Tear Proteome Analysis with Patients with Primary Nasolacrimal Duct Obstruction
Abstract
1. Introduction
2. Results
2.1. Clinical Characteristics of the Study
2.2. Comprehensive Global Tear Proteome
2.3. Differentially Expressed Proteins in Patients with PANDO Compared to the Control Group and Across Subgroups in Males and Females
2.4. Selection of Candidate Biomarkers for Type of Nasolacrimal Duct Obstruction in Males
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Tear Sample Collection
4.3. Protein Analysis
4.3.1. Chemicals and Reagents
4.3.2. Protein Digestion
4.3.3. LC-MS/MS Analysis
4.3.4. Data Analysis and Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PANDO | Primary acquired nasolacrimal duct obstruction |
DEPs | Differentially expressed proteins |
ECM | Extracellular matrix |
Appendix A
Tear Meniscus Height | ||||
---|---|---|---|---|
Protein (Gene Name) | Average Normalized Abundances | Correlation Coefficient | p-Value | |
PANDO | Control | |||
Neutrophil collagenase (MMP8) | 1.15 × 105 | 2.13 × 104 | 0.485 | 0.007 |
Lipocalin-1 (LCN1) | 8.71 × 109 | 2.46 × 109 | 0.368 | 0.039 |
Galectin-3-binding protein (LGALS3BP) | 1.43 × 107 | 4.21 × 106 | 0.368 | 0.039 |
Monocyte differentiation antigen CD14 (CD14) | 6.29 × 105 | 2.05 × 105 | 0.368 | 0.039 |
Lactoferrin (LTF) | 3.52 × 109 | 9.13 × 108 | 0.309 | 0.084 |
Keratin, type 1 cytoskeletal 14 (KRT14) | 1.33 × 108 | 8.11 × 108 | −0.309 | 0.084 |
Plakophilin-1 (PKP1) | 1.79 × 106 | 7.71 × 106 | −0.294 | 0.099 |
Azurocidin (AZU1) | 5.68 × 105 | 5.14 × 104 | 0.294 | 0.099 |
Zinc-alpha-2-glycoprotein (AZGP1) | 3.92 × 108 | 1.56 × 108 | 0.265 | 0.138 |
Desmoglein-1 (DSG1) | 1.45 × 107 | 6.53 × 107 | −0.235 | 0.187 |
Annexin (ANXA2) | 1.50 × 107 | 4.80 × 107 | −0.221 | 0.217 |
Alpha-2-macroglobulin-like protein (A2ML1) | 1.35 × 106 | 6.31 × 106 | −0.221 | 0.217 |
Voltage-dependent anion-selective channel protein 1 (VDAC1) | 3.51 × 105 | 2.53 × 106 | −0.221 | 0.217 |
Deleted in malignant brain tumors 1 protein (DMBT1) | 1.66 × 108 | 2.41 × 107 | 0.206 | 0.249 |
Interleukin-36 gamma (IL36G) | 2.75 × 105 | 3.63 × 106 | −0.206 | 0.249 |
Lysozyme C (LYZ) | 4.80 × 109 | 1.73 × 109 | 0.176 | 0.323 |
Cystatin-S (CST4) | 1.95 × 108 | 4.28 × 107 | 0.176 | 0.323 |
Prolactin-inducible protein (PIP) | 4.75 × 108 | 1.11 × 108 | 0.162 | 0.365 |
Desmocollin-1 (DSC1) | 7.39 × 106 | 2.32 × 107 | −0.147 | 0.410 |
LACRTF | 2.98 × 106 | 4.86 × 105 | 0.147 | 0.410 |
Elongation factor 2 (EEF2) | 3.32 × 106 | 1.22 × 107 | −0.132 | 0.458 |
Extracellular glycoprotein lacritin (LACRT) | 3.53 × 108 | 6.70 × 107 | 0.118 | 0.510 |
Calmodulin-like protein 5 (CALML5) | 6.76 × 106 | 1.24 × 108 | −0.088 | 0.621 |
Polymeric immunoglobulin receptor (PIGR) | 9.18 × 108 | 1.58 × 108 | 0.059 | 0.742 |
Tubulin alpha-4A chain (TUBA4A) | 6.69 × 105 | 2.84 × 106 | −0.059 | 0.742 |
Zymogen granule protein 16 homolog B (ZG16B) | 1.86 × 107 | 7.14 × 106 | 0.029 | 0.869 |
References
- Lee, S.M.; Lew, H. Transcanalicular endoscopic dacryoplasty in patients with primary acquired nasolacrimal duct obstruction. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 173–180. [Google Scholar] [CrossRef]
- Ali, M.J. Etiopathogenesis of primary acquired nasolacrimal duct obstruction (PANDO). Prog. Retin. Eye Res. 2023, 96, 101193. [Google Scholar] [CrossRef]
- Francis, I.C.; Chan, D.G.; Papalkar, D.; Papas, E.B.; Stapleton, F. Videoreflective dacryomeniscometry in normal adults and in patients with functional or primary acquired nasolacrimal duct obstruction. Am. J. Ophthalmol. 2005, 139, 493–497. [Google Scholar] [CrossRef]
- Lew, H.; Yun, Y.-S.; Lee, S.-Y. Electrolytes and Electrophoretic Studies of Tear Proteins in Tears of Patients with Nasolacrimal Duct Obstruction. Ophthalmologica 2005, 219, 142–146. [Google Scholar] [CrossRef]
- Yuksel, N.; Akcay, E.; Ayan, B.; Duru, N. Tear-Film Osmolarity Changes Following Dacryocystorhinostomy in Primary Acquired Nasolacrimal Duct Obstruction. Curr. Eye Res. 2017, 42, 348–350. [Google Scholar] [CrossRef]
- Ali, M.J.; Patnaik, S.; Kelkar, N.; Ali, M.H.; Kaur, I. Alteration of Tear Cytokine Expressions in Primary Acquired Nasolacrimal Duct Obstruction—Potential Insights into the Etiopathogenesis. Curr. Eye Res. 2020, 45, 435–439. [Google Scholar] [CrossRef]
- Lee, J.K.; Kim, T.H. Changes in cytokines in tears after endoscopic endonasal dacryocystorhinostomy for primary acquired nasolacrimal duct obstruction. Eye 2014, 28, 600–607. [Google Scholar] [CrossRef]
- Wang, D.; Xiang, N.; Hu, W.K.; Luo, B.; Xiao, X.T.; Zhao, Y.; Li, B.; Liu, R. Detection & analysis of inflammatory cytokines in tears of patients with lacrimal duct obstruction. Indian J. Med. Res. 2021, 154, 888–894. [Google Scholar] [CrossRef]
- Yaginuma, S.; Konno, K.; Shigeyasu, C.; Yamada, M. Tear protein analysis in patients with primary acquired nasolacrimal duct obstruction treated with lacrimal passage intubation. Jpn. J. Ophthalmol. 2021, 65, 409–415. [Google Scholar] [CrossRef]
- Ma, J.Y.W.; Sze, Y.H.; Bian, J.F.; Lam, T.C. Critical role of mass spectrometry proteomics in tear biomarker discovery for multifactorial ocular diseases (Review). Int. J. Mol. Med. 2021, 47, 83. [Google Scholar] [CrossRef]
- Nättinen, J.; Aapola, U.; Nukareddy, P.; Uusitalo, H. Looking deeper into ocular surface health: An introduction to clinical tear proteomics analysis. Acta Ophthalmol. 2022, 100, 486–498. [Google Scholar] [CrossRef]
- Ponzini, E.; Santambrogio, C.; De Palma, A.; Mauri, P.; Tavazzi, S.; Grandori, R. Mass spectrometry-based tear proteomics for noninvasive biomarker discovery. Mass. Spectrom. Rev. 2022, 41, 842–860. [Google Scholar] [CrossRef]
- Kannan, R.; Das, S.; Shetty, R.; Zhou, L.; Ghosh, A.; Deshpande, V. Tear proteomics in dry eye disease. Indian J. Ophthalmol. 2023, 71, 1203–1214. [Google Scholar] [CrossRef]
- Soria, J.; Durán, J.A.; Etxebarria, J.; Merayo, J.; González, N.; Reigada, R.; García, I.; Acera, A.; Suárez, T. Tear proteome and protein network analyses reveal a novel pentamarker panel for tear film characterization in dry eye and meibomian gland dysfunction. J. Proteom. 2013, 78, 94–112. [Google Scholar] [CrossRef]
- Ananthi, S.; Santhosh, R.S.; Nila, M.V.; Prajna, N.V.; Lalitha, P.; Dharmalingam, K. Comparative proteomics of human male and female tears by two-dimensional electrophoresis. Exp. Eye Res. 2011, 92, 454–463. [Google Scholar] [CrossRef]
- Bharathi, M.J.; Ramakrishnan, R.; Maneksha, V.; Shivakumar, C.; Nithya, V.; Mittal, S. Comparative bacteriology of acute and chronic dacryocystitis. Eye 2008, 22, 953–960. [Google Scholar] [CrossRef]
- Shigeta, K.-I.; Takegoshi, H.; Kikuchi, S. Sex and Age Differences in the Bony Nasolacrimal Canal: An Anatomical Study. Arch. Ophthalmol. 2007, 125, 1677–1681. [Google Scholar] [CrossRef]
- Woog, J.J. The incidence of symptomatic acquired lacrimal outflow obstruction among residents of Olmsted County, Minnesota, 1976–2000 (an American Ophthalmological Society thesis). Trans. Am. Ophthalmol. Soc. 2007, 105, 649–666. [Google Scholar]
- Singh, S.; Rajput, A.; Mohamed, A.; Mittal, V. Spectral domain optical coherence tomography for measuring tear film meniscus height and its relationship with epiphora. Indian J. Ophthalmol. 2018, 66, 1592–1594. [Google Scholar] [CrossRef]
- Määttä, M.; Kari, O.; Tervahartiala, T.; Peltonen, S.; Kari, M.; Saari, M.; Sorsa, T. Tear fluid levels of MMP-8 are elevated in ocular rosacea—Treatment effect of oral doxycycline. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 244, 957–962. [Google Scholar] [CrossRef]
- Määttä, M.; Kari, O.; Tervahartiala, T.; Wahlgren, J.; Peltonen, S.; Kari, M.; Rytilä, P.; Saari, M.; Sorsa, T. Elevated expression and activation of matrix metalloproteinase 8 in tear fluid in atopic blepharoconjunctivitis. Cornea 2008, 27, 297–301. [Google Scholar] [CrossRef]
- Gao, S.; Zhu, H.; Zuo, X.; Luo, H. Cathepsin G and Its Role in Inflammation and Autoimmune Diseases. Arch. Rheumatol. 2018, 33, 498–504. [Google Scholar] [CrossRef]
- Kontoh-Twumasi, R.; Budkin, S.; Edupuganti, N.; Vashishtha, A.; Sharma, S. Role of Serine Protease Inhibitors A1 and A3 in Ocular Pathologies. Invest. Ophthalmol. Vis. Sci. 2024, 65, 16. [Google Scholar] [CrossRef]
- Kim, M.S.; Choi, S.H.; Park, H.Y.; Jang, S.Y.; Ko, J.; Kim, J.W.; Yoon, J.S. Role of SerpinA3 in the Pathogenesis of Graves’ Orbitopathy in Orbital Fibroblasts. Invest. Ophthalmol. Vis. Sci. 2025, 66, 20. [Google Scholar] [CrossRef]
- Eidet, J.R.; Akopian, M.; Olstad, O.K.; Jørstad, Ø.K.; Moe, M.C.; Petrovski, G.; Pepaj, M. The acute phase response protein SERPINA3 is increased in tear fluid from the unaffected eyes of patients with unilateral acute anterior uveitis. J. Ophthalmic Inflamm. Infect. 2021, 11, 19. [Google Scholar] [CrossRef]
- Torriglia, A.; Martin, E.; Jaadane, I. The hidden side of SERPINB1/Leukocyte Elastase Inhibitor. Semin. Cell Dev. Biol. 2017, 62, 178–186. [Google Scholar] [CrossRef]
- Nugteren, S.; Samsom, J.N. Secretory Leukocyte Protease Inhibitor (SLPI) in mucosal tissues: Protects against inflammation, but promotes cancer. Cytokine Growth Factor Rev. 2021, 59, 22–35. [Google Scholar] [CrossRef]
- Brown, R.; Dougan, C.; Ferris, P.; Delaney, R.; Houston, C.J.; Rodgers, A.; Downey, D.G.; Mall, M.A.; Connolly, B.; Small, D.; et al. SLPI deficiency alters airway protease activity and induces cell recruitment in a model of muco-obstructive lung disease. Front. Immunol. 2024, 15, 1433642. [Google Scholar] [CrossRef]
- Cooley, J.; Sontag, M.K.; Accurso, F.J.; Remold-O’Donnell, E. SerpinB1 in cystic fibrosis airway fluids: Quantity, molecular form and mechanism of elastase inhibition. Eur. Respir. J. 2011, 37, 1083–1090. [Google Scholar] [CrossRef]
- Schuster, A.; Fahy, J.V.; Ueki, I.; Nadel, J.A. Cystic fibrosis sputum induces a secretory response from airway gland serous cells that can be prevented by neutrophil protease inhibitors. Eur. Respir. J. 1995, 8, 10–14. [Google Scholar] [CrossRef]
- Hanau, S.; Helliwell, J.R. 6-Phosphogluconate dehydrogenase and its crystal structures. Acta Crystallogr. F Struct. Biol. Commun. 2022, 78, 96–112. [Google Scholar] [CrossRef]
- Lin, R.; Elf, S.; Shan, C.; Kang, H.B.; Ji, Q.; Zhou, L.; Hitosugi, T.; Zhang, L.; Zhang, S.; Seo, J.H.; et al. 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Nat. Cell Biol. 2015, 17, 1484–1496. [Google Scholar] [CrossRef]
- López-López, M.; Regueiro, U.; Bravo, S.B.; Chantada-Vázquez, M.D.P.; Varela-Fernández, R.; Ávila-Gómez, P.; Hervella, P.; Lema, I. Tear Proteomics in Keratoconus: A Quantitative SWATH-MS Analysis. Invest. Ophthalmol. Vis. Sci. 2021, 62, 30. [Google Scholar] [CrossRef]
- Paulsen, F. The human nasolacrimal ducts. Adv. Anat. Embryol. Cell Biol. 2003, 170, 1–106. [Google Scholar]
- Paulsen, F.; Thale, A.; Kohla, G.; Schauer, R.; Rochels, R.; Parwaresch, R.; Tillmann, B. Functional anatomy of human lacrimal duct epithelium. Anat. Embryol. 1998, 198, 1–12. [Google Scholar] [CrossRef]
- McClatchey, A.I.; Fehon, R.G. Merlin and the ERM proteins--regulators of receptor distribution and signaling at the cell cortex. Trends Cell Biol. 2009, 19, 198–206. [Google Scholar] [CrossRef]
- Berryman, M.; Franck, Z.; Bretscher, A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J. Cell Sci. 1993, 105 Pt 4, 1025–1043. [Google Scholar] [CrossRef]
- Gipson, I.K. The ocular surface: The challenge to enable and protect vision: The Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 2007, 48, 4391–4398. [Google Scholar] [CrossRef]
- Blalock, T.D.; Spurr-Michaud, S.J.; Tisdale, A.S.; Heimer, S.R.; Gilmore, M.S.; Ramesh, V.; Gipson, I.K. Functions of MUC16 in corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 2007, 48, 4509–4518. [Google Scholar] [CrossRef]
- Jeon, J.; Yang, J.; Park, J.M.; Han, N.Y.; Lee, Y.B.; Lee, H. Development of an automated high-throughput sample preparation protocol for LC-MS/MS analysis of glycated peptides. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1092, 88–94. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012, 40, D109–D114. [Google Scholar] [CrossRef]
Characteristics | PANDO | Control | p-Value |
---|---|---|---|
Number of patients | 22 (73.3%) | 8 (26.7%) | - |
Membranous | 10 | - | - |
Mucinous | 12 | - | - |
Age | 64.86 ± 10.99 | 61.88 ± 14.15 | 0.629 |
Gender (M:F) | 9:13 | 4:4 | 0.657 |
Side (OD:OS) | 12:10 | 5:3 | 0.697 |
Tear meniscus height (μm) | 470.59 ± 186.00 | 278.63 ± 159.15 | 0.015 |
Tear Meniscus Height | ||||
---|---|---|---|---|
Protein (Gene Name) | Average Normalized Abundances | Correlation Coefficient | p-Value | |
PANDO | Control | |||
Leukocyte elastase inhibitor (SERPINB1) | 9.75 × 106 | 2.79 × 106 | 0.626 | 0.007 |
Cathepsin G (CTSG) | 2.07 × 106 | 1.05 × 105 | 0.595 | 0.01 |
6-phosphogluconate dehydrogenase (PGD) | 2.42 × 106 | 2.96 × 105 | 0.565 | 0.015 |
Alpha-1-antichymotrypsin (SERPINA3) | 9.94 × 106 | 1.19 × 106 | 0.565 | 0.015 |
Ezrin (EZR) | 4.01 × 106 | 2.38 × 106 | 0.504 | 0.03 |
Cathepsin D (CTSD) | 2.84 × 106 | 6.66 × 105 | 0.504 | 0.03 |
Coronin-1A (CORO1A) | 2.74 × 106 | 7.37 × 105 | 0.473 | 0.042 |
Antileukoproteinase (SLPI) | 9.97 × 105 | 5.22 × 106 | −0.473 | 0.042 |
Lactoperoxidase (LPO) | 1.43 × 106 | 1.92 × 106 | −0.443 | 0.057 |
Glucose-6-phosphate isomerase (GPI) | 2.04 × 106 | 2.92 × 105 | 0.443 | 0.057 |
Elongation factor 1-delta (EEF1D) | 4.73 × 105 | 3.77 × 104 | 0.412 | 0.076 |
Annexin A4 (ANXA4) | 9.84 × 104 | 2.22 × 104 | 0.382 | 0.1 |
Mucin-16 (MUC16) | 2.84 × 105 | 3.23 × 104 | 0.382 | 0.1 |
Isoform 2 of proline-rich protein 4 (PRR4) | 4.43 × 105 | 1.51 × 104 | 0.351 | 0.131 |
Cathepsin B (CTSB) | 1.87 × 106 | 1.77 × 106 | −0.321 | 0.168 |
Alpha-1-acid glycoprotein 2 (ORM2) | 3.26 × 104 | 3.76 × 105 | −0.29 | 0.212 |
Metalloproteinase inhibitor 1 (TIMP1) | 9.25 × 105 | 2.86 × 105 | 0.198 | 0.393 |
Leukotriene A-4 hydrolase (LTA4H) | 1.23 × 105 | 3.02 × 104 | 0.198 | 0.393 |
Alpha-2-HS-glycoprotein (AHSG) | 2.58 × 104 | 9.39 × 105 | −0.198 | 0.393 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bang, W.; You, H.; Park, J.-M.; Park, J.; Kang, B.; Ju, M.; Park, Y.; Lee, H.; Back, S.; Lew, H. Tear Proteome Analysis with Patients with Primary Nasolacrimal Duct Obstruction. Int. J. Mol. Sci. 2025, 26, 6449. https://doi.org/10.3390/ijms26136449
Bang W, You H, Park J-M, Park J, Kang B, Ju M, Park Y, Lee H, Back S, Lew H. Tear Proteome Analysis with Patients with Primary Nasolacrimal Duct Obstruction. International Journal of Molecular Sciences. 2025; 26(13):6449. https://doi.org/10.3390/ijms26136449
Chicago/Turabian StyleBang, Wonseok, Heejeong You, Jong-Moon Park, Junyoung Park, Byeongsoo Kang, Minjung Ju, Yelin Park, Hookeun Lee, Seunghoon Back, and Helen Lew. 2025. "Tear Proteome Analysis with Patients with Primary Nasolacrimal Duct Obstruction" International Journal of Molecular Sciences 26, no. 13: 6449. https://doi.org/10.3390/ijms26136449
APA StyleBang, W., You, H., Park, J.-M., Park, J., Kang, B., Ju, M., Park, Y., Lee, H., Back, S., & Lew, H. (2025). Tear Proteome Analysis with Patients with Primary Nasolacrimal Duct Obstruction. International Journal of Molecular Sciences, 26(13), 6449. https://doi.org/10.3390/ijms26136449