]
- Miller, A.L.; de Anda, J.; Wong, G.C.L.; Tukel, C. Amyloid-containing biofilms and autoimmunity. Curr. Opin. Struct. Biol. 2022, 75, 102435. [Google Scholar] [CrossRef]
- Illodo, S.; Al-Soufi, W.; Novo, M. Critical aggregation concentration and reversibility of amyloid-beta (1-40) oligomers. Arch. Biochem. Biophys. 2024, 761, 110179. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Breslawec, A.P.; Liang, T.; Deng, Z.; Kuperman, L.L.; Yu, Q. Strategy to combat biofilms: A focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes 2023, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Huseby, M.J.; Kruse, A.C.; Digre, J.; Kohler, P.L.; Vocke, J.A.; Mann, E.E.; Bayles, K.W.; Bohach, G.A.; Schlievert, P.M.; Ohlendorf, D.H.; et al. Beta toxin catalyzes formation of nucleoprotein matrix in staphylococcal biofilms. Proc. Natl. Acad. Sci. USA 2010, 107, 14407–14412. [Google Scholar] [CrossRef]
- Schwartz, K.; Ganesan, M.; Payne, D.E.; Solomon, M.J.; Boles, B.R. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol. Microbiol. 2016, 99, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Taglialegna, A.; Lasa, I.; Valle, J. Amyloid structures as biofilm matrix scaffolds. J. Bacteriol. 2016, 198, 2579–2588. [Google Scholar] [CrossRef]
- Randrianjatovo-Gbalou, I.; Rouquette, P.; Lefebvre, D.; Girbal-Neuhauser, E.; Marcato-Romain, C.E. In situ analysis of Bacillus licheniformis biofilms: Amyloid-like polymers and eDNA are involved in the adherence and aggregation of the extracellular matrix. J. Appl. Microbiol. 2017, 122, 1262–1274. [Google Scholar] [CrossRef]
- Buzzo, J.R.; Devaraj, A.; Gloag, E.S.; Jurcisek, J.A.; Robledo-Avila, F.; Kesler, T.; Wilbanks, K.; Mashburn-Warren, L.; Balu, S.; Wickham, J.; et al. Z-form extracellular DNA is a structural component of the bacterial biofilm matrix. Cell 2021, 184, 5740–5758.e17. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Wu, D.; Huang, J.; Liu, X.; Shen, Y.; Huang, J.; Su, Z.; Li, J. ZBP1 condensate formation synergizes Z-NAs recognition and signal transduction. Cell Death Dis. 2024, 15, 487. [Google Scholar] [CrossRef]
- Nicastro, L.K.; Tursi, S.A.; Le, L.S.; Miller, A.L.; Efimov, A.; Buttaro, B.; Tam, V.; Tukel, C. Cytotoxic curli intermediates form during Salmonella Biofilm Development. J. Bacteriol. 2019, 201, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.C.; Caricchio, R.; Gallucci, S. Triggers of Autoimmunity: The role of bacterial infections in the extracellular exposure of lupus nuclear autoantigens. Front. Immunol. 2019, 10, 2608. [Google Scholar] [CrossRef] [PubMed]
- Pachucki, R.J.; Corradetti, C.; Kohler, L.; Ghadiali, J.; Gallo, P.M.; Nicastro, L.; Tursi, S.A.; Gallucci, S.; Tukel, C.; Caricchio, R. Persistent bacteriuria and antibodies recognizing Curli/eDNA complexes from Escherichia coli are linked to flares in systemic lupus erythematosus. Arthritis Rheumatol. 2020, 72, 1872–1881. [Google Scholar] [CrossRef]
- Miller, A.L.; Bessho, S.; Grando, K.; Tukel, C. Microbiome or infections: Amyloid-containing biofilms as a trigger for complex human diseases. Front. Immunol. 2021, 12, 638867. [Google Scholar] [CrossRef]
- Boudvillain, M.; Figueroa-Bossi, N.; Bossi, L. Terminator still moving forward: Expanding roles for Rho factor. Curr. Opin. Microbiol. 2013, 16, 118–124. [Google Scholar] [CrossRef]
- Pallares, I.; Iglesias, V.; Ventura, S. The Rho Termination factor of Clostridium botulinum contains a prion-like domain with a highly amyloidogenic core. Front. Microbiol. 2015, 6, 1516. [Google Scholar] [CrossRef]
- Yuan, A.H.; Hochschild, A. A bacterial global regulator forms a prion. Science 2017, 355, 198–201. [Google Scholar] [CrossRef]
- Kaur, G.; Kaundal, S.; Kapoor, S.; Grimes, J.M.; Huiskonen, J.T.; Thakur, K.G. Mycobacterium tuberculosis CarD, an essential global transcriptional regulator forms amyloid-like fibrils. Sci. Rep. 2018, 8, 10124. [Google Scholar] [CrossRef]
- Kaur, G.; Kapoor, S.; Thakur, K.G. Bacillus subtilis HelD, an RNA polymerase interacting helicase, forms amyloid-like fibrils. Front. Microbiol. 2018, 9, 1934. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.W.; Yau, J.; Ing, C.; Liu, K.; Farber, P.; Won, A.; Bhandari, V.; Kara-Yacoubian, N.; Seraphim, T.V.; Chakrabarti, N.; et al. Mechanism of amyloidogenesis of a aacterial AAA+ Chaperone. Structure 2016, 24, 1095–1109. [Google Scholar] [CrossRef]
- Bloch, S.; Wegrzyn, G.; Arluison, V. The Role of the Hfq protein in bacterial resistance to antibiotics: A narrative review. Microorganisms 2025, 13, 364. [Google Scholar] [CrossRef] [PubMed]
- Vogel, J.; Luisi, B.F. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 2011, 9, 578–589. [Google Scholar] [CrossRef]
- Orans, J.; Kovach, A.R.; Hoff, K.E.; Horstmann, N.M.; Brennan, R.G. Crystal structure of an Escherichia coli Hfq Core (residues 2-69)-DNA complex reveals multifunctional nucleic acid binding sites. Nucleic Acids Res. 2020, 48, 3987–3997. [Google Scholar] [CrossRef]
- Fortas, E.; Piccirilli, F.; Malabirade, A.; Militello, V.; Trepout, S.; Marco, S.; Taghbalout, A.; Arluison, V. New insight into the structure and function of Hfq C-terminus. Biosci. Rep. 2015, 35, e00190. [Google Scholar] [CrossRef] [PubMed]
- Turbant, F.; El Hamoui, O.; Partouche, D.; Sandt, C.; Busi, F.; Wien, F.; Arluison, V. Identification and characterization of the Hfq bacterial amyloid region DNA interactions. BBA Adv. 2021, 1, 100029. [Google Scholar] [CrossRef]
- Cech, G.M.; Pakula, B.; Kamrowska, D.; Wegrzyn, G.; Arluison, V.; Szalewska-Palasz, A. Hfq protein deficiency in Escherichia coli affects ColE1-like but not lambda plasmid DNA replication. Plasmid 2014, 73, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Diestra, E.; Cayrol, B.; Arluison, V.; Risco, C. Cellular electron microscopy imaging reveals the localization of the Hfq protein close to the bacterial membrane. PLoS ONE 2009, 4, e8301. [Google Scholar] [CrossRef]
- Cech, G.M.; Szalewska-Palasz, A.; Kubiak, K.; Malabirade, A.; Grange, W.; Arluison, V.; Wegrzyn, G. The Escherichia coli Hfq protein: An unattended DNA-transactions regulator. Front. Mol. Biosci. 2016, 3, 36. [Google Scholar] [CrossRef]
- Malabirade, A.; Jiang, K.; Kubiak, K.; Diaz-Mendoza, A.; Liu, F.; van Kan, J.A.; Berret, J.F.; Arluison, V.; van der Maarel, J.R.C. Compaction and condensation of DNA mediated by the C-terminal domain of Hfq. Nucleic Acids Res. 2017, 45, 7299–7308. [Google Scholar] [CrossRef]
- Updegrove, T.B.; Correia, J.J.; Galletto, R.; Bujalowski, W.; Wartell, R.M. E. coli DNA associated with isolated Hfq interacts with Hfq’s distal surface and C-terminal domain. Biochim. Biophys. Acta 2010, 1799, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Zhang, C.; Guttula, D.; Liu, F.; van Kan, J.A.; Lavelle, C.; Kubiak, K.; Malabirade, A.; Lapp, A.; Arluison, V.; et al. Effects of Hfq on the conformation and compaction of DNA. Nucleic Acids Res. 2015, 43, 4332–4341. [Google Scholar] [CrossRef]
- Cossa, A.; Trepout, S.; Wien, F.; Groen, J.; Le Brun, E.; Turbant, F.; Besse, L.; Pereiro, E.; Arluison, V. Cryo soft X-ray tomography to explore Escherichia coli nucleoid remodeling by Hfq master regulator. J. Struct. Biol. 2022, 214, 107912. [Google Scholar] [CrossRef] [PubMed]
- Wien, F.; Gragera, M.; Matsuo, T.; Moroy, G.; Bueno-Carrasco, M.T.; Arranz, R.; Cossa, A.; Martel, A.; Bordallo, H.N.; Rudic, S.; et al. Amyloid-like DNA bridging: A new mode of DNA shaping. Nucleic Acids Res. 2025, 53, gkaf169. [Google Scholar] [CrossRef] [PubMed]
- Turbant, F.; Waeytens, J.; Campidelli, C.; Bombled, M.; Martinez, D.; Grelard, A.; Habenstein, B.; Raussens, V.; Velez, M.; Wien, F.; et al. Unraveling membrane perturbations caused by the bacterial riboregulator Hfq. Int. J. Mol. Sci. 2022, 23, 8739. [Google Scholar] [CrossRef]
- Bloch, S.; Sinden, R.R.; Wien, F.; Wegrzyn, G.; Arluison, V. DNA Transactions in bacteria and membranes: A place for the Hfq protein? Membranes 2025, 15, 103. [Google Scholar] [CrossRef]
- Aich, P.; Patra, M.; Chatterjee, A.K.; Roy, S.S.; Basu, T. Calcium chloride made E. coli competent for uptake of extraneous DNA through overproduction of OmpC protein. Protein J. 2012, 31, 366–373. [Google Scholar] [CrossRef]
- Belousov, M.V.; Kosolapova, A.O.; Fayoud, H.; Sulatsky, M.I.; Sulatskaya, A.I.; Romanenko, M.N.; Bobylev, A.G.; Antonets, K.S.; Nizhnikov, A.A. OmpC and OmpF Outer membrane proteins of Escherichia coli and Salmonella enterica form bona fide amyloids. Int. J. Mol. Sci. 2023, 24, 15522. [Google Scholar] [CrossRef]
- Imamura, Y.; Hiyama, A.; Miyazaki, H.; Yamanaka, T.; Nukina, N. Amyloids facilitate DNA transfection in vivo. Neurosci. Res. 2022, 180, 99–107. [Google Scholar] [CrossRef]
- Kubiak, K.; Wien, F.; Yadav, I.; Jones, N.C.; Vrønning Hoffmann, S.; Le Cam, E.; Cossa, A.; Geinguenaud, F.; van der Maarel, J.R.C.; Węgrzyn, G.; et al. Amyloid-like Hfq interaction with single-stranded DNA: Involvement in recombination and replication in Escherichia coli. QRB Discov. 2022, 3, e15. [Google Scholar] [CrossRef] [PubMed]
- Franze de Fernandez, M.T.; Hayward, W.S.; August, J.T. Bacterial proteins required for replication of phage Qb ribonucleic acid. J. Biol. Chem. 1972, 247, 821–824. [Google Scholar]
- Barrera, I.; Schuppli, D.; Sogo, J.M.; Weber, H. Different mechanisms of recognition of bacteriophage Q beta plus and minus strand RNAs by Q beta replicase. J. Mol. Biol. 1993, 232, 512–521. [Google Scholar] [CrossRef]
- Schuppli, D.; Georgijevic, J.; Weber, H. Synergism of mutations in bacteriophage Qbeta RNA affecting host factor dependence of Qbeta replicase. J. Mol. Biol. 2000, 295, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Updegrove, T.B.; Zhang, A.; Storz, G. Hfq: The flexible RNA matchmaker. Curr. Opin. Microbiol. 2016, 30, 133–138. [Google Scholar] [CrossRef]
- Brennan, R.G.; Link, T.M. Hfq structure, function and ligand binding. Curr. Opin. Microbiol. 2007, 10, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Prevost, K.; Heideman, E.M.; Carrier, M.C.; Azam, M.S.; Reyer, M.A.; Liu, W.; Masse, E.; Fei, J. Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells. Elife 2021, 10, e64207. [Google Scholar] [CrossRef]
- Melamed, S.; Adams, P.P.; Zhang, A.; Zhang, H.; Storz, G. RNA-RNA interactomes of ProQ and Hfq reveal overlapping and competing Roles. Mol. Cell 2020, 77, 411–425.e7. [Google Scholar] [CrossRef]
- Arluison, V.; Folichon, M.; Marco, S.; Derreumaux, P.; Pellegrini, O.; Seguin, J.; Hajnsdorf, E.; Regnier, P. The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer. Eur. J. Biochem. 2004, 271, 1258–1265. [Google Scholar] [CrossRef]
- Sonnleitner, E.; Napetschnig, J.; Afonyushkin, T.; Ecker, K.; Vecerek, B.; Moll, I.; Kaberdin, V.R.; Blasi, U. Functional effects of variants of the RNA chaperone Hfq. Biochem. Biophys. Res. Commun. 2004, 323, 1017–1023. [Google Scholar] [CrossRef]
- Turbant, F.; Wu, P.; Wien, F.; Arluison, V. The Amyloid Region of Hfq Riboregulator Promotes DsrA:rpoS RNAs Annealing. Biology 2021, 10, 900. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Frangos, A.; Kavita, K.; Schu, D.J.; Gottesman, S.; Woodson, S.A. C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proc. Natl. Acad. Sci. USA 2016, 113, E6089–E6096. [Google Scholar] [CrossRef]
- Santiago-Frangos, A.; Jeliazkov, J.R.; Gray, J.J.; Woodson, S.A. Acidic C-terminal domains autoregulate the RNA chaperone Hfq. Elife 2017, 6, e27049. [Google Scholar] [CrossRef] [PubMed]
- Sarni, S.H.; Roca, J.; Du, C.; Jia, M.; Li, H.; Damjanovic, A.; Malecka, E.M.; Wysocki, V.H.; Woodson, S.A. Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry. Proc. Natl. Acad. Sci. USA 2022, 119, e2208780119. [Google Scholar] [CrossRef]
- Wagner, E.G. Cycling of RNAs on Hfq. RNA Biol. 2013, 10, 619–626. [Google Scholar] [CrossRef] [PubMed]
- de Haseth, P.L.; Uhlenbeck, O.C. Interaction of Escherichia coli host factor protein with oligoriboadenylates. Biochemistry 1980, 19, 6138–6146. [Google Scholar] [CrossRef]
- Andrade, J.M.; Dos Santos, R.F.; Chelysheva, I.; Ignatova, Z.; Arraiano, C.M. The RNA-binding protein Hfq is important for ribosome biogenesis and affects translation fidelity. EMBO J. 2018, 37, e97631. [Google Scholar] [CrossRef]
- Dos Santos, R.F.; Andrade, J.M.; Pissarra, J.; Deutscher, M.P.; Arraiano, C.M. Hfq and RNase R mediate rRNA processing and degradation in a novel RNA quality control process. mBio 2020, 11, 10-1128. [Google Scholar] [CrossRef]
- Rabhi, M.; Espeli, O.; Schwartz, A.; Cayrol, B.; Rahmouni, A.R.; Arluison, V.; Boudvillain, M. The Sm-like RNA chaperone Hfq mediates transcription antitermination at Rho-dependent terminators. EMBO J. 2011, 30, 2805–2816. [Google Scholar] [CrossRef]
- Subedi, S.; Sasidharan, S.; Nag, N.; Saudagar, P.; Tripathi, T. Amyloid cross-seeding: Mechanism, implication, and inhibition. Molecules 2022, 27, 1776. [Google Scholar] [CrossRef]
- Ikeda, Y.; Yagi, M.; Morita, T.; Aiba, H. Hfq binding at RhlB-recognition region of RNase E is crucial for the rapid degradation of target mRNAs mediated by sRNAs in Escherichia coli. Mol. Microbiol. 2011, 79, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, B.K.; Maples, V.F.; Kushner, S.R. The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Mol. Microbiol. 2004, 54, 905–920. [Google Scholar] [CrossRef] [PubMed]
- Sukhodolets, M.V.; Garges, S. Interaction of Escherichia coli RNA polymerase with the ribosomal protein S1 and the Sm-like ATPase Hfq. Biochemistry 2003, 42, 8022–8034. [Google Scholar] [CrossRef]
- Orand, T.; Jensen, M.R. Binding mechanisms of intrinsically disordered proteins: Insights from experimental studies and structural predictions. Curr. Opin. Struct. Biol. 2025, 90, 102958. [Google Scholar] [CrossRef]
- Albocher-Kedem, N.; Heidenreich, M.; Fadel, A.; Sirotkin, E.; Goldberger, O.; Nussbaum-Shochat, A.; Levy, E.D.; Schueler-Furman, O.; Schuldiner, M.; Amster-Choder, O. Uncovering the mechanism for polar sequestration of the major bacterial sugar regulator by high-throughput screens and 3D interaction modeling. Cell Rep. 2025, 44, 115436. [Google Scholar] [CrossRef] [PubMed]
- Szoke, T.; Albocher, N.; Govindarajan, S.; Nussbaum-Shochat, A.; Amster-Choder, O. Tyrosine phosphorylation-dependent localization of TmaR that controls activity of a major bacterial sugar regulator by polar sequestration. Proc. Natl. Acad. Sci. USA 2021, 118, e2016017118. [Google Scholar] [CrossRef]
- Szoke, T.; Goldberger, O.; Albocher-Kedem, N.; Barsheshet, M.; Dezorella, N.; Nussbaum-Shochat, A.; Wiener, R.; Schuldiner, M.; Amster-Choder, O. Regulation of major bacterial survival strategies by transcripts sequestration in a membraneless organelle. Cell Rep. 2023, 42, 113393. [Google Scholar] [CrossRef]
- Rout, S.K.; Cadalbert, R.; Schroder, N.; Wang, J.; Zehnder, J.; Gampp, O.; Wiegand, T.; Guntert, P.; Klingler, D.; Kreutz, C.; et al. An analysis of nucleotide-amyloid interactions reveals selective binding to codon-sized RNA. J. Am. Chem. Soc. 2023, 145, 21915–21924. [Google Scholar] [CrossRef]
- Elkins, M.; Jain, N.; Tukel, C. The menace within: Bacterial amyloids as a trigger for autoimmune and neurodegenerative diseases. Curr. Opin. Microbiol. 2024, 79, 102473. [Google Scholar] [CrossRef]
- Otzen, D.E.; Pena-Diaz, S.; Widmann, J.; Daugberg, A.O.H.; Zhang, Z.; Jiang, Y.; Mittal, C.; Dueholm, M.K.D.; Louros, N.; Wang, H.; et al. Interactions between pathological and functional amyloid: A match made in Heaven or Hell? Mol. Asp. Med. 2025, 103, 101351. [Google Scholar] [CrossRef]
- Miklossy, J. Bacterial amyloid and DNA are important constituents of senile plaques: Further evidence of the spirochetal and Biofilm Nature of Senile Plaques. J. Alzheimers Dis. 2016, 53, 1459–1473. [Google Scholar] [CrossRef] [PubMed]
- Tetz, G.; Tetz, V. Bacterial Extracellular DNA Promotes beta-Amyloid Aggregation. Microorganisms 2021, 9, 1301. [Google Scholar] [CrossRef] [PubMed]
- Perov, S.; Lidor, O.; Salinas, N.; Golan, N.; Tayeb-Fligelman, E.; Deshmukh, M.; Willbold, D.; Landau, M. Structural insights into curli CsgA cross-beta fibril architecture inspire repurposing of anti-amyloid compounds as anti-biofilm agents. PLoS Pathog. 2019, 15, e1007978. [Google Scholar] [CrossRef] [PubMed]
- Das, T.K.; Blasco-Conesa, M.P.; Korf, J.; Honarpisheh, P.; Chapman, M.R.; Ganesh, B.P. Bacterial amyloid curli associated gut epithelial neuroendocrine activation predominantly observed in Alzheimer’s disease mice with central amyloid-beta pathology. J. Alzheimers Dis. 2022, 88, 191–205. [Google Scholar] [CrossRef]
- Ueda, A.; Shinkai, S.; Shiroma, H.; Taniguchi, Y.; Tsuchida, S.; Kariya, T.; Kawahara, T.; Kobayashi, Y.; Kohda, N.; Ushida, K.; et al. Identification of Faecalibacterium prausnitzii strains for gut microbiome-based intervention in Alzheimer’s-type dementia. Cell Rep. Med. 2021, 2, 100398. [Google Scholar] [CrossRef]
- Molina-Garcia, L.; Moreno-Del Alamo, M.; Botias, P.; Martin-Moldes, Z.; Fernandez, M.; Sanchez-Gorostiaga, A.; Alonso-Del Valle, A.; Nogales, J.; Garcia-Cantalejo, J.; Giraldo, R. Outlining core pathways of amyloid toxicity in bacteria with the RepA-WH1 prionoid. Front. Microbiol. 2017, 8, 539. [Google Scholar] [CrossRef]
- Gallo, P.M.; Rapsinski, G.J.; Wilson, R.P.; Oppong, G.O.; Sriram, U.; Goulian, M.; Buttaro, B.; Caricchio, R.; Gallucci, S.; Tukel, C. Amyloid-DNA Composites of bacterial biofilms stimulate autoimmunity. Immunity 2015, 42, 1171–1184. [Google Scholar] [CrossRef]
- Tursi, S.A.; Lee, E.Y.; Medeiros, N.J.; Lee, M.H.; Nicastro, L.K.; Buttaro, B.; Gallucci, S.; Wilson, R.P.; Wong, G.C.L.; Tukel, C. Bacterial amyloid curli acts as a carrier for DNA to elicit an autoimmune response via TLR2 and TLR9. PLoS Pathog. 2017, 13, e1006315. [Google Scholar] [CrossRef]
- Tursi, S.A.; Tukel, C. Curli-containing enteric biofilms inside and out: Matrix composition, immune recognition, and disease implications. Microbiol. Mol. Biol. Rev. 2018, 82, 10-1128. [Google Scholar] [CrossRef]
- Nicastro, L.; Tukel, C. Bacterial amyloids: The link between bacterial infections and autoimmunity. Trends Microbiol. 2019, 27, 954–963. [Google Scholar] [CrossRef]
- Mintri, S.; Grando, K.; Tükel, Ç.; Fitzgerald, K.A.; Gallucci, S. Characterizing inflammasome activation by bacterial amyloid curli complexes from biofilms in dendritic cells and its role in SLE. J. Immunol. 2024, 212, 1362_5319. [Google Scholar] [CrossRef]
- Miller, A.L.; Pasternak, J.A.; Medeiros, N.J.; Nicastro, L.K.; Tursi, S.A.; Hansen, E.G.; Krochak, R.; Sokaribo, A.S.; MacKenzie, K.D.; Palmer, M.B.; et al. In vivo synthesis of bacterial amyloid curli contributes to joint inflammation during S. Typhimurium infection. PLoS Pathog. 2020, 16, e1008591. [Google Scholar] [CrossRef]
- Verstraelen, P.; Van Remoortel, S.; De Loose, N.; Verboven, R.; Garcia-Diaz Barriga, G.; Christmann, A.; Gries, M.; Bessho, S.; Li, J.; Guerra, C.; et al. Serum Amyloid A3 fuels a feed-forward inflammatory response to the bacterial amyloid curli in the enteric nervous system. Cell Mol. Gastroenterol. Hepatol. 2024, 18, 89–104. [Google Scholar] [CrossRef]
- Moshe, A.; Landau, M.; Eisenberg, D. Preparation of crystalline samples of amyloid fibrils and oligomers. Methods Mol. Biol. 2016, 1345, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Guenther, E.L.; Ge, P.; Trinh, H.; Sawaya, M.R.; Cascio, D.; Boyer, D.R.; Gonen, T.; Zhou, Z.H.; Eisenberg, D.S. Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nat. Struct. Mol. Biol. 2018, 25, 311–319. [Google Scholar] [CrossRef]
- Malabirade, A.; Partouche, D.; El Hamoui, O.; Turbant, F.; Geinguenaud, F.; Recouvreux, P.; Bizien, T.; Busi, F.; Wien, F.; Arluison, V. Revised role for Hfq bacterial regulator on DNA topology. Sci. Rep. 2018, 8, 16792. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, X.L.; Zeng, Y.T.; Hu, Z.H.; Lu, J.X. Solid-state NMR studies of amyloids. Structure 2023, 31, 230–243. [Google Scholar] [CrossRef]
- Warschawski, D.E.; Traikia, M.; Devaux, P.F.; Bodenhausen, G. Solid-state NMR for the study of membrane systems: The use of anisotropic interactions. Biochimie 1998, 80, 437–450. [Google Scholar] [CrossRef]
- Martial, B.; Lefevre, T.; Auger, M. Understanding amyloid fibril formation using protein fragments: Structural investigations via vibrational spectroscopy and solid-state NMR. Biophys. Rev. 2018, 10, 1133–1149. [Google Scholar] [CrossRef]
- Higman, V.A. Solid-state MAS NMR resonance assignment methods for proteins. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 106–107, 37–65. [Google Scholar] [CrossRef]
- Scheres, S.H.W.; Ryskeldi-Falcon, B.; Goedert, M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 2023, 621, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Stockert, F.; Shenoy, J.; Berbon, M.; Abdul-Shukkoor, M.B.; Habenstein, B.; Loquet, A.; Schmidt, M.; Fandrich, M. Cryo-EM observation of the amyloid key structure of polymorphic TDP-43 amyloid fibrils. Nat. Commun. 2024, 15, 486. [Google Scholar] [CrossRef]
- Kreutzberger, M.A.B.; Sonani, R.R.; Egelman, E.H. Cryo-EM reconstruction of helical polymers: Beyond the simple cases. Q. Rev. Biophys. 2024, 57, e16. [Google Scholar] [CrossRef]
- Garcia-Pardo, J.; Ventura, S. Cryo-EM structures of functional and pathological amyloid ribonucleoprotein assemblies. Trends Biochem. Sci. 2024, 49, 119–133. [Google Scholar] [CrossRef]
- Reinke, A.A.; Gestwicki, J.E. Insight into amyloid structure using chemical probes. Chem. Biol. Drug Des. 2011, 77, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Stains, C.I.; Mondal, K.; Ghosh, I. Molecules that target beta-amyloid. ChemMedChem 2007, 2, 1674–1692. [Google Scholar] [CrossRef]
- Pinotsi, D.; Buell, A.K.; Galvagnion, C.; Dobson, C.M.; Kaminski Schierle, G.S.; Kaminski, C.F. Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy. Nano Lett. 2014, 14, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Partouche, D.; Mathurin, J.; Malabirade, A.; Marco, S.; Sandt, C.; Arluison, V.; Deniset, A.; Trepout, S. Correlative infrared nanospectroscopy and transmission electron microscopy to investigate nanometric amyloid fibrils: Prospects and challenges. J. Microsc. 2019, 274, 23–31. [Google Scholar] [CrossRef]
- Kad, N.M.; Myers, S.L.; Smith, D.P.; Smith, D.A.; Radford, S.E.; Thomson, N.H. Hierarchical assembly of beta2-microglobulin amyloid in vitro revealed by atomic force microscopy. J. Mol. Biol. 2003, 330, 785–797. [Google Scholar] [CrossRef]
- Malabirade, A.; Morgado-Brajones, J.; Trepout, S.; Wien, F.; Marquez, I.; Seguin, J.; Marco, S.; Velez, M.; Arluison, V. Membrane association of the bacterial riboregulator Hfq and functional perspectives. Sci. Rep. 2017, 7, 10724. [Google Scholar] [CrossRef]
- Dazzi, A.; Prater, C.B. AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 2016, 117, 5146–5173. [Google Scholar] [CrossRef]
- Waeytens, J.; Mathurin, J.; Deniset-Besseau, A.; Arluison, V.; Bousset, L.; Rezaei, H.; Raussens, V.; Dazzi, A. Probing amyloid fibril secondary structures by infrared nanospectroscopy: Experimental and theoretical considerations. Analyst 2021, 146, 132–145. [Google Scholar] [CrossRef]
- Custovic, I.; Pocholle, N.; Bourillot, E.; Lesniewska, E.; Pietrement, O. Infrared nanospectroscopic imaging of DNA molecules on mica surface. Sci. Rep. 2022, 12, 18972. [Google Scholar] [CrossRef] [PubMed]
- Lipiec, E.; Ruggeri, F.S.; Benadiba, C.; Borkowska, A.M.; Kobierski, J.D.; Miszczyk, J.; Wood, B.R.; Deacon, G.B.; Kulik, A.; Dietler, G.; et al. Infrared nanospectroscopic mapping of a single metaphase chromosome. Nucleic Acids Res. 2019, 47, e108. [Google Scholar] [CrossRef] [PubMed]
- Balduzzi, E.; Geinguenaud, F.; Sordyl, D.; Maiti, S.; Farsani, M.A.; Nikolaev, G.; Arluison, V.; Bujnicki, J.M. NAIRDB: A database of Fourier transform infrared (FTIR) data for nucleic acids. Nucleic Acids Res. 2024, 53, D157–D162. [Google Scholar] [CrossRef]
- Goormaghtigh, E.; Gasper, R.; Benard, A.; Goldsztein, A.; Raussens, V. Protein secondary structure content in solution, films and tissues: Redundancy and complementarity of the information content in circular dichroism, transmission and ATR FTIR spectra. Biochim. Biophys. Acta 2009, 1794, 1332–1343. [Google Scholar] [CrossRef]
- Tatulian, S.A. Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy. Methods Mol. Biol. 2013, 974, 177–218. [Google Scholar] [CrossRef] [PubMed]
- Ruysschaert, J.-M.; Raussens, V. ATR-FTIR Analysis of amyloid proteins. Methods Mol. Biol. 2018, 1777, 69–81. [Google Scholar]
- Koch, I.; Schafer, T. Protein super-secondary structure and quaternary structure topology: Theoretical description and application. Curr. Opin. Struct. Biol. 2018, 50, 134–143. [Google Scholar] [CrossRef]
- De Meutter, J.; Goormaghtigh, E. Evaluation of protein secondary structure from FTIR spectra improved after partial deuteration. Eur. Biophys. J. 2021, 50, 613–628. [Google Scholar] [CrossRef]
- Natalello, A.; Ami, D.; Doglia, S.M. Fourier transform infrared spectroscopy of intrinsically disordered proteins: Measurement procedures and data analyses. Methods Mol. Biol. 2012, 895, 229–244. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.A. Protein characterisation by synchrotron radiation circular dichroism spectroscopy. Q. Rev. Biophys. 2009, 42, 317–370. [Google Scholar] [CrossRef] [PubMed]
- Bousset, L.; Bonnefoy, J.; Sourigues, Y.; Wien, F.; Melki, R. Structure and assembly properties of the N-terminal domain of the prion Ure2p in isolation and in its natural context. PLoS ONE 2010, 5, e9760. [Google Scholar] [CrossRef] [PubMed]
- Micsonai, A.; Wien, F.; Bulyaki, E.; Kun, J.; Moussong, E.; Lee, Y.-H.; Goto, Y.; Refregiers, M.; Kardos, J. BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 2018, 46, W315–W322. [Google Scholar] [CrossRef]
- Wien, F.; Martinez, D.; Le Brun, E.; Jones, N.C.; Vronning Hoffmann, S.; Waeytens, J.; Berbon, M.; Habenstein, B.; Arluison, V. The bacterial amyloid-like Hfq promotes in vitro DNA alignment. Microorganisms 2019, 7, 639. [Google Scholar] [CrossRef]
- Nordén, B.; Rodger, A.; Daffron, T. Linear Dichroism and Circular Dichroism a Textbook on Polarized-Light Spectroscopy; RCS Publishing Cambridge: Cambriage, UK, 2010; pp. 317–370. [Google Scholar]
- Cappannini, A.; Mosca, K.; Mukherjee, S.; Moafinejad, S.N.; Sinden, R.R.; Arluison, V.; Bujnicki, J.; Wien, F. NACDDB: Nucleic Acid Circular Dichroism Database. Nucleic Acids Res. 2023, 51, D226–D231. [Google Scholar] [CrossRef]
- Jang, C.; Portugal Barron, D.; Duo, L.; Ma, C.; Seabaugh, H.; Guo, Z. EPR Studies of Abeta42 Oligomers indicate a parallel in-register beta-sheet Structure. ACS Chem. Neurosci. 2024, 15, 86–97. [Google Scholar] [CrossRef]
- Koch, M.H.; Vachette, P.; Svergun, D.I. Small-angle scattering: A view on the properties, structures and structural changes of biological macromolecules in solution. Q. Rev. Biophys. 2003, 36, 147–227. [Google Scholar] [CrossRef]
- Mertens, H.D.; Svergun, D.I. Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J. Struct. Biol. 2010, 172, 128–141. [Google Scholar] [CrossRef]
- Yamamoto, S.; Kono, F.; Nakatani, K.; Hirose, M.; Horii, K.; Hippo, Y.; Tamada, T.; Suenaga, Y.; Matsuo, T. Structural characterization of human de novo protein NCYM and its complex with a newly identified DNA aptamer using atomic force microscopy and small-angle X-ray scattering. Front. Oncol. 2023, 13, 1213678. [Google Scholar] [CrossRef]
- Lapinaite, A.; Carlomagno, T.; Gabel, F. Small-angle neutron scattering of RNA-protein complexes. Methods Mol. Biol. 2020, 2113, 165–188. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, Y.; Tanaka, S.; Kubota, T.; Wakabayashi, K.; Yutani, K.; Fujiwara, S. An insight into the pathway of the amyloid fibril formation of hen egg white lysozyme obtained from a small-angle X-ray and neutron scattering study. J. Mol. Biol. 2002, 323, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Giehm, L.; Svergun, D.I.; Otzen, D.E.; Vestergaard, B. Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. Proc. Natl. Acad. Sci. USA 2011, 108, 3246–3251. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, T.; Peters, J. Fiber diffraction and small-angle scattering for structural investigation of bacterial amyloids. Methods Mol. Biol. 2022, 2538, 95–107. [Google Scholar] [CrossRef]
- Matsuo, T.; Iwamoto, H.; Yagi, N. Monitoring the structural behavior of troponin and myoplasmic free Ca2+ concentration during twitch of frog skeletal muscle. Biophys. J. 2010, 99, 193–200. [Google Scholar] [CrossRef]
- Matsuo, T.; Yagi, N. Structural changes in the muscle thin filament during contractions caused by single and double electrical pulses. J. Mol. Biol. 2008, 383, 1019–1036. [Google Scholar] [CrossRef]
- Ashkar, R.; Bilheux, H.Z.; Bordallo, H.; Briber, R.; Callaway, D.J.E.; Cheng, X.; Chu, X.Q.; Curtis, J.E.; Dadmun, M.; Fenimore, P.; et al. Neutron scattering in the biological sciences: Progress and prospects. Acta Crystallogr. D Struct. Biol. 2018, 74, 1129–1168. [Google Scholar] [CrossRef]
- Schiro, G.; Vetri, V.; Andersen, C.B.; Natali, F.; Koza, M.M.; Leone, M.; Cupane, A. The boson peak of amyloid fibrils: Probing the softness of protein aggregates by inelastic neutron scattering. J. Phys. Chem. B 2014, 118, 2913–2923. [Google Scholar] [CrossRef]
- Pinna, R.S.; Rudić, S.; Parker, S.F.; Armstrong, J.; Zanetti, M.; Škoro, G.; Waller, S.P.; Zacek, D.; Smith, C.A.; Capstick, M.J.; et al. The neutron guide upgrade of the TOSCA spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 896, 68–74. [Google Scholar] [CrossRef]
- Sears, V. Neutron scattering lengths and cross sections. Neutron. News 1992, 3, 26–37. [Google Scholar] [CrossRef]
- Smith, J.; Cusack, S.; Tidor, B.; Karplus, M. Inelastic neutron scattering analysis of low-frequency motions in proteins: Harmonic and damped harmonic models of bovine pancreatic tryspin inhibitor. J. Chem. Phys. 1990, 93, 2974–2991. [Google Scholar] [CrossRef]
- Mitchell, C.H.; Parker, S.F.; Ramirez-Cuesta, A.; Tomkinson, J. Vibrational spectroscopy with neutrons. World Sci. Singap. 2011, 65, 1325–1341. [Google Scholar] [CrossRef]
- Matsuo, T.; De Francesco, A.; Peters, J. Molecular dynamics of lysozyme amyloid polymorphs studied by incoherent neutron scattering. Front. Mol. Biosci. 2021, 8, 812096. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, T.; Belime, A.; Natali, F.; De Francesco, A.; Peters, J. Sub-nanosecond dynamics of phospholipid membranes interacting with polymorphic amyloid fibrils observed by elastic incoherent neutron scattering. Phys. Chem. Chem. Phys. 2025, 27, 6278–6287. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Baek, M.; McHugh, R.; Anishchenko, I.; Jiang, H.; Baker, D.; DiMaio, F. Accurate prediction of protein-nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 2024, 21, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Discovery, C.; Boitreaud, J.; Dent, J.; McPartlon, M.; Meier, J.; Reis, V.; Rogozhnikov, A.; Wu, K. Chai-1: Decoding the molecular interactions of life. BioRxiv 2024. [Google Scholar] [CrossRef]
- Wohlwend, J.; Corso, G.; Passaro, S.; Reveiz, M.; Leidal, K.; Swiderski, W.; Portnoi, T.; Chinn, I.; Silterra, J.; Jaakkola, T.; et al. Boltz-1 Democratizing Biomolecular Interaction Modeling. BioRxiv 2024. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Lu, C.; Ma, W.; Guan, J.; Gong, C.; Yang, J.; Zhang, H.; Zhang, K.; Wu, S.; et al. Protenix—advancing structure prediction through a comprehensive AlphaFold3 reproduction. BioRxiv 2025. [Google Scholar] [CrossRef]
- Pinheiro, F.; Santos, J.; Ventura, S. AlphaFold and the amyloid landscape. J. Mol. Biol. 2021, 433, 167059. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Ragonis-Bachar, P.; Axel, G.; Blau, S.; Ben-Tal, N.; Kolodny, R.; Landau, M. What can AlphaFold do for antimicrobial amyloids? Proteins 2024, 92, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska, A.W.; Wojciechowski, J.W.; Kotulska, M. Non-standard proteins in the lenses of AlphaFold3—Case study of amyloids. BioRxiv 2024. [Google Scholar] [CrossRef]
- Zhang, Y.; Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins 2004, 57, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, J.W.; Szczurek, W.; Szulc, N.; Szefczyk, M.; Kotulska, M. PACT—Prediction of amyloid cross-interaction by threading. Sci. Rep. 2023, 13, 22268. [Google Scholar] [CrossRef]
- Guo, L.; Yu, Q.; Wang, D.; Wu, X.; Wolynes, P.G.; Chen, M. Generating the polymorph landscapes of amyloid fibrils using AI: RibbonFold. Proc. Natl. Acad. Sci. USA 2025, 122, e2501321122. [Google Scholar] [CrossRef]
Webserver Name. | Address (accessed on 7 June 2025) | User Quota (Jobs/Day) | Size Limit (Residue) | Code (accessed on 7 June 2025) |
---|---|---|---|---|
AlphaFold 3 | https://alphafoldserver.com/ | 30 | 5120 | https://github.com/google-deepmind/alphafold3 |
RoseTTAFold2NA | Not Available | https://github.com/uw-ipd/RoseTTAFold2NA | ||
Chai-1 | https://lab.chaidiscovery.com/ | 25 | 2048 | https://github.com/chaidiscovery/chai-lab |
Boltz-1 | Not Available | https://github.com/jwohlwend/boltz | ||
Protenix | https://protenix-server.com/add-prediction | No quota | 2560 | https://github.com/bytedance/Protenix |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bloch, S.; Loutfi, G.; Moroy, G.; Sinden, R.R.; Węgrzyn, G.; Arluison, V. Bacterial Amyloids as Hubs for Nucleic Acid Interactions: Implications and Mechanisms. Int. J. Mol. Sci. 2025, 26, 6560. https://doi.org/10.3390/ijms26146560
Bloch S, Loutfi G, Moroy G, Sinden RR, Węgrzyn G, Arluison V. Bacterial Amyloids as Hubs for Nucleic Acid Interactions: Implications and Mechanisms. International Journal of Molecular Sciences. 2025; 26(14):6560. https://doi.org/10.3390/ijms26146560
Chicago/Turabian StyleBloch, Sylwia, Gaelle Loutfi, Gautier Moroy, Richard R. Sinden, Grzegorz Węgrzyn, and Véronique Arluison. 2025. "Bacterial Amyloids as Hubs for Nucleic Acid Interactions: Implications and Mechanisms" International Journal of Molecular Sciences 26, no. 14: 6560. https://doi.org/10.3390/ijms26146560
APA StyleBloch, S., Loutfi, G., Moroy, G., Sinden, R. R., Węgrzyn, G., & Arluison, V. (2025). Bacterial Amyloids as Hubs for Nucleic Acid Interactions: Implications and Mechanisms. International Journal of Molecular Sciences, 26(14), 6560. https://doi.org/10.3390/ijms26146560