Special Issue “25 Anniversary of Bioinformatics of Genome Regulation and Structure Conference Series”
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Bogomolov, A.; Zolotareva, K.; Filonov, S.; Chadaeva, I.; Rasskazov, D.; Sharypova, E.; Podkolodnyy, N.; Ponomarenko, P.; Savinkova, L.; Tverdokhleb, N.; et al. AtSNP_TATAdb: Candidate Molecular Markers of Plant Advantages Related to Single Nucleotide Polymorphisms within Proximal Promoters of Arabidopsis thaliana L. Int. J. Mol. Sci. 2024, 25, 607. https://doi.org/10.3390/ijms25010607.
- Vishnevsky, O.; Bocharnikov, A.; Ignatieva, E. Peak Scores Significantly Depend on the Relationships Between Contextual Signals in ChIP-Seq Peaks. Int. J. Mol. Sci. 2024, 25, 1011. https://doi.org/10.3390/ijms25021011.
- Hummel, J.; Liu, D.; Tallon, E.; Snyder, J.; Warren, W.; Shyu, C.; Mitchem, J.; Cortese, R. Identification of Genomic Signatures for Colorectal Cancer Survival Using Exploratory Data Mining. Int. J. Mol. Sci. 2024, 25, 3220. https://doi.org/10.3390/ijms25063220.
- Kwok, T.; Yeguvapalli, S.; Chitrala, K. Identification of Genes Crucial for Biological Processes in Breast Cancer Liver Metastasis Relapse. Int. J. Mol. Sci. 2024, 25, 5439. https://doi.org/10.3390/ijms25105439.
- Geronikolou, S.; Pavlopoulou, A.; Uça Apaydin, M.; Albanopoulos, K.; Cokkinos, D.; Chrousos, G. Non-Hereditary Obesity Type Networks and New Drug Targets: An in Silico Approach. Int. J. Mol. Sci. 2024, 25, 7684. https://doi.org/10.3390/ijms25147684.
- Chen, H.; Chen, Q.; Chen, J.; Mao, Y.; Duan, L.; Ye, D.; Cheng, W.; Chen, J.; Gao, X.; Lin, R.; et al. Deciphering the Effects of the PYCR Family on Cell Function, Prognostic Value, Immune Infiltration in ccRCC and Pan-Cancer. Int. J. Mol. Sci. 2024, 25, 8096. https://doi.org/10.3390/ijms25158096.
- Cao, Z.; An, Y.; Lu, Y. Altered N6-Methyladenosine Modification Patterns and Transcript Profiles Contributes to Cognitive Dysfunction in High-Fat Induced Diabetic Mice. Int. J. Mol. Sci. 2024, 25, 1990. https://doi.org/10.3390/ijms25041990.
- Babenko, V.; Redina, O.; Smagin, D.; Kovalenko, I.; Galyamina, A.; Kudryavtseva, N. Brain-Region-Specific Genes Form the Major Pathways Featuring Their Basic Functional Role: Their Implication in Animal Chronic Stress Model. Int. J. Mol. Sci. 2024, 25, 2882. https://doi.org/10.3390/ijms25052882.
- Chadaeva, I.; Kozhemyakina, R.; Shikhevich, S.; Bogomolov, A.; Kondratyuk, E.; Oshchepkov, D.; Orlov, Y.; Markel, A. A Principal Components Analysis and Functional Annotation of Differentially Expressed Genes in Brain Regions of Gray Rats Selected for Tame or Aggressive Behavior. Int. J. Mol. Sci. 2024, 25, 4613. https://doi.org/10.3390/ijms25094613.
- Arciuch-Rutkowska, M.; Nowosad, J.; Gil, Ł.; Czarnik, U.; Kucharczyk, D. Synergistic Effect of Dietary Supplementation with Sodium Butyrate, β-Glucan and Vitamins on Growth Performance, Cortisol Level, Intestinal Microbiome and Expression of Immune-Related Genes in Juvenile African Catfish (Clarias gariepinus). Int. J. Mol. Sci. 2024, 25, 4619. https://doi.org/10.3390/ijms25094619.
- Gorbenko, I.; Tarasenko, V.; Garnik, E.; Yakovleva, T.; Katyshev, A.; Belkov, V.; Orlov, Y.; Konstantinov, Y.; Koulintchenko, M. Overexpression of RPOTmp Being Targeted to Either Mitochondria or Chloroplasts in Arabidopsis Leads to Overall Transcriptome Changes and Faster Growth. Int. J. Mol. Sci. 2024, 25, 8164. https://doi.org/10.3390/ijms25158164.
- He, X.; Zhang, X.; Deng, Y.; Yang, R.; Yu, L.; Jia, S.; Zhang, T. Structural Reorganization in Two Alfalfa Mitochondrial Genome Assemblies and Mitochondrial Evolution in Medicago Species. Int. J. Mol. Sci. 2023, 24, 17334. https://doi.org/10.3390/ijms242417334.
- Petrushin, I.; Filinova, N.; Gutnik, D. Potato Microbiome: Relationship with Environmental Factors and Approaches for Microbiome Modulation. Int. J. Mol. Sci. 2024, 25, 750. https://doi.org/10.3390/ijms25020750.
References
- Orlov, Y.L.; Baranova, A.V. Editorial: Bioinformatics of Genome Regulation and Systems Biology. Front. Genet. 2020, 11, 625. [Google Scholar] [CrossRef]
- Orlov, Y.L.; Baranova, A.V.; Hofestädt, R.; Kolchanov, N.A. Genomics at Belyaev conference—2017. BMC Genom. 2018, 19 (Suppl. 3), 79. [Google Scholar] [CrossRef]
- Anashkina, A.A.; Leberfarb, E.Y.; Orlov, Y.L. Recent Trends in Cancer Genomics and Bioinformatics Tools Development. Int. J. Mol. Sci. 2021, 22, 12146. [Google Scholar] [CrossRef]
- Shumny, V.K. To the centenary of the birth of outstanding evolutionist Dmitri Konstantinovich Belyaev. Vavilov J. Genet. Breed. 2017, 21, 387–391. [Google Scholar] [CrossRef]
- Belyaev, D.K.; Gruntenko, E.V. Strain differences in thymus weight in mice with different predispositions to spontaneous mammary cancer. Nature 1972, 237, 401–402. [Google Scholar] [CrossRef]
- Belyaev, D.K.; Fomicheva, I.I.; Taranin, A.V.; Baranov, O.K. Genetic polymorphism of IgG in mink. I. Identification of 8 allotypes. Exp. Clin. Immunogenet. 1986, 3, 10–19. [Google Scholar]
- Belyaev, D.K. Stress as a factor of genetic variation and the problem of destabilizing selection. Folia Biol. 1983, 29, 177–187. [Google Scholar]
- Shumnyi, V.K.; Pshenitsyn, L.A. The effect of environmental factors on the level of pseudocompatibility in rye. Sov. Genet. 1971, 7, 715–718. [Google Scholar]
- Leonova, I.N.; Ageeva, E.V.; Shumny, V.K. Prospects for mineral biofortification of wheat: Classical breeding and agronomy. Vavilov J. Genet. Breed. 2024, 28, 523–535. [Google Scholar] [CrossRef]
- Ratner, V.A. Population models of the appearance of degeneracy in the genetic code. I. The “capture” of a nonsense codon by a series of meaningful codons. Sov. Genet. 1970, 6, 1387–1396. [Google Scholar]
- Churaev, R.N.; Ratner, V.A. The modelling of operon systems in the language of the theory of automata. Sov. Genet. 1974, 9, 267–268. [Google Scholar]
- Ratner, V.A. Kontseptsiia limitiruiushchikh geneticheskikh faktorov ékspressii, organizatsii i évoliutsii. A concept of limiting genetic factors of expression, organization, and evolution. Genetika 1990, 26, 789–803. [Google Scholar]
- Deĭneko, I.V.; Kel’, A.E.; Kel’-Margulis, O.V.; Wingender, E.; Ratner, V.A. Modelirovanie dinamiki gennykh seteĭ, reguliruiushchikh kletochnyĭ tsikl v kletakh mlekopitaiushchikh. Modeling dynamics of gene net, regulating the cell cycle in mammalian cells. Genetika 2003, 39, 1285–1292. [Google Scholar]
- Likhoshvai, V.A.; Golubyatnikov, V.P.; Khlebodarova, T.M. Limit cycles in models of circular gene networks regulated by negative feedback loops. BMC Bioinform. 2020, 21 (Suppl. 11), 255. [Google Scholar] [CrossRef]
- Likhoshvai, V.A.; Khlebodarova, T.M. Evolution and extinction can occur rapidly: A modeling approach. PeerJ 2021, 9, e11130. [Google Scholar] [CrossRef]
- Baranova, A.V.; Orlov, Y.L. The papers presented at 7th Young Scientists School “Systems Biology and Bioinformatics” (SBB’15): Introductory Note. BMC Genet. 2016, 17 (Suppl. 1), 20. [Google Scholar] [CrossRef]
- Tatarinova, T.V.; Tabikhanova, L.E.; Eslami, G.; Bai, H.; Orlov, Y.L. Genetics researches at the “Centenary of human population genetics” conference and SBB-2019. BMC Genet. 2020, 21 (Suppl. 1), 109. [Google Scholar] [CrossRef]
- Thieffry, D.; Hertz, G.Z. Bioinformatics in Siberia. First International Conference on Bioinformatics of Genome Regulation and Structure, Novosibirsk, Siberia, Russia, 24–27 August 1998. Trends Genet. TIG 1999, 15, 8–9. [Google Scholar] [CrossRef]
- Filonov, S.V.; Podkolodnyy, N.L.; Podkolodnaya, O.A.; Tverdokhleb, N.N.; Ponomarenko, P.M.; Rasskazov, D.A.; Bogomolov, A.G.; Ponomarenko, M.P. Human_SNP_TATAdb: A database of SNPs that statistically significantly change the affinity of the TATA-binding protein to human gene promoters: Genome-wide analysis and use cases. Vavilov J. Genet. Breed. 2023, 27, 728–736. [Google Scholar] [CrossRef]
- Dotsenko, P.A.; Zolotareva, K.A.; Ivanov, R.A.; Chadaeva, I.V.; Podkolodnyy, N.L.; Ivanisenko, V.A.; Demenkov, P.S.; Lashin, S.A.; Ponomarenko, M.P. Candidate SNP markers of changes in the expression levels of the human SCN9A gene as a hub gene for pain generation, perception, response and anesthesia. Vavilov J. Genet. Breed. 2024, 28, 808–821. [Google Scholar] [CrossRef]
- Kolmykov, S.; Yevshin, I.; Kulyashov, M.; Sharipov, R.; Kondrakhin, Y.; Makeev, V.J.; Kulakovskiy, I.V.; Kel, A.; Kolpakov, F. GTRD: An integrated view of transcription regulation. Nucleic Acids Res. 2021, 49, D104–D111. [Google Scholar] [CrossRef]
- Busygina, T.V.; Ignatieva, E.V.; Osadchuk, A.V. Consensus sequence of transcription factor SF-1 binding site and putative binding site in the 5′ flanking regions of genes encoding mouse steroidogenic enzymes 3betaHSDI and Cyp17. Biochemistry 2003, 68, 377–384. [Google Scholar] [CrossRef]
- Levitsky, V.; Oshchepkov, D.; Zemlyanskaya, E.; Merkulova, T. Asymmetric Conservation within Pairs of Co-Occurred Motifs Mediates Weak Direct Binding of Transcription Factors in ChIP-Seq Data. Int. J. Mol. Sci. 2020, 21, 6023. [Google Scholar] [CrossRef]
- Raditsa, V.V.; Tsukanov, A.V.; Bogomolov, A.G.; Levitsky, V.G. Genomic background sequences systematically outperform synthetic ones in de novo motif discovery for ChIP-seq data. NAR Genom. Bioinform. 2024, 6, lqae090. [Google Scholar] [CrossRef]
- Liu, D.; Baskett, W.; Beversdorf, D.; Shyu, C.R. Exploratory Data Mining for Subgroup Cohort Discoveries and Prioritization. IEEE J. Biomed. Health Inform. 2020, 24, 1456–1468. [Google Scholar] [CrossRef]
- Chen, X.; Xu, H.; Yu, S.; Hu, W.; Zhang, Z.; Wang, X.; Yuan, Y.; Wang, M.; Chen, L.; Lin, X.; et al. AI-Driven Transcriptome Prediction in Human Pathology: From Molecular Insights to Clinical Applications. Biology 2025, 14, 651. [Google Scholar] [CrossRef]
- Geronikolou, S.A.; Pavlopoulou, A.; Cokkinos, D.; Chrousos, G. Interactome of Obesity: Obesidome: Genetic Obesity, Stress Induced Obesity, Pathogenic Obesity Interaction. Adv. Exp. Med. Biol. 2017, 987, 233–241. [Google Scholar] [CrossRef]
- Mikhailova, A.D.; Lashin, S.A.; Ivanisenko, V.A.; Demenkov, P.S.; Ignatieva, E.V. Reconstruction and computer analysis of the structural and functional organization of the gene network regulating cholesterol biosynthesis in humans and the evolutionary characteristics of the genes involved in the network. Vavilov J. Genet. Breed. 2024, 28, 864–873. [Google Scholar] [CrossRef]
- Haug, C.J.; Drazen, J.M. Artificial Intelligence and Machine Learning in Clinical Medicine. N. Engl. J. Med. 2023, 388, 1201–1208. [Google Scholar] [CrossRef]
- Babenko, V.; Redina, O.; Smagin, D.; Kovalenko, I.; Galyamina, A.; Babenko, R.; Kudryavtseva, N. Dorsal Striatum Transcriptome Profile Profound Shift in Repeated Aggression Mouse Model Converged to Networks of 12 Transcription Factors after Fighting Deprivation. Genes 2021, 13, 21. [Google Scholar] [CrossRef]
- Belyaev, D.K.; Plyusnina, I.Z.; Trut, L.N. Domestication in the silver fox (Vulpes fulvus Desm.)—Changes in physiological boundaries of the sensitive period of primary socialization. Appl. Anim. Behav. Sci. 1984, 13, 359–370. [Google Scholar] [CrossRef]
- Plyusnina, I.Z.; Oskina, I.N.; Tibeikina, M.A.; Popova, N.K. Cross-fostering effects on weight, exploratory activity, acoustic startle reflex and corticosterone stress response in Norway gray rats selected for elimination and for enhancement of aggressiveness towards human. Behav. Genet. 2009, 39, 202–212. [Google Scholar] [CrossRef]
- Oshchepkov, D.; Chadaeva, I.; Kozhemyakina, R.; Shikhevich, S.; Sharypova, E.; Savinkova, L.; Klimova, N.V.; Tsukanov, A.; Levitsky, V.G.; Markel, A.L. Transcription factors as important regulators of changes in behavior through domestication of gray rats: Quantitative data from RNA sequencing. Int. J. Mol. Sci. 2022, 23, 12269. [Google Scholar] [CrossRef]
- Danilevicz, M.F.; Upadhyaya, S.R.; Batley, J.; Bennamoun, M.; Bayer, P.E.; Edwards, D. Understanding plant phenotypes in crop breeding through explainable AI. Plant Biotechnol. J. 2025. [Google Scholar] [CrossRef]
- Sung, W.K. Frontiers in Biomedical Informatics. Biomed. Inform. 2025, 1, 0001. [Google Scholar] [CrossRef]
- Türker, C.; Panse, C.; Sommer, B.; Friedrichs, M.; Hofestädt, R. International symposium on integrative bioinformatics 2024—Editorial. J. Integr. Bioinform. 2024, 21, 20240051. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlov, Y.L.; Orlova, N.G.; Chen, M.; Kolchanov, N.A. Special Issue “25 Anniversary of Bioinformatics of Genome Regulation and Structure Conference Series”. Int. J. Mol. Sci. 2025, 26, 6447. https://doi.org/10.3390/ijms26136447
Orlov YL, Orlova NG, Chen M, Kolchanov NA. Special Issue “25 Anniversary of Bioinformatics of Genome Regulation and Structure Conference Series”. International Journal of Molecular Sciences. 2025; 26(13):6447. https://doi.org/10.3390/ijms26136447
Chicago/Turabian StyleOrlov, Yuriy L., Nina G. Orlova, Ming Chen, and Nikolay A. Kolchanov. 2025. "Special Issue “25 Anniversary of Bioinformatics of Genome Regulation and Structure Conference Series”" International Journal of Molecular Sciences 26, no. 13: 6447. https://doi.org/10.3390/ijms26136447
APA StyleOrlov, Y. L., Orlova, N. G., Chen, M., & Kolchanov, N. A. (2025). Special Issue “25 Anniversary of Bioinformatics of Genome Regulation and Structure Conference Series”. International Journal of Molecular Sciences, 26(13), 6447. https://doi.org/10.3390/ijms26136447