Analytical Validation of an LC-MS/MS Method for Simultaneous Quantification of Multiple Immunosuppressants in Microvolume Whole Blood
Abstract
1. Introduction
2. Results and Discussion
2.1. Comparison of MPA Concentration in Whole Blood and Plasma
2.2. Evaluation of Simultaneous Analysis of Immunosuppressants
2.3. Cross-Validation at the Two Sites
2.4. Comparative Analysis—Simultaneous Assessment of MPA and Tac with Microvolume Sampling and Clinical Laboratory Testing
2.5. Discussion
3. Materials and Methods
3.1. Chemical and Reagents
3.2. Hematocrit Correction for MPA Levels in Whole-Blood Samples
- eCp represents the estimated concentration in plasma;
- Cwb is the measured concentration in whole blood;
- Ht denotes the hematocrit value (percentage).
3.3. Instrumentation and Analytical Conditions for Simultaneous LC-MS/MS Analysis of Immunosuppressants
3.4. Preparation of Calibration Standards and QC Samples
3.5. Cross-Validation of the Developed Method at Different Sites
3.6. Comparison of Clinical Laboratory Testing with Microvolume Assays of Whole Blood
3.7. Measurement Method for MPA and Tac in Clinical Laboratory Testing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LC-MS/MS | liquid chromatography–tandem mass spectrometry |
UHPLC | ultra-high-performance liquid chromatography |
TDM | therapeutic drug monitoring |
MPA | mycophenolic acid |
MPAG | mycophenolic acid β-D-glucuronide |
CIs | calcineurin inhibitors |
Tac | tacrolimus |
Eve | everolimus |
Sir | sirolimus |
CycA | cyclosporin A |
DBS | dried blood spot |
MRM | multiple-reaction monitoring |
References
- Deters, M.; Kaever, V.; Kirchner, G.I. Liquid chromatography/mass spectrometry for therapeutic drug monitoring of immunosuppressants. Anal. Chim. Acta 2003, 492, 133–145. [Google Scholar] [CrossRef]
- Wiwattanawongsa, K.; Heinzen, E.L.; Kemp, D.C.; Dupuis, R.E.; Smith, P.C. Determination of mycophenolic acid and its phenol glucuronide metabolite in human plasma and urine by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 2001, 763, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Freudenberger, K.; Hilbig, U.; Gauglitz, G. Recent advances in therapeutic drug monitoring of immunosuppressive drugs, Trends. Anal. Chem. 2016, 79, 257–268. [Google Scholar] [CrossRef]
- Annesley, T.M.; McKeown, D.A.; Holt, D.W.; Mussell, C.; Champarnaud, E.; Harter, L.; Calton, L.J.; Mason, D.S. Standardization of LC-MS for therapeutic drug monitoring of tacrolimus. Clin. Chem. 2013, 59, 1630–1637. [Google Scholar] [CrossRef]
- McShane, A.J.; Bunch, D.R.; Wang, S. Therapeutic drug monitoring of immunosuppressants by liquid chromatography–mass spectrometry. Clin. Chim. Acta 2016, 454, 1–5. [Google Scholar] [CrossRef]
- Gong, Z.S.; Wu, Z.H.; Xu, S.X.; Han, W.N.; Jiang, X.M.; Liu, H.P.; Wei, Y.L.; Yan, W.Y. A high-throughput LC-MS/MS method for the quantification of four immunosuppressants drugs in whole blood. Clin. Chim. Acta 2019, 498, 21–26. [Google Scholar] [CrossRef]
- Klepacki, J.; Klawitter, J.; Bendrick-Peart, J.; Schniedewind, B.; Heischmann, S.; Shokati, T.; Christians, U.; Klawitter, J. A high-throughput U-HPLC–MS/MS assay for the quantification of mycophenolic acid and its major metabolites mycophenolic acid glucuronide and mycophenolic acid acyl-glucuronide in human plasma and urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 883–884, 113–119. [Google Scholar] [CrossRef]
- Brandhorst, G.; Streit, F.; Goetze, S.; Oellerich, M.; Heischmann, S.; Armstrong, V.W. Quantification by liquid chromatography tandem mass spectrometry of mycophenolic acid and its phenol and acyl glucuronide metabolites. Clin. Chem. 2006, 52, 1962–1964. [Google Scholar] [CrossRef]
- Zijp, T.R.; Hateren, K.V.; Kuiper, H.; Jongedijk, E.M.; Touw, D.J. Ultrahigh throughput dual channel liquid chromatography with tandem mass spectrometry for quantification of four immunosuppressants in whole blood for therapeutic drug monitoring. J. Chromatogr. A 2023, 1702, 46086. [Google Scholar] [CrossRef] [PubMed]
- Roszkowska, A.; Treder, N.; Plenis, A.; Miękus, N.; Olędzka, I.; Kowalski, P.; Bączek, T. Optimization and comparison of two microsampling approaches for LC-MS/MS analysis of a panel of immunosuppressants in blood samples. Sustain. Chem. Pharm. 2012, 21, 100433. [Google Scholar] [CrossRef]
- Deprez, S.; Stove, C.P. Dried blood microsampling-assisted therapeutic drug monitoring of immunosuppressants: An overview. J. Chromatogr. A 2023, 1689, 463724. [Google Scholar] [CrossRef] [PubMed]
- Deprez, S.; Stove, C.P. Fully Automated Dried Blood Spot Extraction coupled to Liquid chromatography-tandem mass spectrometry for Therapeutic Drug Monitoring of immunosuppressants. J. Chromatogr. A 2021, 1653, 462430. [Google Scholar] [CrossRef] [PubMed]
- Deprez, S.; Van Uytfanghe, K.V.; Stove, C.P. Liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring of immunosuppressants and creatinine from a single dried blood spot using the Capitainer® qDBS device. Anal. Chim. Acta 2023, 1242, 340797. [Google Scholar] [CrossRef] [PubMed]
- Zwart, T.C.; Gokoel, S.R.M.; van der Boog, P.J.M.; de Fijter, J.W.; Kweekel, D.M.; Swen, J.J.; Guchelaar, H.J.; Moes, D.J.A.R. Therapeutic drug monitoring of tacrolimus and mycophenolic acid in outpatient renal transplant recipients using a volumetric dried blood spot sampling device. Br. J. Clin. Pharmacol. 2018, 84, 2889–2902. [Google Scholar] [CrossRef]
- Kip, A.E.; Kiers, K.C.; Rosin, H.; Schellens, J.H.M.; Beijnen, J.H.; Dorlo, T.P.C. Volumetric absorptive microsampling (VAMS) as an alternative to conventional dried blood spots in the quantification of miltefosine in dried blood samples. J. Pharm. Biomed. Anal. 2017, 135, 160–166. [Google Scholar] [CrossRef]
- Rosé, G.; Tafzi, N.; Balkhi, S.E.; Rerolle, J.P.; Debette-Gratien, M.; Marquet, P.; Saint-Marcoux, F.; Monchaud, C. New perspectives for the therapeutic drug monitoring of tacrolimus: Quantification in volumetric DBS based on an automated extraction and LC-MS/MS analysis. J. Chromatogra. B 2023, 1223, 123721. [Google Scholar] [CrossRef]
- Farouk, S.S.; Rein, J.L. The many faces of calcineurin inhibitor toxicity-what the FK? Adv. Chronic Kidney Dis. 2020, 27, 56–66. [Google Scholar] [CrossRef]
- Wojciechowski, D.; Wiseman, A. Long-term immunosuppression management: Opportunities and uncertainties. Clin. J. Am. Soc. Nephrol. 2021, 16, 1264–1271. [Google Scholar] [CrossRef]
- Winnicki, W.; Fichtenbaum, A.; Mitulovič, G.; Herkner, H.; Regele, F.; Baier, M.; Zelzer, S.; Wagner, L.; Sengoelge, G. Individualization of mycophenolic acid therapy through pharmacogenetic, pharmacokinetic and pharmacodynamic testing. Biomedicines 2022, 10, 2882. [Google Scholar] [CrossRef]
- de Loor, H.; Naesens, M.; Verbeke, K.; Vanrenterghem, Y.; Kuypers, D.R. Stability of mycophenolic acid and glucuronide metabolites in human plasma and the impact of deproteinization methodology. Clin. Chim. Acta 2008, 389, 87–92. [Google Scholar] [CrossRef]
- Lei, B.U.W.; Prow, T.W. A review of microsampling techniques and their social impact. Biomed. Microdevices 2019, 21, 81. [Google Scholar] [CrossRef] [PubMed]
- Deprez, S.; Paniagua-González, L.; Velghe, S.; Stove, C.P. Evaluation of the performance and hematocrit independence of the HemaPEN as a volumetric dried blood spot collection device. Anal. Chem. 2019, 91, 14467–14475. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Woenker, T.; Adamec, J.; Regnier, F.E. Simple, miniaturized blood plasma extraction method. Anal. Chem. 2013, 85, 11501–11508. [Google Scholar] [CrossRef]
- Deprez, S.; Heughebaert, L.; Boffel, L.; Stove, C.P. Application of non-contact hematocrit prediction technologies to overcome hematocrit effects on immunosuppressant quantification from dried blood spots. Talanta 2023, 254, 124111. [Google Scholar] [CrossRef] [PubMed]
- Spooner, N.; Denniff, P.; Michielsen, L.; De Vries, R.; Ji, Q.C.; Arnold, M.E.; Woods, K.; Woolf, E.J.; Xu, Y.; Boutet, V.; et al. A device for dried blood microsampling in quantitative bioanalysis: Overcoming the issues associated with blood hematocrit. Bioanalysis 2015, 7, 653–659. [Google Scholar] [CrossRef]
- Paniagua-González, L.; Lendoiro, E.; Otero-Antón, E.; López-Rivadulla, M.; De-Castro-Ríos, A.; Cruz, A. Comparison of conventional dried blood spots and volumetric absorptive microsampling for tacrolimus and mycophenolic acid determination. J. Pharm. Biomed. Anal. 2022, 208, 114443. [Google Scholar] [CrossRef]
- Ishida, H.K.; Noritake, T.; Mano, K.Y. Quantitative and qualitative application of a novel capillary microsampling device, Microsampling WingTM (MSW), using antiepileptic drugs in rats. J. Pharm. Biomed. Anal. 2021, 194, 113788. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Bioanalytical Method Validation. 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 16 June 2025).
- Nishida, S.; Ishima, T.; Kimura, N.; Iwami, D.; Nagai, R.; Imai, Y.; Aizawa, K. Metabolomic profiling of mice with tacrolimus-induced nephrotoxicity: Carnitine deficiency in renal tissue. Biomedicines 2024, 12, 521. [Google Scholar] [CrossRef]
- Nishida, S.; Ishima, T.; Iwami, D.; Nagai, R.; Aizawa, K. Whole Blood Metabolomic Profiling of Mice with Tacrolimus-Induced Chronic Nephrotoxicity: NAD+ Depletion with Salvage Pathway Impairment. Antioxidants 2025, 14, 62. [Google Scholar] [CrossRef]
- Pharmaceutical and Medical Device Agency under the Ministry of Health, Labor and Welfare in Japan. 4.3 Cross Validation: Guideline on Bioanalytical Method Validation in Pharmaceutical Development. 2013. Available online: https://www.pmda.go.jp/files/000206209.pdf (accessed on 30 June 2025).
QC Sample | Immunosuppressant | Level | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||||||
Conc. (avg.) | Accuracy (%) | Conc. (avg.) | Accuracy (%) | Conc. (avg.) | Accuracy (%) | Conc. (avg.) | Accuracy (%) | ||||
%RSD | %RSD | %RSD | %RSD | ||||||||
Whole blood | 1 | MPA | (µg/mL) | 2.22 | 111 | 19.5 | 98 | 40.1 | 100 | - | - |
2.46 | 1.92 | 1.21 | - | ||||||||
2 | 2.07 | 104 | 18.96 | 95 | 43.41 | 109 | - | - | |||
2.93 | 1.94 | 1.27 | - | ||||||||
3 | 2.10 | 105 | 19.56 | 98 | 40.73 | 102 | - | - | |||
0.92 | 1.32 | 2.49 | - | ||||||||
4 | 1.94 | 97 | 20.83 | 104 | 43.72 | 109 | - | - | |||
3.04 | 2.19 | 2.46 | - | ||||||||
5 | 1.98 | 99 | 20.03 | 100 | 40.17 | 100 | - | - | |||
2.76 | 0.86 | 0.51 | - | ||||||||
6 | 2.08 | 104 | 20.46 | 102 | 39.43 | 99 | - | - | |||
3.68 | 1.32 | 2.55 | - | ||||||||
1 | MPAG | (µg/mL) | 10.1 | 101 | 97.34 | 97 | 199.6 | 100 | - | - | |
2.63 | 2.13 | 2.3 | - | ||||||||
2 | 10.9 | 109 | 93.28 | 93 | 180.9 | 90 | - | - | |||
2.56 | 3.30 | 2.04 | - | ||||||||
3 | 9.72 | 97 | 98.71 | 99 | 203.0 | 102 | - | - | |||
8.56 | 3.10 | 1.03 | - | ||||||||
4 | 9.51 | 95 | 97.02 | 97 | 214.6 | 107 | - | - | |||
9.32 | 5.92 | 1.08 | - | ||||||||
5 | 9.49 | 95 | 103.0 | 103 | 206.6 | 103 | - | - | |||
5.23 | 1.47 | 1.36 | - | ||||||||
6 | 10.3 | 103 | 92.72 | 93 | 195.8 | 98 | - | - | |||
5.30 | 3.31 | 1.68 | - | ||||||||
Control (reagent kit for whole blood) | Tac | (ng/mL) | 3.17 | 94 | 7.69 | 100 | 12.07 | 95 | 18.83 | 101 | |
6.31 | 5.65 | 3.05 | 3.11 | ||||||||
Eve | 3.83 | 98 | 9.80 | 107 | 14.01 | 113 | 21.64 | 104 | |||
5.57 | 7.86 | 4.06 | 7.69 | ||||||||
Sir | 3.99 | 104 | 9.48 | 112 | 12.09 | 101 | 19.38 | 93 | |||
5.34 | 3.07 | 4.87 | 6.75 | ||||||||
CycA | 40.8 | 96 | 169.8 | 108 | 822.1 | 106 | 1412 | 104 | |||
4.69 | 7.10 | 3.42 | 1.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aizawa, K.; Kimura, N.; Goda, T.; Nishida, S.; Sakuma, Y.; Iwami, D.; Nagai, R. Analytical Validation of an LC-MS/MS Method for Simultaneous Quantification of Multiple Immunosuppressants in Microvolume Whole Blood. Int. J. Mol. Sci. 2025, 26, 6358. https://doi.org/10.3390/ijms26136358
Aizawa K, Kimura N, Goda T, Nishida S, Sakuma Y, Iwami D, Nagai R. Analytical Validation of an LC-MS/MS Method for Simultaneous Quantification of Multiple Immunosuppressants in Microvolume Whole Blood. International Journal of Molecular Sciences. 2025; 26(13):6358. https://doi.org/10.3390/ijms26136358
Chicago/Turabian StyleAizawa, Kenichi, Natsuka Kimura, Takahiro Goda, Sho Nishida, Yasunaru Sakuma, Daiki Iwami, and Ryozo Nagai. 2025. "Analytical Validation of an LC-MS/MS Method for Simultaneous Quantification of Multiple Immunosuppressants in Microvolume Whole Blood" International Journal of Molecular Sciences 26, no. 13: 6358. https://doi.org/10.3390/ijms26136358
APA StyleAizawa, K., Kimura, N., Goda, T., Nishida, S., Sakuma, Y., Iwami, D., & Nagai, R. (2025). Analytical Validation of an LC-MS/MS Method for Simultaneous Quantification of Multiple Immunosuppressants in Microvolume Whole Blood. International Journal of Molecular Sciences, 26(13), 6358. https://doi.org/10.3390/ijms26136358