Mutant p53 as a Therapeutic Target: The Report of Its Death Was an Exaggeration
Abstract
1. Introduction
2. Limitations of CRISPR-Mediated Mutagenesis of Cancer Cell Lines
3. CRISPR-Based Data from Organoid-Derived Tumors: Evidence of Insufficient Statistical Power
4. Recent Evidence That Mutant p53 Can Be a Valid Therapeutic Target
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CRISPR | Clustered regularly interspaced short palindromic repeats |
DNE | Dominant negative effect |
GOF | Gain of function |
LFS | Li–Fraumeni syndrome |
LOF | Loss of function |
WT | Wild-type |
References
- Hollstein, M.; Sidransky, D.; Vogelstein, B.; Harris, C.C. P53 Mutations in Human Cancers. Science 1991, 253, 49–53. [Google Scholar] [CrossRef]
- Dittmer, D.; Pati, S.; Zambetti, G.; Chu, S.; Teresky, A.K.; Moore, M.; Finlay, C.; Levine, A.J. Gain of Function Mutations in P53. Nat. Genet. 1993, 4, 42–46. [Google Scholar] [CrossRef]
- Kim, M.P.; Lozano, G. Mutant P53 Partners in Crime. Cell Death Differ. 2018, 25, 161–168. [Google Scholar] [CrossRef]
- Malkin, D.; Li, F.P.; Strong, L.C.; Fraumeni, J.F.; Nelson, C.E.; Kim, D.H.; Kassel, J.; Gryka, M.A.; Bischoff, F.Z.; Tainsky, M.A. Germ Line P53 Mutations in a Familial Syndrome of Breast Cancer, Sarcomas, and Other Neoplasms. Science 1990, 250, 1233–1238. [Google Scholar] [CrossRef]
- Xu, J.; Qian, J.; Hu, Y.; Wang, J.; Zhou, X.; Chen, H.; Fang, J.-Y. Heterogeneity of Li-Fraumeni Syndrome Links to Unequal Gain-of-Function Effects of P53 Mutations. Sci. Rep. 2014, 4, 4223. [Google Scholar] [CrossRef]
- Beckerman, R.; Prives, C. Transcriptional Regulation by P53. Cold Spring Harb. Perspect. Biol. 2010, 2, a000935. [Google Scholar] [CrossRef]
- Gencel-Augusto, J.; Lozano, G. P53 Tetramerization: At the Center of the Dominant-Negative Effect of Mutant P53. Genes Dev. 2020, 34, 1128–1146. [Google Scholar] [CrossRef]
- Kim, E.; Deppert, W. Interactions of Mutant P53 with DNA: Guilt by Association. Oncogene 2007, 26, 2185–2190. [Google Scholar] [CrossRef]
- Pfister, N.T.; Prives, C. Transcriptional Regulation by Wild-Type and Cancer-Related Mutant Forms of P53. Cold Spring Harb. Perspect. Med. 2017, 7, a026054. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, T.; Gleber-Netto, F.O.; Chen, Z.; McGrail, D.J.; Gomez, J.A.; Ju, W.; Gadhikar, M.A.; Ma, W.; Shen, L.; et al. Mutant P53 Gains Oncogenic Functions through a Chromosomal Instability-Induced Cytosolic DNA Response. Nat. Commun. 2024, 15, 180. [Google Scholar] [CrossRef]
- Aubrey, B.J.; Janic, A.; Chen, Y.; Chang, C.; Lieschke, E.C.; Diepstraten, S.T.; Kueh, A.J.; Bernardini, J.P.; Dewson, G.; O’Reilly, L.A.; et al. Mutant TRP53 Exerts a Target Gene-Selective Dominant-Negative Effect to Drive Tumor Development. Genes Dev. 2018, 32, 1420–1429. [Google Scholar] [CrossRef]
- Boettcher, S.; Miller, P.G.; Sharma, R.; McConkey, M.; Leventhal, M.; Krivtsov, A.V.; Giacomelli, A.O.; Wong, W.; Kim, J.; Chao, S.; et al. A Dominant-Negative Effect Drives Selection of TP53 Missense Mutations in Myeloid Malignancies. Science 2019, 365, 599–604. [Google Scholar] [CrossRef]
- Wang, Z.; Burigotto, M.; Ghetti, S.; Vaillant, F.; Tan, T.; Capaldo, B.D.; Palmieri, M.; Hirokawa, Y.; Tai, L.; Simpson, D.S.; et al. Loss-of-Function but Not Gain-of-Function Properties of Mutant TP53 Are Critical for the Proliferation, Survival, and Metastasis of a Broad Range of Cancer Cells. Cancer Discov. 2024, 14, 362–379. [Google Scholar] [CrossRef]
- Lane, D.P. Mutant P53 Gain-of-Function in the Spotlight: Are We Suffering a GOF Delusion? Cancer Discov. 2024, 14, 211–213. [Google Scholar] [CrossRef]
- Attardi, L.D.; Boutelle, A.M. Targeting P53 Gain-of-Function Activity in Cancer Therapy: A Cautionary Tale. Cell Death Differ. 2024, 31, 133–135. [Google Scholar] [CrossRef]
- Butera, A.; Amelio, I. Deciphering the Significance of P53 Mutant Proteins. Trends Cell Biol. 2025, 35, 258–268. [Google Scholar] [CrossRef]
- Lozano, G.; Prives, C.; Sabapathy, K. Mutant P53 Gain of Function: Why Many See It, Why Some Do Not. Cancer Discov. 2025, 15, OF1–OF6. [Google Scholar] [CrossRef]
- Funk, J.S.; Klimovich, M.; Drangenstein, D.; Pielhoop, O.; Hunold, P.; Borowek, A.; Noeparast, M.; Pavlakis, E.; Neumann, M.; Balourdas, D.-I.; et al. Deep CRISPR Mutagenesis Characterizes the Functional Diversity of TP53 Mutations. Nat. Genet. 2025, 57, 140–153. [Google Scholar] [CrossRef]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernández-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; et al. Patient-Derived Organoids Model Treatment Response of Metastatic Gastrointestinal Cancers. Science 2018, 359, 920–926. [Google Scholar] [CrossRef]
- Jaber, S.; Eldawra, E.; Rakotopare, J.; Simeonova, I.; Lejour, V.; Gabriel, M.; Cañeque, T.; Volochtchouk, V.; Licaj, M.; Fajac, A.; et al. Oncogenic and Teratogenic Effects of Trp53Y217C, an Inflammation-Prone Mouse Model of the Human Hotspot Mutant TP53Y220C. eLife 2025, 13, RP102434. [Google Scholar] [CrossRef]
- Hainaut, P.; Pfeifer, G.P. Somatic TP53 Mutations in the Era of Genome Sequencing. Cold Spring Harb. Perspect. Med. 2016, 6, a026179. [Google Scholar] [CrossRef]
- Rockwell, N.C.; Yang, W.; Warrington, N.M.; Staller, M.V.; Griffith, M.; Griffith, O.L.; Gurnett, C.A.; Cohen, B.A.; Baldridge, D.; Rubin, J.B. Sex- and Mutation-Specific P53 Gain-of-Function Activity in Gliomagenesis. Cancer Res. Commun. 2021, 1, 148–163. [Google Scholar] [CrossRef]
- Gener-Ricos, G.; Bewersdorf, J.P.; Loghavi, S.; Bataller, A.; Goldberg, A.D.; Sasaki, K.; Famulare, C.; Takahashi, K.; Issa, G.C.; Borthakur, G.; et al. TP53 Y220C Mutations in Patients with Myeloid Malignancies. Leuk. Lymphoma 2024, 65, 1511–1515. [Google Scholar] [CrossRef]
- Joerger, A.C.; Ang, H.C.; Fersht, A.R. Structural Basis for Understanding Oncogenic P53 Mutations and Designing Rescue Drugs. Proc. Natl. Acad. Sci. USA 2006, 103, 15056–15061. [Google Scholar] [CrossRef]
- Puzio-Kuter, A.M.; Xu, L.; McBrayer, M.K.; Dominique, R.; Li, H.H.; Fahr, B.J.; Brown, A.M.; Wiebesiek, A.E.; Russo, B.M.; Mulligan, C.L.; et al. Restoration of the Tumor Suppressor Function of Y220C-Mutant P53 by Rezatapopt, a Small Molecule Reactivator. Cancer Discov. 2025, 15, 1159–1179. [Google Scholar] [CrossRef]
- Agupitan, A.D.; Neeson, P.; Williams, S.; Howitt, J.; Haupt, S.; Haupt, Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int. J. Mol. Sci. 2020, 21, 3452. [Google Scholar] [CrossRef]
- Qin, Z.; Liu, H.; Sheng, Q.; Dan, J.; Wu, X.; Li, H.; Wang, L.; Zhang, S.; Yuan, C.; Yuan, H.; et al. Mutant P53 Leads to Low-Grade IFN-I-Induced Inflammation and Impairs CGAS-STING Signalling in Mice. Eur. J. Immunol. 2023, 53, e2250211. [Google Scholar] [CrossRef]
- Rodier, F.; Coppé, J.-P.; Patil, C.K.; Hoeijmakers, W.A.M.; Muñoz, D.P.; Raza, S.R.; Freund, A.; Campeau, E.; Davalos, A.R.; Campisi, J. Persistent DNA Damage Signalling Triggers Senescence-Associated Inflammatory Cytokine Secretion. Nat. Cell Biol. 2009, 11, 973–979. [Google Scholar] [CrossRef]
- Lian, Q.; Dheen, S.T.; Liao, D.; Tay, S.S.W. Enhanced Inflammatory Response in Neural Tubes of Embryos Derived from Diabetic Mice Exposed to a Teratogen. J. Neurosci. Res. 2004, 75, 554–564. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Y.-H.; Dong, X.-T.; Zhou, J.; Chen, X.; Wang, H.; Wu, S.-X.; Xia, M.-Z.; Zhang, C.; Xu, D.-X. Folic Acid Protects against Lipopolysaccharide-Induced Preterm Delivery and Intrauterine Growth Restriction through Its Anti-Inflammatory Effect in Mice. PLoS ONE 2013, 8, e82713. [Google Scholar] [CrossRef]
- McNairn, A.J.; Chuang, C.-H.; Bloom, J.C.; Wallace, M.D.; Schimenti, J.C. Female-Biased Embryonic Death from Inflammation Induced by Genomic Instability. Nature 2019, 567, 105–108. [Google Scholar] [CrossRef]
- Bianchi, V.E. The Anti-Inflammatory Effects of Testosterone. J. Endocr. Soc. 2019, 3, 91–107. [Google Scholar] [CrossRef]
- Ainslie, R.J.; Simitsidellis, I.; Kirkwood, P.M.; Gibson, D.A. RISING STARS: Androgens and Immune Cell Function. J. Endocrinol. 2024, 261, e230398. [Google Scholar] [CrossRef]
- Solier, S.; Müller, S.; Cañeque, T.; Versini, A.; Mansart, A.; Sindikubwabo, F.; Baron, L.; Emam, L.; Gestraud, P.; Pantoș, G.D.; et al. A Druggable Copper-Signalling Pathway That Drives Inflammation. Nature 2023, 617, 386–394. [Google Scholar] [CrossRef]
- Müller, S.; Cañeque, T.; Solier, S.; Rodriguez, R. Copper and Iron Orchestrate Cell-State Transitions in Cancer and Immunity. Trends Cell Biol. 2025, 35, 105–114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toledo, F. Mutant p53 as a Therapeutic Target: The Report of Its Death Was an Exaggeration. Int. J. Mol. Sci. 2025, 26, 6446. https://doi.org/10.3390/ijms26136446
Toledo F. Mutant p53 as a Therapeutic Target: The Report of Its Death Was an Exaggeration. International Journal of Molecular Sciences. 2025; 26(13):6446. https://doi.org/10.3390/ijms26136446
Chicago/Turabian StyleToledo, Franck. 2025. "Mutant p53 as a Therapeutic Target: The Report of Its Death Was an Exaggeration" International Journal of Molecular Sciences 26, no. 13: 6446. https://doi.org/10.3390/ijms26136446
APA StyleToledo, F. (2025). Mutant p53 as a Therapeutic Target: The Report of Its Death Was an Exaggeration. International Journal of Molecular Sciences, 26(13), 6446. https://doi.org/10.3390/ijms26136446