Novel Genetic Variants and Clinical Profiles in Peters Anomaly Spectrum Disorders
Abstract
1. Introduction
2. Results
2.1. Case Presentation
2.1.1. Patient 1
2.1.2. Patient 2
2.2. Segregation Analysis Results
2.3. Breakpoint Confirmation
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Gene Targets
4.3. Exome Data Sequencing and Review
4.4. Segregation Analysis
4.5. Breakpoint Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thanikachalam, S.; Hodapp, E.; Chang, T.C.; Swols, D.M.; Cengiz, F.B.; Guo, S.; Zafeer, M.F.; Seyhan, S.; Bademci, G.; Scott, W.K.; et al. Spectrum of Genetic Variants Associated with Anterior Segment Dysgenesis in South Florida. Genes 2020, 11, 350. [Google Scholar] [CrossRef]
- Salik, I.; Gupta, A.; Tara, A.; Zaidman, G.; Barst, S. Peters Anomaly: A 5-Year Experience. Pediatr. Anesth. 2020, 30, 577–583. [Google Scholar] [CrossRef]
- Khasnavis, A.; Fernandes, M. Peters Anomaly: An Overview. Taiwan J. Ophthalmol. 2023, 13, 434–442. [Google Scholar] [CrossRef]
- Wowra, B.; Dobrowolski, D.; Parekh, M.; Wylęgała, E. General Treatment and Ophthalmic Management of Peters’ Anomaly. J. Clin. Med. 2024, 13, 532. [Google Scholar] [CrossRef]
- Reis, L.M.; Houssin, N.S.; Zamora, C.; Abdul-Rahman, O.; Kalish, J.M.; Zackai, E.H.; Plageman, T.F.J.; Semina, E.V. Novel Variants in CDH2 Are Associated with a New Syndrome Including Peters Anomaly. Clin. Genet. 2020, 97, 502–508. [Google Scholar] [CrossRef]
- Faber, H.; Puk, O.; Holz, A.; Biskup, S.; Voykov, B. Identification of a New Genetic Mutation Associated with Peters Anomaly. Cornea 2021, 40, 373–376. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Dai, Y.; Fan, Y.; Xu, J. Novel Mutations in COL6A3 That Associated With Peters’ Anomaly Caused Abnormal Intracellular Protein Retention and Decreased Cellular Resistance to Oxidative Stress. Front. Cell Dev. Biol. 2020, 8, 531986. [Google Scholar] [CrossRef]
- Vincent, A.; Billingsley, G.; Priston, M.; Glaser, T.; Oliver, E.; Walter, M.; Ritch, R.; Levin, A.; Heon, E. Further Support of the Role of CYP1B1 in Patients with Peters Anomaly. Mol. Vis. 2006, 12, 506–510. [Google Scholar]
- Darbari, E.; Zare-Abdollahi, D.; Alavi, A.; Rezaei Kanavi, M.; Feizi, S.; Hosseini, S.B.; Baradaran-Rafii, A.; Ahmadieh, H.; Issazadeh-Navikas, S.; Elahi, E. A Mutation in DOP1B Identified as a Probable Cause for Autosomal Recessive Peters Anomaly in a Consanguineous Family. Mol. Vis. 2020, 26, 757–765. [Google Scholar]
- Weh, E.; Reis, L.M.; Happ, H.C.; Levin, A.V.; Wheeler, P.G.; David, K.L.; Carney, E.; Angle, B.; Hauser, N.; Semina, E.V. Whole Exome Sequence Analysis of Peters Anomaly. Hum. Genet. 2014, 133, 1497–1511. [Google Scholar] [CrossRef]
- Honkanen, R.A.; Nishimura, D.Y.; Swiderski, R.E.; Bennett, S.R.; Hong, S.; Kwon, Y.H.; Stone, E.M.; Sheffield, V.C.; Alward, W.L.M. A Family with Axenfeld-Rieger Syndrome and Peters Anomaly Caused by a Point Mutation (Phe112Ser) in the FOXC1 Gene. Am. J. Ophthalmol. 2003, 135, 368–375. [Google Scholar] [CrossRef]
- Iseri, S.U.; Osborne, R.J.; Farrall, M.; Wyatt, A.W.; Mirza, G.; Nürnberg, G.; Kluck, C.; Herbert, H.; Martin, A.; Hussain, M.S.; et al. Seeing Clearly: The Dominant and Recessive Nature of FOXE3 in Eye Developmental Anomalies. Hum. Mutat. 2009, 30, 1378–1386. [Google Scholar] [CrossRef]
- Ni, W.; Wang, W.; Hong, J.; Zhang, P.; Liu, C. A Novel Histopathologic Finding in the Descemet’s Membrane of a Patient with Peters Anomaly: A Case-Report and Literature Review Cornea and External Eye Diseases. BMC Ophthalmol. 2015, 15, 1–5. [Google Scholar] [CrossRef]
- Almarzouki, H.S.; Tayyib, A.A.; Khayat, H.A.; Alsulami, R.E.; Alzahrani, S.M.; Alkahtani, A.S.; Alghifees, L.S. Peters Anomaly in Twins: A Case Report of a Rare Incident with Novel Comorbidities. Case Rep. Ophthalmol. 2016, 7, 186–192. [Google Scholar] [CrossRef]
- Happ, H.; Schilter, K.F.; Weh, E.; Reis, L.M.; Semina, E.V. 8q21.11 Microdeletion in Two Patients with Syndromic Peters Anomaly. Am. J. Med. Genet. Part A 2016, 170, 2471–2475. [Google Scholar] [CrossRef]
- Doward, W.; Perveen, R.; Lloyd, I.C.; Ridgway, A.E.; Wilson, L.; Black, G.C. A Mutation in the RIEG1 Gene Associated with Peters’ Anomaly. J. Med. Genet. 1999, 36, 152–155. [Google Scholar] [CrossRef]
- Zhu, A.Y.; Costain, G.; Cytrynbaum, C.; Weksberg, R.; Cohn, R.D.; Ali, A. Novel Heterozygous Variants in PXDN Cause Different Anterior Segment Dysgenesis Phenotypes in Monozygotic Twins. Ophthalmic Genet. 2021, 42, 624–630. [Google Scholar] [CrossRef]
- Chesneau, B.; Aubert-Mucca, M.; Fremont, F.; Pechmeja, J.; Soler, V.; Isidor, B.; Nizon, M.; Dollfus, H.; Kaplan, J.; Fares-Taie, L.; et al. First Evidence of SOX2 Mutations in Peters’ Anomaly: Lessons from Molecular Screening of 95 Patients. Clin. Genet. 2022, 101, 494–506. [Google Scholar] [CrossRef]
- Bassett, E.A.; Williams, T.; Zacharias, A.L.; Gage, P.J.; Fuhrmann, S.; West-Mays, J.A. AP-2alpha Knockout Mice Exhibit Optic Cup Patterning Defects and Failure of Optic Stalk Morphogenesis. Hum. Mol. Genet. 2010, 19, 1791–1804. [Google Scholar] [CrossRef]
- Wang, Y.E.; Ramirez, D.A.; Chang, T.C.; Berrocal, A. Peters plus Syndrome and Chorioretinal Findings Associated with B3GLCT Gene Mutation-a Case Report. BMC Ophthalmol. 2020, 20, 118. [Google Scholar] [CrossRef]
- Totoń-żurańska, J.; Kapusta, P.; Rybak-Krzyszkowska, M.; Lorenc, K.; Machlowska, J.; Skalniak, A.; Filipek, E.; Pawlik, D.; Wołkow, P.P. Contribution of a Novel B3GLCT Variant to Peters plus Syndrome Discovered by a Combination of Next-Generation Sequencing and Automated Text Mining. Int. J. Mol. Sci. 2019, 20, 6006. [Google Scholar] [CrossRef]
- Reis, L.M.; Tyler, R.C.; Abdul-Rahman, O.; Trapane, P.; Wallerstein, R.; Broome, D.; Hoffman, J.; Khan, A.; Paradiso, C.; Ron, N.; et al. Mutation Analysis of B3GALTL in Peters Plus Syndrome. Am. J. Med. Genet. Part A 2008, 146A, 2603–2610. [Google Scholar] [CrossRef]
- Weh, E.; Reis, L.M.; Tyler, R.C.; Bick, D.; Rhead, W.J.; Wallace, S.; Mcgregor, T.L.; Dills, S.K.; Chao, M.C.; Murray, J.C.; et al. Novel B3GALTL Mutations in Classic Peters plus Syndrome and Lack of Mutations in a Large Cohort of Patients with Similar Phenotypes. Clin. Genet. 2014, 86, 142–148. [Google Scholar] [CrossRef]
- Lesnik Oberstein, S.A.J.; Kriek, M.; White, S.J.; Kalf, M.E.; Szuhai, K.; Den Dunnen, J.T.; Breuning, M.H.; Hennekam, R.C.M. Peters Plus Syndrome Is Caused by Mutations in B3GALTL, a Putative Glycosyltransferase. Am. J. Hum. Genet. 2006, 79, 562–566. [Google Scholar] [CrossRef]
- Canda, M.T.; Çağlayan, L.D.; Demir, A.B.; Demir, N. Prenatal Detection of Peters Plus-like Syndrome. Turk. J. Obstet. Gynecol. 2018, 15, 273–276. [Google Scholar] [CrossRef]
- Shimizu, R.; Saito, R.; Hoshino, K.; Ogawa, K.; Negishi, T.; Nishimura, J.; Mitsui, N.; Osawa, M.; Ohashi, H. Severe Peters Plus Syndrome-like Phenotype with Anterior Eye Staphyloma and Hypoplastic Left Heart Syndrome: Proposal of a New Syndrome. Congenit. Anom. 2010, 50, 197–199. [Google Scholar] [CrossRef]
- Siala, O.; Belguith, N.; Fakhfakh, F. An Unusual Case of Peters Plus Syndrome with Sexual Ambiguity and Absence of Mutations in the B3GALTL Gene. Iran. J. Pediatr. 2013, 23, 485. [Google Scholar]
- Elbaz, U.; Ali, A.; Strungaru, H.; Mireskandari, K. Phenotypic Spectrum of Peters Anomaly. Cornea 2021, 41, 192–200. [Google Scholar] [CrossRef]
- Bhandari, R.; Ferri, S.; Whittaker, B.; Liu, M.; Lazzaro, D.R. Peters Anomaly: Review of the Literature. Cornea 2011, 30, 939–944. [Google Scholar] [CrossRef]
- Martinet, V.; Dureau, P.; Bergès, O.; Caputo, G. Vitreoretinal Dysplasia Masquerading as Peters’ Anomaly. Eur. J. Ophthalmol. 2010, 20, 228–230. [Google Scholar] [CrossRef]
- Trabucchi, G.; Piantanida, A.; Bandello, F.; Freschi, M.; Nucci, P.; Brancato, R. Congenital Aphakia in Peters’ Anomaly Syndrome. Acta Ophthalmol. Scand. 1997, 75, 595–597. [Google Scholar] [CrossRef]
- Maillette de Buy Wenniger-Prick, L.J.J.M.; Hennekam, R.C.M. The Peters’ plus Syndrome: A Review. Ann. Genet. 2002, 45, 97–103. [Google Scholar] [CrossRef]
- Koc, M.; Kosekahya, P.; Inanc, M.; Tekin, K. Corneal Crosslinking in a Case with Axenfeld–Rieger Syndrome and Unilateral Pellucid Marginal Degeneration. Ther. Adv. Ophthalmol. 2019, 11, 251584141882228. [Google Scholar] [CrossRef]
- Jat, N.S.; Tripathy, K. Peters Anomaly. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Sault, R.W.; Sheridan, J. Peters’ Anomaly. Ophthalmol. Eye Dis. 2013, 5, 1–3. [Google Scholar] [CrossRef]
- Kamoun, B.; Turki, K.; Kharrat, W.; Ben Amor, S.; Khemekhem, R.; Feki, J. Keratoplasy for Peters anomaly (clinical case). Bull. Soc. Belge Ophtalmol. 2007, 303, 51–54. [Google Scholar]
- Samara, A.; Eldaya, R.W. Ocular and Brain Imaging Findings in Peters’ Anomaly: A Case Report and Literature Review. Radiol. Case Rep. 2020, 15, 863–866. [Google Scholar] [CrossRef]
- Nischal, K.K. Genetics of Congenital Corneal Opacification—Impact on Diagnosis and Treatment. Cornea 2015, 34, S24–S34. [Google Scholar] [CrossRef]
- Cañizares, B.; Yago, I.; Piñero, Á.; Ruiz, M. Unilateral Persistent Fetal Vasculature Coexisting with Anterior Segment Dysgenesia. Arch. Soc. Esp. Oftalmol. 2017, 92, 40–43. [Google Scholar] [CrossRef]
- Cho, D.; Choi, D.; Nam, W. Unilateral Peters’ Anomaly with Chorioretinal Coloboma in the Other Eye. Korean J. Ophthalmol. 2011, 25, 352–354. [Google Scholar] [CrossRef]
- Hennekam, R.C.; Van Schooneveld, M.J.; Ardinger, H.H.; Van Den Boogaard, M.J.; Friedburg, D.; Rudnik-Schoneborn, S.; Seguin, J.H.; Weatherstone, K.B.; Wittebol-Post, D.; Meinecke, P. The Peters’-Plus Syndrome: Description of 16 Patients and Review of the Literature. Clin. Dysmorphol. 1993, 2, 283–300. [Google Scholar] [CrossRef]
- Anyane-Yeboa, K.; Mackay, C.; Taterka, P.; Merkrebs, A.; Allendorf, D. Cleft Lip and Palate, Corneal Opacities and Profound Psychomotor Retardation. A Newly Recognized Genetic Syndrome? Cleft Palate J. 1983, 20, 246–250. [Google Scholar]
- Ozeki, H.; Shirai, S.; Nozaki, M.; Sakurai, E.; Mizuno, S.; Ashikari, M.; Matsunaga, N.; Ogura, Y. Ocular and Systemic Features of Peters’ Anomaly. Graefe’s Arch. Clin. Exp. Ophthalmol. 2000, 238, 833–839. [Google Scholar] [CrossRef]
- Aliferis, K.; Marsal, C.; Pelletier, V.; Doray, B.; Weiss, M.M.; Tops, C.M.J.; Speeg-Schatz, C.; Lesnik, S.A.J.; Dollfus, H. A Novel Nonsense B3GALTL Mutation Confirms Peters plus Syndrome in a Patient with Multiple Malformations and Peters Anomaly. Ophthalmic Genet. 2010, 31, 205–208. [Google Scholar] [CrossRef]
- Miller, F.A.; Begbie, M.E.; Giacomini, M.; Ahern, C.; Harvey, E.A. Redefining Disease? The Nosologic Implications of Molecular Genetic Knowledge. Perspect. Biol. Med. 2006, 49, 99–114. [Google Scholar] [CrossRef]
- Antonio-Santos, A.; Vedula, S.S.; Hatt, S.R.; Powell, C. Occlusion for Stimulus Deprivation Amblyopia. Cochrane Database Syst. Rev. 2020, 3, CD005136. [Google Scholar] [CrossRef]
- Yang, L.L.H.; Lambert, S.R.; Lynn, M.J.; Stulting, R.D. Surgical Management of Glaucoma in Infants and Children with Peters’ Anomaly: Long-Term Structural and Functional Outcome. Ophthalmology 2004, 111, 112–117. [Google Scholar] [CrossRef]
- Chang, J.W.; Kim, J.H.; Kim, S.J.; Yu, Y.S. Long-Term Clinical Course and Visual Outcome Associated with Peters Anomaly. Eye 2012, 26, 1237–1242. [Google Scholar] [CrossRef]
- Berker, N.; Alanay, Y.; Elgin, U.; Volkan-Salanci, B.; Simsek, T.; Akarsu, N.; Alikasifoglu, M. A New Autosomal Dominant Peters’ Anomaly Phenotype Expanding the Anterior Segment Dysgenesis Spectrum. Acta Ophthalmol. 2009, 87, 52–57. [Google Scholar] [CrossRef]
- Lesnik Oberstein, S.A.J.; Ruivenkamp, C.A.L.; Hennekam, R.C. Peters Plus Syndrome. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle WA, USA, 1993. [Google Scholar]
- Reis, L.M.; Semina, E.V. Genetics of Anterior Segment Dysgenesis Disorders. Curr. Opin. Ophthalmol. 2011, 22, 314–324. [Google Scholar] [CrossRef]
- Smith, R.S.; Zabaleta, A.; Kume, T.; Savinova, O.V.; Kidson, S.H.; Martin, J.E.; Nishimura, D.Y.; Alward, W.L.; Hogan, B.L.; John, S.W. Haploinsufficiency of the Transcription Factors FOXC1 and FOXC2 Results in Aberrant Ocular Development. Hum. Mol. Genet. 2000, 9, 1021–1032. [Google Scholar] [CrossRef]
- Saleem, R.A.; Banerjee-Basu, S.; Murphy, T.C.; Baxevanis, A.; Walter, M.A. Essential Structural and Functional Determinants within the Forkhead Domain of FOXC1. Nucleic Acids Res. 2004, 32, 4182–4193. [Google Scholar] [CrossRef]
- Berry, F.B.; Saleem, R.A.; Walter, M.A. FOXC1 Transcriptional Regulation Is Mediated by N- and C-Terminal Activation Domains and Contains a Phosphorylated Transcriptional Inhibitory Domain. J. Biol. Chem. 2002, 277, 10292–10297. [Google Scholar] [CrossRef]
- María Del Rocío, P.B.; Palomares Bralo, M.; Vanhooydonck, M.; Hamerlinck, L.; D’haene, E.; Leimbacher, S.; Jacobs, E.Z.; De Cock, L.; D’haenens, E.; Dheedene, A.; et al. Loss-of-Function of the Zinc Finger Homeobox 4 (ZFHX4) Gene Underlies a Neurodevelopmental Disorder. medRxiv 2024. [Google Scholar]
- Palomares, M.; Delicado, A.; Mansilla, E.; De Torres, M.L.; Vallespín, E.; Fernandez, L.; Martinez-Glez, V.; García-Miñaur, S.; Nevado, J.; Simarro, F.S.; et al. Characterization of a 8q21.11 Microdeletion Syndrome Associated with Intellectual Disability and a Recognizable Phenotype. Am. J. Hum. Genet. 2011, 89, 295–301. [Google Scholar] [CrossRef]
- Quintela, I.; Barros, F.; Castro-Gago, M.; Carracedo, A.; Eiris, J. Clinical Characterization of a Male Patient with the Recently Described 8q21.11 Microdeletion Syndrome. Am. J. Med. Genet. Part A 2015, 167, 1369–1373. [Google Scholar] [CrossRef]
- Liu, S.; Xu, L.; Kashima, M.; Narumi, R.; Takahata, Y.; Nakamura, E.; Shibuya, H.; Tamura, M.; Shida, Y.; Inubushi, T.; et al. Expression Analysis of Genes Including Zfhx4 in Mice and Zebrafish Reveals a Temporospatial Conserved Molecular Basis Underlying Craniofacial Development. Dev. Dyn. 2024, 254, 257–271. [Google Scholar] [CrossRef]
- Kovacs, W.J.; Shackelford, J.E.; Tape, K.N.; Richards, M.J.; Faust, P.L.; Fliesler, S.J.; Krisans, S.K. Disturbed Cholesterol Homeostasis in a Peroxisome-Deficient PEX2 Knockout Mouse Model. Mol. Cell. Biol. 2004, 24, 1–13. [Google Scholar] [CrossRef]
- Faust, P.L.; Hatten, M.E. Targeted Deletion of the PEX2 Peroxisome Assembly Gene in Mice Provides a Model for Zellweger Syndrome, a Human Neuronal Migration Disorder. J. Cell Biol. 1997, 139, 1293–1305. [Google Scholar] [CrossRef]
- Biermanns, M.; Gärtner, J. Genomic Organization and Characterization of Human PEX2 Encoding a 35-KDa Peroxisomal Membrane Protein. Biochem. Biophys. Res. Commun. 2000, 273, 985–990. [Google Scholar] [CrossRef]
- Braverman, N.E.; Raymond, G.V.; Rizzo, W.B.; Moser, A.B.; Wilkinson, M.E.; Stone, E.M.; Steinberg, S.J.; Wangler, M.F.; Rush, E.T.; Hacia, J.G.; et al. Peroxisome Biogenesis Disorders in the Zellweger Spectrum: An Overview of Current Diagnosis, Clinical Manifestations, and Treatment Guidelines. Mol. Genet. Metab. 2016, 117, 313–321. [Google Scholar] [CrossRef]
- Elumalai, V.; Pasrija, D. Zellweger Spectrum Disorder. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560676/ (accessed on 10 June 2025).
- Gootjes, J.; Elpeleg, O.; Eyskens, F.; Mandel, H.; Mitanchez, D.; Shimozawa, N.; Suzuki, Y.; Waterham, H.R.; Wanders, R.J.A. Novel Mutations in the PEX2 Gene of Four Unrelated Patients with A Peroxisome Biogenesis Disorder. Pediatr. Res. 2004, 55, 431–436. [Google Scholar] [CrossRef]
- Lang, E.; Koller, S.; Bähr, L.; Töteberg-Harms, M.; Atac, D.; Roulez, F.; Bahr, A.; Steindl, K.; Feil, S.; Berger, W.; et al. Exome Sequencing in a Swiss Childhood Glaucoma Cohort Reveals CYP1B1 and FOXC1 Variants as Most Frequent Causes. Transl. Vis. Sci. Technol. 2020, 9, 47. [Google Scholar] [CrossRef]
- Rechsteiner, D.; Issler, L.; Koller, S.; Lang, E.; Bähr, L.; Feil, S.; Rüegger, C.M.; Kottke, R.; Toelle, S.P.; Zweifel, N.; et al. Genetic Analysis in a Swiss Cohort of Bilateral Congenital Cataract. JAMA Ophthalmol. 2021, 139, 691–700. [Google Scholar] [CrossRef]
- Haug, P.; Koller, S.; Maggi, J.; Lang, E.; Feil, S.; Wlodarczyk, A.; Bähr, L.; Steindl, K.; Rohrbach, M.; Gerth-Kahlert, C.; et al. Whole Exome Sequencing in Coloboma/Microphthalmia: Identification of Novel and Recurrent Variants in Seven Genes. Genes 2021, 12, 65. [Google Scholar] [CrossRef]
- Delas, F.; Koller, S.; Feil, S.; Dacheva, I.; Gerth-Kahlert, C.; Berger, W. Novel CRYGC Mutation in Conserved Ultraviolet-Protective Tryptophan (p.Trp131Arg) Is Linked to Autosomal Dominant Congenital Cataract. Int. J. Mol. Sci. 2023, 24, 16594. [Google Scholar] [CrossRef]
- Maggi, J.; Koller, S.; Bähr, L.; Feil, S.; Pfiffner, F.K.; Hanson, J.V.M.; Maspoli, A.; Gerth-Kahlert, C.; Berger, W. Long-Range Pcr-Based Ngs Applications to Diagnose Mendelian Retinal Diseases. Int. J. Mol. Sci. 2021, 22, 1508. [Google Scholar] [CrossRef]
Peters Anomaly Type 1 (PA1) | Peters Anomaly Type 2 (PA2) | Peters Plus Syndrome (PPS) | Peters Plus-Like Syndrome (PPLS) | |
---|---|---|---|---|
Associated genes (mode of inheritance) | CDH2 (ad) [5], COL4A1 (ad) [6], COL6A3 (ad/ar) [7], CYP1B1 (ar) [8], DOP1B (ar) [9], FLNA (xld) [10], FOXC1 (ad) [11], FOXE3 (ad/ar) [12], HCCS (xld) [13], NDP (xlr) [10], PAX6 (ad) [14], PEX2 (ar) [15], PITX2 (ad) [16], PITX3 (ad) [10], PXDN (ar) [17], SLC4A11 (ar) [10], SOX2 (ad) [18], TFAP2A (ad) [19], ZFHX4 (ad) [15] | B3GLCT (ar) [20,21,22,23,24] | absent B3GLCT (ar) variant [25,26,27]; no genetics defined | |
Characteristic congenital ocular findings | Corneal abnormality (i.e., central corneal opacity plus defect or absent posterior stroma. Descemet’s membrane, endothelium and/or iridocorneal adhesion) [2,28,29,30,31] | Corneal abnormality (i.e., central corneal opacity plus defect/absent posterior stroma, Descemet’s membrane and/or endothelium) and lens abnormality (i.e., cataract and/or corneolenticular and/or iridolenticular adhesion and/or aphakia and/or lens remnant) [2,28,29,30,31] | ASD in 98% (thereof 73% with PA type 1 and 2 (distribution unclear), 25% with Axenfeld–Rieger spectrum, sclerocornea, and/or posterior embryotoxon), and 2% with other congenital ocular abnormalities) [22,23,32,33] | ASD (PA type 1 and 2), Axenfeld–Rieger spectrum) [25,33] |
Laterality | Predominantly unilateral occurrence [2,34,35] | Predominantly bilateral occurrence [2,34,35] | ||
Optional congenital ocular findings | Congenital glaucoma, microphthalmia, PFV, iris and/or retina coloboma and/or hypoplasia, vitreal and/or retinal dysplasia, optic nerve and/or optic chiasm dysplasia, congenital anterior staphyloma, congenital myopia, ptosis [4,30,32,36,37,38,39,40,41,42] | |||
Secondary ocular findings | Glaucoma [29,32] | |||
Systemic and/or dysmorphic findings | Generally uncommon [34] | Generally uncommon, can include: Growth retardation, cleft/lip palate, facial dimorphism, brachycephaly, cardiac defects, neural defects, hearing deficits described in individual cases [35] | Must include either one: growth retardation, dwarfism, clinodactyly dig. 5, brachydactyly, developmental delay, hypopituitarism, central nervous system defects, cleft/ lip palate, congenital heart defect, genitourinary defect, cupid bow upper lip, long philtrum, narrow palpebral fissures, hypertelorism, broad neck, prominent forehead, micrognathia, small ears, pre-auricular pits, microcephaly, macrocephaly [4,23,25,32] |
ID | P1 | P2 |
---|---|---|
Sex | female | male |
Suspected diagnosis | PPLS | PA2 |
Ocular findings at 2 months of age | Normal IOP, circular complete corneal opacity (i.e., sclerocornea), shallow AC, iridocorneal synechiae, iridolenticular synechiae, unremarkable posterior segment (B-scan ultrasound) | Normal IOP, central corneal opacity, shallow AC, iridocorneal synechiae, iridolenticular synechiae, localized lens opacity at iridolenticular adhesion site, iris dysplasia, optic nerve anomaly |
2ry ocular findings | Pendular nystagmus | Elevated IOP, high myopia, pendular nystagmus, esotropia, optic nerve head drusen |
Dysmorphic and/or systemic findings | Small eyes, hypertelorism, small midface, prominent forehead, thin vermilion border, short upper lip frenulum, smooth elongated philtrum, flat nose bridge, small deep-set ears, long fingers, atrial septal defect. | None |
VA (Snellen decimal) | LP (BE) 1 | 0.16 (RE); 0.1 (LE) 1 |
ID | Gene (Inheritance) | Gene Function (https://www.omim.org accessed on 9 December 2024) | Reference Sequence | Sequence Variant | Predicted Protein Change | Region/ Size | GnomAD | Zygo-sity | ACMG | CADD |
---|---|---|---|---|---|---|---|---|---|---|
P1 | PEX2 (ar) | Peroxisome biogenesis, lipid metabolism, detoxification | GRCh37 | chr8:g.76760782_78342600del 1 | n/a | ~1.6 Mb | n/a | het | P | n/a |
ZFHX4 (ad) | Transcription factor, cell differentiation and proliferation | |||||||||
P2 | FOXC1 (ad) | Transcription factor, regulation of eye development, cell migration | NM_001453.3 | c.310A>G 1 | p.Ile104Val | exon 1 | n/a | het | LP | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delas, F.; Koller, S.; Maggi, J.; Maspoli, A.; Kurmann, L.; Lang, E.; Berger, W.; Gerth-Kahlert, C. Novel Genetic Variants and Clinical Profiles in Peters Anomaly Spectrum Disorders. Int. J. Mol. Sci. 2025, 26, 6454. https://doi.org/10.3390/ijms26136454
Delas F, Koller S, Maggi J, Maspoli A, Kurmann L, Lang E, Berger W, Gerth-Kahlert C. Novel Genetic Variants and Clinical Profiles in Peters Anomaly Spectrum Disorders. International Journal of Molecular Sciences. 2025; 26(13):6454. https://doi.org/10.3390/ijms26136454
Chicago/Turabian StyleDelas, Flora, Samuel Koller, Jordi Maggi, Alessandro Maspoli, Lisa Kurmann, Elena Lang, Wolfgang Berger, and Christina Gerth-Kahlert. 2025. "Novel Genetic Variants and Clinical Profiles in Peters Anomaly Spectrum Disorders" International Journal of Molecular Sciences 26, no. 13: 6454. https://doi.org/10.3390/ijms26136454
APA StyleDelas, F., Koller, S., Maggi, J., Maspoli, A., Kurmann, L., Lang, E., Berger, W., & Gerth-Kahlert, C. (2025). Novel Genetic Variants and Clinical Profiles in Peters Anomaly Spectrum Disorders. International Journal of Molecular Sciences, 26(13), 6454. https://doi.org/10.3390/ijms26136454