Cervical Cancer Biomarkers in Non-Cervical Samples: Emerging Tools for Diagnosis and Prognosis
Abstract
1. Introduction
2. Laboratory Tests for the Diagnosis of Cervical Cancer
3. Biomarkers in Non-Cervical Samples
3.1. ncRNAs
3.1.1. miRNAs
3.1.2. lncRNAs
3.2. RNAs
3.3. Cell Proteins
3.4. Biomarkers of Viral Origin
3.5. Miscellaneous Biomarkers
4. Characteristics of miRNAs and lncRNAs as Effective Biomarkers of CC in Non-Cervical Samples
5. Challenges and Future Perspectives of Cervical Cancer Biomarkers in Non-Cervical Samples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today, (Version 1.1); International Agency for Research on Cancer: Lyon, France, 2024; Available online: https://gco.iarc.who.int/today (accessed on 14 March 2025).
- Woodman, C.B.J.; Collins, S.I.; Young, L.S. The Natural History of Cervical HPV Infection: Unresolved Issues. Nat. Rev. Cancer 2007, 7, 11–22. [Google Scholar] [CrossRef]
- Thomas, M.; Pim, D.; Banks, L. The Role of the E6-P53 Interaction in the Molecular Pathogenesis of HPV. Oncogene 1999, 18, 7690–7700. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Partricia, S.; Mathan, G. Overview of High-Risk HPV’s 16 and 18 Infected Cervical Cancer: Pathogenesis to Prevention. Biomed. Pharmacother. 2015, 70, 103–110. [Google Scholar] [CrossRef]
- Vats, A.; Trejo-Cerro, O.; Massimi, P.; Banks, L. Regulation of HPV E7 Stability by E6-Associated Protein (E6AP). J. Virol. 2022, 96, e0066322. [Google Scholar] [CrossRef]
- An, H.J.; Cho, N.H.; Lee, S.Y.; Kim, I.H.; Lee, C.; Kim, S.J.; Mun, M.S.; Kim, S.H.; Jeong, J.K. Correlation of Cervical Carcinoma and Precancerous Lesions with Human Papillomavirus (HPV) Genotypes Detected with the HPV DNA Chip Microarray Method. Cancer 2003, 97, 1672–1680. [Google Scholar] [CrossRef]
- Mayo, T.T.; Imtiaz, R.; Doan, H.Q.; Sambrano, B.L.; Gordon, R.; Ramirez-Fort, M.K.; Tyring, S.K. Human Papillomavirus: Epidemiology and Clinical Features of Related Cancer. In Viruses and Human Cancer; Springer: New York, NY, USA, 2014; pp. 199–228. [Google Scholar]
- Burd, E.M. Human Papillomavirus and Cervical Cancer. Clin. Microbiol. Rev. 2003, 16, 1–17. [Google Scholar] [CrossRef]
- American Society of Clinical Oncology (ASCO). Cervical Cancer: Diagnosis. Available online: https://www.cancer.net/cancer-types/cervical-cancer/diagnosis (accessed on 1 July 2024).
- National Cancer Institute (NCI). Cervical Cancer Diagnosis. Available online: https://www.cancer.gov/types/cervical/diagnosis (accessed on 1 September 2024).
- Landy, R.; Hollingworth, T.; Waller, J.; Marlow, L.A.; Rigney, J.; Round, T.; Sasieni, P.D.; Lim, A.W. Non-Speculum Sampling Approaches for Cervical Screening in Older Women: Randomised Controlled Trial. Br. J. Gen. Pr. 2022, 72, e26–e33. [Google Scholar] [CrossRef]
- Ørnskov, D.; Jochumsen, K.; Steiner, P.H.; Grunnet, I.M.; Lykkebo, A.W.; Waldstrøm, M. Clinical Performance and Acceptability of Self-Collected Vaginal and Urine Samples Compared with Clinician-Taken Cervical Samples for HPV Testing among Women Referred for Colposcopy. A Cross-Sectional Study. BMJ Open 2021, 11, e041512. [Google Scholar] [CrossRef]
- Afsah, Y.R.; Kaneko, N. Barriers to Cervical Cancer Screening Faced by Immigrant Muslim Women: A Systematic Scoping Review. BMC Public Health 2023, 23, 2375. [Google Scholar] [CrossRef]
- Guerrero-Flores, H.; Apresa-García, T.; Garay-Villar, Ó.; Sánchez-Pérez, A.; Flores-Villegas, D.; Bandera-Calderón, A.; García-Palacios, R.; Rojas-Sánchez, T.; Romero-Morelos, P.; Sánchez-Albor, V.; et al. A Non-Invasive Tool for Detecting Cervical Cancer Odor by Trained Scent Dogs. BMC Cancer 2017, 17, 79. [Google Scholar] [CrossRef]
- Khan, I.; Nam, M.; Kwon, M.; Seo, S.; Jung, S.; Han, J.S.; Hwang, G.-S.; Kim, M.K. LC/MS-Based Polar Metabolite Profiling Identified Unique Biomarker Signatures for Cervical Cancer and Cervical Intraepithelial Neoplasia Using Global and Targeted Metabolomics. Cancers 2019, 11, 511. [Google Scholar] [CrossRef]
- Nakabayashi, M.; Kawashima, A.; Yasuhara, R.; Hayakawa, Y.; Miyamoto, S.; Iizuka, C.; Sekizawa, A. Massively Parallel Sequencing of Cell-Free DNA in Plasma for Detecting Gynaecological Tumour-Associated Copy Number Alteration. Sci. Rep. 2018, 8, 11205. [Google Scholar] [CrossRef]
- Andrioaie, I.M.; Luchian, I.; Dămian, C.; Nichitean, G.; Andrese, E.P.; Pantilimonescu, T.F.; Trandabăț, B.; Prisacariu, L.J.; Budală, D.G.; Dimitriu, D.C.; et al. The Clinical Utility of Circulating HPV DNA Biomarker in Oropharyngeal, Cervical, Anal, and Skin HPV-Related Cancers: A Review. Pathogens 2023, 12, 908. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Chae, D.-K.; Lee, S.-H.; Lim, Y.; An, J.; Chae, C.H.; Kim, B.C.; Bhak, J.; Bolser, D.; Cho, D.-H. Efficient Mutation Screening for Cervical Cancers from Circulating Tumor DNA in Blood. BMC Cancer 2020, 20, 694. [Google Scholar] [CrossRef]
- Ning, R.; Meng, S.; Wang, L.; Jia, Y.; Tang, F.; Sun, H.; Zhang, Z.; Zhang, C.; Fan, X.; Xiao, B.; et al. 6 Circulating MiRNAs Can Be Used as Non-Invasive Biomarkers for the Detection of Cervical Lesions. J. Cancer 2021, 12, 5106–5113. [Google Scholar] [CrossRef]
- Nagamitsu, Y.; NishiI, H.; Sasaki, T.; Takaesu, Y.; Terauchi, F.; Isaka, K. Profiling Analysis of Circulating MicroRNA Expression in Cervical Cancer. Mol. Clin. Oncol. 2016, 5, 189–194. [Google Scholar] [CrossRef]
- Ma, G.; Song, G.; Zou, X.; Shan, X.; Liu, Q.; Xia, T.; Zhou, X.; Zhu, W. Circulating Plasma MicroRNA Signature for the Diagnosis of Cervical Cancer. Cancer Biomark. 2019, 26, 491–500. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Wang, F.; Xu, D.; Guo, Y.; Cui, W. Serum MiRNAs Panel (MiR-16-2*, MiR-195, MiR-2861, MiR-497) as Novel Non-Invasive Biomarkers for Detection of Cervical Cancer. Sci. Rep. 2015, 5, 17942. [Google Scholar] [CrossRef]
- Xin, F.; Liu, P.; Ma, C.-F. A Circulating Serum MiRNA Panel as Early Detection Biomarkers of Cervical Intraepithelial Neoplasia. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4846–4851. [Google Scholar]
- Aftab, M.; Poojary, S.S.; Seshan, V.; Kumar, S.; Agarwal, P.; Tandon, S.; Zutshi, V.; Das, B.C. Urine miRNA Signature as a Potential Non-Invasive Diagnostic and Prognostic Biomarker in Cervical Cancer. Sci. Rep. 2021, 11, 10323. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Y.; Yan, R.; Huang, L.; Mellor, A.L.; Yang, Y.; Chen, X.; Wei, W.; Wu, X.; Yu, L.; et al. Exosome-Derived MiR-142-5p Remodels Lymphatic Vessels and Induces IDO to Promote Immune Privilege in the Tumour Microenvironment. Cell Death Differ. 2021, 28, 715–729. [Google Scholar] [CrossRef]
- Zhu, X.; Long, L.; Xiao, H.; He, X. Cancer-Derived Exosomal MiR-651 as a Diagnostic Marker Restrains Cisplatin Resistance and Directly Targets ATG3 for Cervical Cancer. Dis. Markers 2021, 2021, 1544784. [Google Scholar] [CrossRef]
- Wang, W.-J.; Wang, D.; Zhao, M.; Sun, X.-J.; Li, Y.; Lin, H.; Che, Y.-Q.; Huang, C.-Z. Serum LncRNAs (CCAT2, LINC01133, LINC00511) with Squamous Cell Carcinoma Antigen Panel as Novel Non-Invasive Biomarkers for Detection of Cervical Squamous Carcinoma. Cancer Manag. Res. 2020, 12, 9495–9502. [Google Scholar] [CrossRef]
- Sheng, J.; Zhang, W. Identification of Biomarkers for Cervical Cancer in Peripheral Blood Lymphocytes Using Oligonucleotide Microarrays. Chin. Med. J. 2010, 123, 1000–1005. [Google Scholar]
- Zhao, Y.-C.; Wang, T.-J.; Qu, G.-H.; She, L.-Z.; Cui, J.; Zhang, R.-F.; Qu, H.-D. TPM3: A Novel Prognostic Biomarker of Cervical Cancer That Correlates with Immune Infiltration and Promotes Malignant Behavior In Vivo and In Vitro. Am. J. Cancer Res. 2023, 13, 3123–3139. [Google Scholar]
- Jiang, S.; Zheng, J.; Cui, Z.; Li, Y.; Wu, Q.; Cai, X.; Zheng, C.; Sun, Y. FBXO5 Acts as a Novel Prognostic Biomarker for Patients with Cervical Cancer. Front. Cell Dev. Biol. 2023, 11, 1200197. [Google Scholar] [CrossRef]
- Awazu, Y.; Fukuda, T.; Noda, T.; Uchikura, E.; Nanno, S.; Imai, K.; Yamauchi, M.; Yasui, T.; Sumi, T. CLPTM1L Expression Predicts Recurrence of Patients with Intermediate- and High-risk Stage IB-IIB Cervical Cancer Undergoing Radical Hysterectomy Followed by TP as Adjuvant Chemotherapy. Oncol. Lett. 2023, 26, 353. [Google Scholar] [CrossRef]
- Rungkamoltip, P.; Temisak, S.; Piboonprai, K.; Japrung, D.; Thangsunan, P.; Chanpanitkitchot, S.; Chaowawanit, W.; Chandeying, N.; Tangjitgamol, S.; Iempridee, T. Rapid and Ultrasensitive Detection of Circulating Human Papillomavirus E7 Cell-Free DNA as a Cervical Cancer Biomarker. Exp. Biol. Med. 2021, 246, 654–666. [Google Scholar] [CrossRef]
- Lee, H.; Choi, M.; Hwang, S.-H.; Cho, Y. A Versatile Nanowire Platform for Highly Efficient Isolation and Direct PCR-Free Colorimetric Detection of Human Papillomavirus DNA from Unprocessed Urine. Theranostics 2018, 8, 399–409. [Google Scholar] [CrossRef]
- Mittelstadt, S.; Kelemen, O.; Admard, J.; Gschwind, A.; Koch, A.; Wörz, S.; Oberlechner, E.; Engler, T.; Bonzheim, I.; Staebler, A.; et al. Detection of Circulating Cell-Free HPV DNA of 13 HPV Types for Patients with Cervical Cancer as Potential Biomarker to Monitor Therapy Response and to Detect Relapse. Br. J. Cancer 2023, 128, 2097–2103. [Google Scholar] [CrossRef]
- Cabel, L.; Bonneau, C.; Bernard-Tessier, A.; Héquet, D.; Tran-Perennou, C.; Bataillon, G.; Rouzier, R.; Féron, J.-G.; Fourchotte, V.; Le Brun, J.-F.; et al. HPV CtDNA Detection of High-Risk HPV Types during Chemoradiotherapy for Locally Advanced Cervical Cancer. ESMO Open 2021, 6, 100154. [Google Scholar] [CrossRef]
- Jeannot, E.; Latouche, A.; Bonneau, C.; Calméjane, M.-A.; Beaufort, C.; Ruigrok-Ritstier, K.; Bataillon, G.; Chérif, L.L.; Dupain, C.; Lecerf, C.; et al. Circulating HPV DNA as a Marker for Early Detection of Relapse in Patients with Cervical Cancer. Clin. Cancer Res. 2021, 27, 5869–5877. [Google Scholar] [CrossRef]
- Rodríguez-Esquivel, M.; Rosales, J.; Castro, R.; Apresa-García, T.; Garay, Ó.; Romero-Morelos, P.; Marrero-Rodríguez, D.; Taniguchi-Ponciano, K.; López-Romero, R.; Guerrero-Flores, H.; et al. Volatolome of the Female Genitourinary Area: Toward the Metabolome of Cervical Cancer. Arch. Med. Res. 2018, 49, 27–35. [Google Scholar] [CrossRef]
- do Nascimento Medeiros, J.A.; Sarmento, A.C.A.; Bernardes-Oliveira, E.; de Oliveira, R.; Lima, M.E.G.B.; Gonçalves, A.K.; de Souza Dantas, D.; de Oliveira Crispim, J.C. Evaluation of Exosomal MiRNA as Potential Biomarkers in Cervical Cancer. Epigenomes 2023, 7, 16. [Google Scholar] [CrossRef]
- Zheng, M.; Hou, L.; Ma, Y.; Zhou, L.; Wang, F.; Cheng, B.; Wang, W.; Lu, B.; Liu, P.; Lu, W.; et al. Exosomal Let-7d-3p and MiR-30d-5p as Diagnostic Biomarkers for Non-Invasive Screening of Cervical Cancer and Its Precursors. Mol. Cancer 2019, 18, 76. [Google Scholar] [CrossRef]
- Iempridee, T.; Wiwithaphon, S.; Piboonprai, K.; Pratedrat, P.; Khumkhrong, P.; Japrung, D.; Temisak, S.; Laiwejpithaya, S.; Chaopotong, P.; Dharakul, T. Identification of Reference Genes for Circulating Long Noncoding RNA Analysis in Serum of Cervical Cancer Patients. FEBS Open Bio 2018, 8, 1844–1854. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.; Lyu, Q.; Huang, J.; Chen, Y.; Feng, C.; Liu, Y.; Chen, F.; Wang, Z. Disulfidptosis-Associated LncRNAs Index Predicts Prognosis and Chemotherapy Drugs Sensitivity in Cervical Cancer. Sci. Rep. 2023, 13, 12470. [Google Scholar] [CrossRef]
- Khan, A.; Hussain, S.; Iyer, J.K.; Kaul, A.; Bonnewitz, M.; Kaul, R. Human Papillomavirus-Mediated Expression of Complement Regulatory Proteins in Human Cervical Cancer Cells. Eur. J. Obs. Gynecol. Reprod. Biol. 2023, 288, 222–228. [Google Scholar] [CrossRef]
- Detsika, M.G.; Palamaris, K.; Dimopoulou, I.; Kotanidou, A.; Orfanos, S.E. The Complement Cascade in Lung Injury and Disease. Respir. Res. 2024, 25, 20. [Google Scholar] [CrossRef]
- Lukacik, P.; Roversi, P.; White, J.; Esser, D.; Smith, G.P.; Billington, J.; Williams, P.A.; Rudd, P.M.; Wormald, M.R.; Harvey, D.J.; et al. Complement Regulation at the Molecular Level: The Structure of Decay-Accelerating Factor. Proc. Natl. Acad. Sci. USA 2004, 101, 1279–1284. [Google Scholar] [CrossRef]
- Couves, E.C.; Gardner, S.; Voisin, T.B.; Bickel, J.K.; Stansfeld, P.J.; Tate, E.W.; Bubeck, D. Structural Basis for Membrane Attack Complex Inhibition by CD59. Nat. Commun. 2023, 14, 890. [Google Scholar] [CrossRef]
- Montalvo-Castro, R.E.; Salinas-Jazmín, N. Relationship between the Expression of Complement Inhibitory Proteins and Therapeutic Efficacy of Antibodies in Breast Cancer. Gac. Med. Mex. 2022, 158, 141–149. [Google Scholar] [CrossRef]
- Hu, G.; Xiao, Y.; Ma, C.; Wang, J.; Qian, X.; Wu, X.; Zhu, F.; Sun, S.; Qian, J. Lumican Is a Potential Predictor on the Efficacy of Concurrent Chemoradiotherapy in Cervical Squamous Cell Carcinoma. Heliyon 2023, 9, e18011. [Google Scholar] [CrossRef]
- National Library of Medicine (NLM). CCT3 Chaperonin Containing TCP1 Subunit 3 [Homo Sapiens (Human)], Gene ID: 7203; NLM: Bethesda, MA, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/gene/7203 (accessed on 8 September 2024).
- Wang, K.; He, J.; Tu, C.; Xu, H.; Zhang, X.; Lv, Y.; Song, C. Upregulation of CCT3 Predicts Poor Prognosis and Promotes Cell Proliferation via Inhibition of Ferroptosis and Activation of AKT Signaling in Lung Adenocarcinoma. BMC Mol. Cell Biol. 2022, 23, 25. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, P.; Zhang, Z.; Wang, J.; Cheng, Z.; Fan, C. Identification of CCT3 as a Prognostic Factor and Correlates with Cell Survival and Invasion of Head and Neck Squamous Cell Carcinoma. Biosci. Rep. 2021, 41, BSR20211137. [Google Scholar] [CrossRef]
- Qian, T.; Cui, L.; Liu, Y.; Cheng, Z.; Quan, L.; Zeng, T.; Huang, W.; Dai, Y.; Chen, J.; Liu, L.; et al. High Expression of Chaperonin-Containing TCP1 Subunit 3 May Induce Dismal Prognosis in Multiple Myeloma. Pharmgenom. J. 2020, 20, 563–573. [Google Scholar] [CrossRef]
- Cui, X. Overexpression of Chaperonin Containing TCP1, Subunit 3 Predicts Poor Prognosis in Hepatocellular Carcinoma. World J. Gastroenterol. 2015, 21, 8588. [Google Scholar] [CrossRef]
- Danni, X.; Jiangzheng, Z.; Huamao, S.; Yinglian, P.; Changcheng, Y.; Yanda, L. Chaperonin Containing TCP1 Subunit 3 (CCT3) Promotes Cisplatin Resistance of Lung Adenocarcinoma Cells through Targeting the Janus Kinase 2/Signal Transducers and Activators of Transcription 3 (JAK2/STAT3) Pathway. Bioengineered 2021, 12, 7335–7347. [Google Scholar] [CrossRef]
- Li, M.; Zeng, J.; Chang, Y.; Lv, L.; Ye, G. CCT3 as a Diagnostic and Prognostic Biomarker in Cervical Cancer. Crit. Rev. Eukaryot. Gene Expr. 2023, 33, 17–28. [Google Scholar] [CrossRef]
- Téblick, L.; Van Keer, S.; De Smet, A.; Van Damme, P.; Laeremans, M.; Cortes, A.R.; Beyers, K.; Vankerckhoven, V.; Matheeussen, V.; Mandersloot, R.; et al. Impact of Collection Volume and DNA Extraction Method on the Detection of Biomarkers and HPV DNA in First-Void Urine. Molecules 2021, 26, 1989. [Google Scholar] [CrossRef]
- Hajjar, B.; Raheel, U.; Manina, R.; Simpson, J.; Irfan, M.; Waheed, Y. Clinical Performance of Cobas 6800 for the Detection of High-Risk Human Papillomavirus in Urine Samples. Vaccines 2023, 11, 1071. [Google Scholar] [CrossRef]
- Galati, L.; Combes, J.-D.; Le Calvez-Kelm, F.; McKay-Chopin, S.; Forey, N.; Ratel, M.; McKay, J.; Waterboer, T.; Schroeder, L.; Clifford, G.; et al. Detection of Circulating HPV16 DNA as a Biomarker for Cervical Cancer by a Bead-Based HPV Genotyping Assay. Microbiol. Spectr. 2022, 10, e0148021. [Google Scholar] [CrossRef]
- Bu, Q.; Luo, X.; He, L.; Ma, J.; He, S.; Lei, W.; Zhou, W.; Deng, H.; Lin, Y.; Zhang, L.; et al. Septin9 DNA Methylation as a Promising Biomarker for Cervical Cancer. J. Obstet. Gynaecol. 2023, 43, 2151356. [Google Scholar] [CrossRef]
- Cao, Y.; Qin, Y.; Cheng, Q.; Zhong, J.; Han, B.; Li, Y. Bifunctional Nanomaterial Enabled High-Specific Isolation of Urinary Exosomes for Cervical Cancer Metabolomics Analysis and Biomarker Discovery. Talanta 2025, 285, 127280. [Google Scholar] [CrossRef]
- Katoh, Y.; Kubo, A.; Hayashi, N.; Sugi, T.; Katoh, K.; Udagawa, S.; Ogawa, T.; Iwata, T.; Nishio, H.; Sugawara, M.; et al. Serum Levels of Stearic and Dihomo-γ-Linolenic Acids Can Be Used to Diagnose Cervical Cancer and Cervical Intraepithelial Neoplasia. Sci. Rep. 2024, 14, 20833. [Google Scholar] [CrossRef]
- Hentschel, A.E.; van den Helder, R.; van Trommel, N.E.; van Splunter, A.P.; van Boerdonk, R.A.A.; van Gent, M.D.J.M.; Nieuwenhuijzen, J.A.; Steenbergen, R.D.M. The Origin of Tumor DNA in Urine of Urogenital Cancer Patients: Local Shedding and Transrenal Excretion. Cancers 2021, 13, 535. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Esteller, M. Non-Coding RNAs in Human Disease. Nat. Rev. Genet. 2011, 12, 861–874. [Google Scholar] [CrossRef]
- Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stähler, C.; Meese, E.; et al. Distribution of MiRNA Expression across Human Tissues. Nucleic Acids Res. 2016, 44, 3865–3877. [Google Scholar] [CrossRef]
- Dai, J.; Su, Y.; Zhong, S.; Cong, L.; Liu, B.; Yang, J.; Tao, Y.; He, Z.; Chen, C.; Jiang, Y. Exosomes: Key Players in Cancer and Potential Therapeutic Strategy. Signal Transduct. Target. Ther. 2020, 5, 145. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, Y.; Zhu, M.; Liu, S.; Wang, X. MiRNA Expression Profiles of HPV-Infected Patients with Cervical Cancer in the Uyghur Population in China. PLoS ONE 2016, 11, e0164701. [Google Scholar] [CrossRef]
- Xia, Y.-F.; Pei, G.-H.; Wang, N.; Che, Y.-C.; Yu, F.-S.; Yin, F.-F.; Liu, H.-X.; Luo, B.; Wang, Y.-K. MiR-3156-3p Is Downregulated in HPV-Positive Cervical Cancer and Performs as a Tumor-Suppressive MiRNA. Virol. J. 2017, 14, 20. [Google Scholar] [CrossRef]
- Slack, F.J.; Chinnaiyan, A.M. The Role of Non-Coding RNAs in Oncology. Cell 2019, 179, 1033–1055. [Google Scholar] [CrossRef]
- Brillante, S.; Volpe, M.; Indrieri, A. Advances in MicroRNA Therapeutics: From Preclinical to Clinical Studies. Hum. Gene Ther. 2024, 35, 628–648. [Google Scholar] [CrossRef]
- Bayraktar, E.; Bayraktar, R.; Oztatlici, H.; Lopez-Berestein, G.; Amero, P.; Rodriguez-Aguayo, C. Targeting MiRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Noncoding RNA 2023, 9, 27. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Z.; Lin, Q.; Luo, Q.; Cen, Y.; Li, J.; Fang, X.; Gong, C. MiRNAs and Cancer: Key Link in Diagnosis and Therapy. Genes 2021, 12, 1289. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Slack, F.J. MicroRNA Therapeutics: Towards a New Era for the Management of Cancer and Other Diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef]
- Armakolas, A.; Kotsari, M.; Koskinas, J. Liquid Biopsies, Novel Approaches and Future Directions. Cancers 2023, 15, 1579. [Google Scholar] [CrossRef]
- Ma, L.; Guo, H.; Zhao, Y.; Liu, Z.; Wang, C.; Bu, J.; Sun, T.; Wei, J. Liquid Biopsy in Cancer: Current Status, Challenges and Future Prospects. Signal Transduct. Target. Ther. 2024, 9, 336. [Google Scholar] [CrossRef]
- Heidrich, I.; Ačkar, L.; Mossahebi Mohammadi, P.; Pantel, K. Liquid Biopsies: Potential and Challenges. Int. J. Cancer 2021, 148, 528–545. [Google Scholar] [CrossRef]
- National Cancer Institute (NCI). Early Detection Research Network. Available online: https://edrn.nci.nih.gov/ (accessed on 22 June 2025).
- Wagner, P.D.; Srivastava, S. New Paradigms in Translational Science Research in Cancer Biomarkers. Transl. Res. 2012, 159, 343–353. [Google Scholar] [CrossRef]
- Weaver, C.; Nam, A.; Settle, C.; Overton, M.; Giddens, M.; Richardson, K.P.; Piver, R.; Mysona, D.P.; Rungruang, B.; Ghamande, S.; et al. Serum Proteomic Signatures in Cervical Cancer: Current Status and Future Directions. Cancers 2024, 16, 1629. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, L.; Guo, B.; Guo, A.; Ding, J.; Tong, D.; Wang, B.; Zhou, Z. Integrated Machine Learning Algorithms-Enhanced Predication for Cervical Cancer from Mass Spectrometry-Based Proteomics Data. Bioengineering 2025, 12, 269. [Google Scholar] [CrossRef]
- Kori, M.; Arga, K.Y. Potential Biomarkers and Therapeutic Targets in Cervical Cancer: Insights from the Meta-Analysis of Transcriptomics Data within Network Biomedicine Perspective. PLoS ONE 2018, 13, e0200717. [Google Scholar] [CrossRef]
- Martinelli, C.; Ercoli, A.; Vizzielli, G.; Burk, S.R.; Cuomo, M.; Satasiya, V.; Kacem, H.; Braccia, S.; Mazzarotti, G.; Miriello, I.; et al. Liquid Biopsy in Gynecological Cancers: A Translational Framework from Molecular Insights to Precision Oncology and Clinical Practice. J. Exp. Clin. Cancer Res. 2025, 44, 140. [Google Scholar] [CrossRef]
- Fracasso, P.M.; Duska, L.R.; Thaker, P.H.; Gao, F.; Zoberi, I.; Dehdashti, F.; Siegel, B.A.; Uliel, L.; Menias, C.O.; Rehm, P.K.; et al. An Exploratory Study of Neoadjuvant Cetuximab Followed by Cetuximab and Chemoradiotherapy in Women With Newly Diagnosed Locally Advanced Cervical Cancer. Am. J. Clin. Oncol. 2022, 45, 286–293. [Google Scholar] [CrossRef]
- Obstetrics & Gynecology Hospital of Fudan University. Iparomlimab and Tuvonralimab Combined with Paclitaxel and Cisplatin as Neoadjuvant Therapy for CC (ClinicalTrials.gov Identifier: NCT06878222). Available online: https://clinicaltrials.gov/study/NCT06878222 (accessed on 22 June 2025).
- Women’s Hospital School Of Medicine Zhejiang University. A Clinical Study Comparing Chemotherapy Combined with PD-1 Inhibitor Versus Concurrent Chemoradiotherapy in Cervical Cancer Patients with Positive Lymph Nodes After Surgery: A Multicenter Randomized Controlled Clinical Trial (ClinicalTrials.gov Identifier: NCT06866951). Available online: https://clinicaltrials.gov/study/NCT06866951 (accessed on 22 June 2025).
- Wu, Q.; Qian, M.; Welby, S.; Guignard, A.; Rosillon, D.; Gopala, K.; Xu, Y.; Liu, K.; He, Y.; Jiang, N.; et al. Prospective, Multi-Center Post-Marketing Surveillance Cohort Study to Monitor the Safety of the Human Papillomavirus-16/18 AS04-Adjuvanted Vaccine in Chinese Girls and Women Aged 9 to 45 Years, 2018–2020. Hum. Vaccines Immunother. 2023, 19, 2283912. [Google Scholar] [CrossRef]
- Charles University, Czech Republic. The Adjuvant Effect of HPV Vaccination on Recurrence of Cervical Precancer or Carcinoma in Women Undergoing Conization (ClinicalTrials.gov Identifier: NCT06258564). Available online: https://clinicaltrials.gov/study/NCT06258564 (accessed on 22 June 2025).
- Salmerón, J.; Torres-Ibarra, L.; Bosch, F.X.; Cuzick, J.; Lörincz, A.; Wheeler, C.M.; Castle, P.E.; Robles, C.; Lazcano-Ponce, E. HPV vaccination impact on a cervical cancer screening program: Methods of the FASTER-Tlalpan Study in Mexico. Salud Publica Mex. 2016, 58, 211–219. [Google Scholar] [CrossRef]
- Chao, T.K.; Ke, F.Y.; Liao, Y.P.; Wang, H.C.; Yu, C.P.; Lai, H.C. Triage of cervical cytological diagnoses of atypical squamous cells by DNA methylation of paired boxed gene 1 (PAX1). Diagn. Cytopathol. 2013, 41, 41–46. [Google Scholar] [CrossRef]
- Mackay Memorial Hospital. The Biomarker Analysis in Locally Advanced (ClinicalTrials.gov Identifier: NCT03635216). Available online: https://clinicaltrials.gov/study/NCT03635216 (accessed on 22 June 2025).
- Wuhan University. Molecular Markers in Cervical Cancer Screening in the Feasibility of the Mathematical Markov Model Analysis (ClinicalTrials.gov Identifier: NCT00889902). Available online: https://clinicaltrials.gov/study/NCT00889902 (accessed on 22 June 2025).
- International Agency for Research on Cancer. Effectiveness and Impact of the Lived Experience Cancer Awareness Campaign on Screening Participation (ClinicalTrials.gov Identifier: NCT06874985). Available online: https://clinicaltrials.gov/study/NCT06874985 (accessed on 22 June 2025).
- Gül Öztaş, H.; Işik, K. The Effect of Cervical Cancer Education Given to Women in Turkey on Knowledge, Attitudes, and Health Beliefs: A Randomized Controlled Study. Public Health Nurs. 2025, 42, 363–373. [Google Scholar] [CrossRef]
- Istanbul University—Cerrahpasa. Web-Based Education Program and Educational Booklet Developed on Cervical Cancer (ClinicalTrials.gov Identifier: NCT06705309). Available online: https://clinicaltrials.gov/study/NCT06705309 (accessed on 22 June 2025).
- Hunt, B.; Fregnani, J.H.T.G.; Brenes, D.; Schwarz, R.A.; Salcedo, M.P.; Possati-Resende, J.C.; Antoniazzi, M.; de Oliveira Fonseca, B.; Santana, I.V.V.; de Macêdo Matsushita, G.; et al. Cervical lesion assessment using real-time microendoscopy image analysis in Brazil: The CLARA study. Int. J. Cancer 2021, 149, 431–441. [Google Scholar] [CrossRef]
- Brookdale University Hospital Medical Center. Diagnostic Imaging Aid for Management of Cervical Lesions (FFC) (ClinicalTrials.gov Identifier: NCT02406365). Available online: https://clinicaltrials.gov/study/NCT02406365 (accessed on 22 June 2025).
- Aaron, J.; Nitin, N.; Travis, K.; Kumar, S.; Collier, T.; Park, S.Y.; José-Yacamán, M.; Coghlan, L.; Follen, M.; Richards-Kortum, R.; et al. Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. J. Biomed. Opt. 2007, 12, 034007. [Google Scholar] [CrossRef]
- Fabian, D. Clinical Trial of Molecular Biomarkers in Women with Uterine Cervix Cancer (ClinicalTrials.gov Identifier: NCT05462951). Available online: https://clinicaltrials.gov/study/NCT05462951 (accessed on 22 June 2025).
- Universiteit Antwerpen. First-Void Urine Samples for the Follow-Up of Women Treated for High-Grade Cervical Intraepithelial Neoplasia (CIN) (ClinicalTrials.gov Identifier: NCT03542513). Available online: https://clinicaltrials.gov/study/NCT03542513 (accessed on 22 June 2025).
- UNC Lineberger Comprehensive Cancer Center. Application of Plasma Circulating HPV DNA Testing to Management of Cervical Intraepithelial Neoplasia (ClinicalTrials.gov Identifier: NCT04274465). Available online: https://clinicaltrials.gov/study/NCT04274465 (accessed on 22 June 2025).
- University of Mississippi Medical Center Clinical. Translational and Biomarker-Based Female Genital HPV Induced Dysplasia and Cancer Screening Study Using Cf-HPV-DNA Blood Tests (TTMV HPV DNA) (ClinicalTrials.gov Identifier: NCT05536843). Available online: https://clinicaltrials.gov/study/NCT05536843 (accessed on 22 June 2025).
- Yuan, L. Study on AUNIP as a Novel Tumor Marker for Cervical Cancer (ClinicalTrials.gov Identifier: NCT06118463). Available online: https://clinicaltrials.gov/study/NCT06118463 (accessed on 22 June 2025).
- Universiteit Antwerpen. Dry Run of the ScreenUrSelf Trial (ClinicalTrials.gov Identifier: NCT05996796). Available online: https://clinicaltrials.gov/study/NCT05996796 (accessed on 22 June 2025).
- Hendrickx, J.O.; Van Keer, S.; Donders, G.; Weyers, S.; Doyen, J.; Beyers, K.C.L.; Rios-Cortes, A.; Meers, N.; Téblick, L.; Vankerckhoven, V.V.J. Home-based urinary HPV self-sampling for the detection of cervical cancer precursor lesions: Attitudes and preferences from Belgian females participating in the CASUS study. Arch. Public Health 2025, 83, 32. [Google Scholar] [CrossRef]
- Universiteit Antwerpen. Developing a Combined Molecular Screening and Triage Test for Cervical Cancer in Self-Samples (COMBISCREEN) (ClinicalTrials.gov Identifier: NCT06598176). Available online: https://clinicaltrials.gov/study/NCT06598176 (accessed on 22 June 2025).
- Universiteit Antwerpen. Cervical Cancer Screening Based on First-Void Urine Self-Sampling to Reach Un(Der)-Screened Women: ScreenUrSelf Trial (ScreenUrSelf) (ClinicalTrials.gov Identifier: NCT05996783). Available online: https://clinicaltrials.gov/study/NCT05996783 (accessed on 22 June 2025).
- Buelens, C.; Stabel, M.; Wildiers, A.; Peremans, L.; Van Hal, G.; Van Doorsselaere, L.; Lievens, A.; Vorsters, A.; Van Keer, S.; Verhoeven, V. Experiences and Perceptions of Cervical Cancer Screening Using Self-Sampling among Under-Screened Women in Flanders. Healthcare 2024, 12, 1704. [Google Scholar] [CrossRef]
Common Tests and Procedures | Description |
---|---|
Bimanual pelvic examination | In this study, the physician conducts a manual examination of the uterus, vagina, ovaries, and adjacent organs to identify potential pathological changes. The assessment begins with an inspection of the vulva to detect any visible abnormalities. Subsequently, the physician may insert two fingers of one hand into the vaginal canal while applying gentle pressure to the lower abdomen with the other hand. This bimanual palpation enables the evaluation of internal structures, such as the uterus and ovaries, which are not directly visible during the examination. |
Papanicolaou test (cervico-vaginal cytology) | For sample collection, the physician gently obtains exfoliated cells from both the exocervix and endocervix using a soft brush or spatula. The collected cells are then stained using the Papanicolaou (Pap) technique and examined under a microscope to identify cytological abnormalities. These findings may indicate the presence of human papillomavirus (HPV) infection—the main risk factor for CC—or other cellular alterations. |
Molecular tests (HPV DNA and mRNA) | If the Papanicolaou test suggests HPV infection, HPV genotyping is performed. Some physicians conduct both tests simultaneously to avoid a second patient visit and to maximize the use of the biological sample. For this examination, cells are collected from the cervix to detect the presence of viral DNA or mRNA, typically from high-risk oncogenic HPV types, which are the primary etiological agents of CC. A positive HPV result does not confirm CC; histopathological examinations from biopsies are required to confirm the cancer diagnosis. |
Colposcopy | With the aid of a colposcope—an instrument that provides illumination and magnification for detailed visualization of the cervix—and a sterile speculum to gently distend the vaginal walls, the physician is able to conduct a thorough examination of the cervical epithelium. Colposcopy assists in performing a cervical biopsy by guiding the physician to the suspicious tissue. This procedure is non-invasive, does not cause pain for the patient, and can be performed on pregnant women. Biopsy collection can be guided using two simple diagnostic tests: application of 5% acetic acid or Lugol’s iodine solution (Schiller test), which help to highlight abnormal epithelial areas for targeted sampling. |
Biopsy | Histopathological diagnosis is the gold standard for the diagnosis of CC. Biopsy collection involves obtaining a small tissue sample—usually by punch technique—for microscopic analysis by a pathologist. During and after the procedure, the patient may experience cramping, such as menstrual pain, bleeding, and discharge. If the lesion on the cervix is confined to a small area, the physician might remove it entirely during the biopsy (excisional biopsy or conization). |
Biomarker Molecule | Sample | Clinical Utility | Technique | Oncological Evidence | References |
---|---|---|---|---|---|
miRNA-1290 | Serum | Diagnostic | Reverse transcription–quantitative polymerase chain reaction (RT-qPCR) | miRNA levels increased in patients with CC compared to healthy patients | [21] |
Exosomal miRNA-146a-5p, miRNA-151a-3p, miRNA-2110, and miRNA-21-5p | Plasma | Diagnostic | Reverse transcription–quantitative polymerase chain reaction (RT-qPCR) | [22] | |
miR-16-2*, miR-195, miR-2861, and miR-497 | Serum | Diagnostic | Reverse transcription–quantitative polymerase chain reaction (RT-qPCR) | Panel of miRNAs capable of discriminating CC patients from CIN and healthy subjects | [23] |
miR-9, miR-10a, miR-20a, and miR-196a | Serum | Diagnostic | Reverse transcription–quantitative polymerase chain reaction (RT-qPCR) | Panel of useful, novel, and non-invasive miRNAs for the early detection of CIN | [24] |
miR-145-5p, miR-218-5p, and miR-34a-5p | Urine and serum | Diagnostic and prognostic | Reverse transcription–quantitative polymerase chain reaction (RT-qPCR) | Panel of miRNAs with 100% sensitivity and 92.8% specificity to distinguish precancer and cancer patients from healthy subjects | [25] |
Exosomal miRNA-142-5p | Serum | Progression and poor clinical outcome | Reverse transcription–quantitative polymerase chain reaction (RT-qPCR) | miRNA overexpressed in the late stages of CC (III-IV) compared to the early stages (I-II) of CC | [26] |
Exosomal miRNA-651 | Plasma | Diagnostic and good prognosis | Reverse transcription–quantitative polymerase chain reaction (RT-qPCR) | miRNA downregulated in cancer subjects compared to healthy individuals, with high sensitivity and accuracy for CC diagnosis | [27] |
CCAT2, LINC01133, and LINC00511 | Serum | Diagnostic | Reverse transcription–quantitative polymerase chain reaction (RT-qPCR) | lncRNAs are highly expressed in the serum of patients with CC | [28] |
TNC, NCL, and ENO2 | Blood | Diagnostic | Oligonucleotide microarrays RT-PCR | RNA levels increased in the blood of patients with CC in the early stages (IB-IIA) compared to healthy controls | [29] |
TPM3 | Tumor tissue | Diagnostic and poor prognosis | Immunohistochemistry Western immunoblotting | Proteins highly expressed in patients with CC and levels increased even more in patients with poor overall survival | [30] |
FBXO5 | Tumor tissue | Diagnostic and poor prognosis | Immunohistochemistry | [31] | |
CLPTM1L | Tumor tissue | Predictive and poor prognosis | Immunohistochemistry | Protein overexpression in tumor tissue is associated with recurrence in patients with CC due to its role in promoting resistance to chemotherapy, specifically cisplatin | [32] |
HPV16/18 E7 circulating cell-free DNA | Serum | Patient monitoring | Recombinase polymerase amplification–lateral flow (RPA-LF) | cfDNA differentially expressed in the serum of patients with CC compared to patients with CIN and controls | [33] |
HPV16 and HPV18 cell-free DNA | Urine | Diagnostic | Spectrophotometry Polyethylenimine-conjugated magnetic nanowires (PEI/mPpy NWs) | cfDNA detected in samples from patients with CC | [34] |
cfDNA HPV16, HPV18, HPV33, HPV35, HPV45, HPV56, HPV58, and HPV59 | Plasma | Predictive and prognostic | Next-Generation Sequencing (NGS) | Biomarkers potentially useful for monitoring therapy response and detecting relapse | [35] |
ctDNA HPV16, HPV18, HPV31, HPV33, HPV45, HPV52, HPV58, and HPV73 | Serum and plasma | Predictive and prognostic | Digital droplet PCR (ddPCR) | [36] | |
ctDNA HPV16 and HPV18 | Serum | Predictive and prognostic | Digital droplet PCR (ddPCR) | [37] | |
Volatile organic compounds (alkanes) | Biofluids from the female genitourinary tract collected on a pad | Diagnostic | Gas Chromatography–Mass Spectrometry | Differential profile of volatile organic compounds between patients with CC and healthy subjects | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lizarazo-Taborda, M.d.R.; Godínez-Rubí, M.; Núnez-Avellaneda, D.; Ramírez-de-Arellano, A.; Pereira-Suárez, A.L.; Villegas-Pineda, J.C. Cervical Cancer Biomarkers in Non-Cervical Samples: Emerging Tools for Diagnosis and Prognosis. Int. J. Mol. Sci. 2025, 26, 6502. https://doi.org/10.3390/ijms26136502
Lizarazo-Taborda MdR, Godínez-Rubí M, Núnez-Avellaneda D, Ramírez-de-Arellano A, Pereira-Suárez AL, Villegas-Pineda JC. Cervical Cancer Biomarkers in Non-Cervical Samples: Emerging Tools for Diagnosis and Prognosis. International Journal of Molecular Sciences. 2025; 26(13):6502. https://doi.org/10.3390/ijms26136502
Chicago/Turabian StyleLizarazo-Taborda, Mélida del Rosario, Marisol Godínez-Rubí, Daniel Núnez-Avellaneda, Adrián Ramírez-de-Arellano, Ana Laura Pereira-Suárez, and Julio César Villegas-Pineda. 2025. "Cervical Cancer Biomarkers in Non-Cervical Samples: Emerging Tools for Diagnosis and Prognosis" International Journal of Molecular Sciences 26, no. 13: 6502. https://doi.org/10.3390/ijms26136502
APA StyleLizarazo-Taborda, M. d. R., Godínez-Rubí, M., Núnez-Avellaneda, D., Ramírez-de-Arellano, A., Pereira-Suárez, A. L., & Villegas-Pineda, J. C. (2025). Cervical Cancer Biomarkers in Non-Cervical Samples: Emerging Tools for Diagnosis and Prognosis. International Journal of Molecular Sciences, 26(13), 6502. https://doi.org/10.3390/ijms26136502