Transcriptomic Profile of Oral Cancer Lesions: A Proof-of-Concept Pilot Study of FFPE Tissue Sections
Abstract
1. Introduction
2. Results
3. Discussion
Limitations
4. Materials and Methods
4.1. Sample Collection and Patient Characteristics
4.2. Initial Processing of FFPE Slides
4.3. RNA Extraction
4.4. Bulk RNAseq Sequencing Method
4.5. Bioinformatics Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kramer, I.R.; Lucas, R.B.; Pindborg, J.J.; Sobin, L.H. Definition of leukoplakia and related lesions: An aid to studies on oral precancer. Oral Surg. Oral Med. Oral Pathol. 1978, 46, 518–539. [Google Scholar]
- Gupta, P.C.; Bhonsle, R.B.; Murti, P.R.; Daftary, D.K.; Mehta, F.S.; Pindborg, J.J. An epidemiologic assessment of cancer risk in oral precancerous lesions in India with special reference to nodular leukoplakia. Cancer 1989, 63, 2247–2252. [Google Scholar] [CrossRef] [PubMed]
- Mello, F.W.; Miguel, A.F.P.; Dutra, K.L.; Porporatti, A.L.; Warnakulasuriya, S.; Guerra, E.N.S.; Rivero, E.R.C. Prevalence of oral potentially malignant disorders: A systematic review and meta-analysis. J. Oral Pathol. Med. 2018, 47, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.; Gueiros, L.A.; Leão, J.C.; Fedele, S. Risk factors and etiopathogenesis of potentially premalignant oral epithelial lesions. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, B.Y.; Zhu, X.; Goodman, M.T.; Gatewood, R.; Mendiola, P.; Quinata, K.; Paulino, Y.C.; Wilson, B.A. Betel nut chewing, oral premalignant lesions, and the oral microbiome. PLoS ONE 2017, 12, e0172196. [Google Scholar] [CrossRef]
- Mougeot, J.C.; Beckman, M.F.; Langdon, H.C.; Lalla, R.V.; Brennan, M.T.; Bahrani Mougeot, F.K. Haemophilus pittmaniae and Leptotrichia spp. Constitute a Multi-Marker Signature in a Cohort of Human Papillomavirus-Positive Head and Neck Cancer Patients. Front. Microbiol. 2022, 12, 794546. [Google Scholar] [CrossRef]
- Singhvi, H.R.; Malik, A.; Chaturvedi, P. The Role of Chronic Mucosal Trauma in Oral Cancer: A Review of Literature. Indian. J. Med. Paediatr. Oncol. 2017, 38, 44–50. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, Z.; Xu, M.; Li, B.; Huang, Z.; Qin, S.; Nice, E.C.; Tang, J.; Huang, C. Oral squamous cell carcinomas: State of the field and emerging directions. Int. J. Oral Sci. 2023, 15, 44. [Google Scholar] [CrossRef]
- Tarle, M.; Lukšić, I. Pathogenesis and Therapy of Oral Carcinogenesis. Int. J. Mol. Sci. 2024, 25, 6343. [Google Scholar] [CrossRef]
- Ishwad, C.S.; Ferrell, R.E.; Rossie, K.M.; Appel, B.N.; Johnson, J.T.; Myers, E.N.; Law, J.C.; Srivastava, S.; Gollin, S.M. Loss of heterozygosity of the short arm of chromosomes 3 and 9 in oral cancer. Int. J. Cancer 1996, 69, 1–4. [Google Scholar] [CrossRef]
- Kumari, P.; Debta, P.; Dixit, A. Oral Potentially Malignant Disorders: Etiology, Pathogenesis, and Transformation Into Oral Cancer. Front. Pharmacol. 2022, 13, 825266. [Google Scholar] [CrossRef] [PubMed]
- Lorini, L.; Atín, C.B.; Thavaraj, S.; Müller-Richter, U.; Ferranti, M.A.; Romero, J.P.; Barba, M.S.; García-Cuenca, A.d.P.; García, I.B.; Bossi, P.; et al. Overview of Oral Potentially Malignant Disorders: From Risk Factors to Specific Therapies. Cancers 2021, 13, 3696. [Google Scholar] [CrossRef] [PubMed]
- Kasamatsu, A.; Uzawa, K.; Usukura, K.; Koike, K.; Nakashima, D.; Ishigami, T.; Fushimi, K.; Ogawara, K.; Shiiba, M.; Tanzawa, H. Loss of heterozvgosity in oral cancer. Oral. Sci. Int. Off. J. Jpn. Stomatol. Soc. 2011, 8, 37–43. [Google Scholar]
- Choi, S.; Myers, J.N. Molecular pathogenesis of oral squamous cell carcinoma: Implications for therapy. J. Dent. Res. 2008, 87, 14–32. [Google Scholar] [CrossRef]
- Califano, J.; van der Riet, P.; Westra, W.; Nawroz, H.; Clayman, G.; Piantadosi, S.; Corio, R.; Lee, D.; Greenberg, B.; Koch, W.; et al. Genetic progression model for head and neck cancer: Implications for field cancerization. Cancer Res. 1996, 56, 2488–2492. [Google Scholar] [CrossRef]
- Chau, L.; Jabara, J.T.; Lai, W.; Svider, P.F.; Warner, B.M.; Lin, H.S.; Raza, S.N.; Fribley, A.M. Topical agents for oral cancer chemoprevention: A systematic review of the literature. Oral Oncol. 2017, 67, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Jeddy, N.; Ravi, S.; Radhika, T. Screening of oral potentially malignant disorders: Need of the hour. J. Oral Maxillofac. Pathol. JOMFP 2017, 21, 437–438. [Google Scholar] [CrossRef]
- Cherry, K.D.; Schwarz, R.A.; Yang, E.C.; Vohra, I.S.; Badaoui, H.; Williams, M.D.; Vigneswaran, N.; Gillenwater, A.M.; Richards-Kortum, R. Autofluorescence Imaging to Monitor the Progression of Oral Potentially Malignant Disorders. Cancer Prev. Res. 2019, 12, 791–800. [Google Scholar] [CrossRef]
- Nagi, R.; Reddy-Kantharaj, Y.B.; Rakesh, N.; Janardhan-Reddy, S.; Sahu, S. Efficacy of light based detection systems for early detection of oral cancer and oral potentially malignant disorders: Systematic review. Med. Oral Patol. Oral Y Cir. Buccal 2016, 21, e447–e455. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Pan, D.; Zhang, Z.; Jiang, L.; Feng, X.; Jiang, Y.; Luo, X.; Chen, Q. Accuracy of narrow band imaging for detecting the malignant transformation of oral potentially malignant disorders: A systematic review and meta-analysis. Front. Surg. 2023, 9, 1068256. [Google Scholar] [CrossRef]
- Izzetti, R.; Vitali, S.; Aringhieri, G.; Caramella, D.; Nisi, M.; Oranges, T.; Dini, V.; Graziani, F.; Gabriele, M. The efficacy of Ultra-High Frequency Ultrasonography in the diagnosis of intraoral lesions. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 129, 401–410. [Google Scholar] [CrossRef] [PubMed]
- López-Jornet, P.; Olmo-Monedero, A.; Peres-Rubio, C.; Pons-Fuster, E.; Tvarijonaviciute, A. Preliminary Evaluation Salivary Biomarkers in Patients with Oral Potentially Malignant Disorders (OPMD): A Case-Control Study. Cancers 2023, 15, 5256. [Google Scholar] [CrossRef] [PubMed]
- Ghallab, N.A.; Shaker, O.G. Serum and salivary levels of chemerin and MMP-9 in oral squamous cell carcinoma and oral premalignant lesions. Clin. Oral Investig. 2017, 21, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Rebaudi, F.; De Rosa, A.; Greppi, M.; Pistilli, R.; Pucci, R.; Govoni, F.A.; Iacoviello, P.; Broccolo, F.; Tomasello, G.; Pesce, S.; et al. A new method for oral cancer biomarkers detection with a non-invasive cyto-salivary sampling and rapid-highly sensitive ELISA immunoassay: A pilot study in humans. Front. Immunol. 2023, 14, 1216107. [Google Scholar] [CrossRef]
- Takan, I.; Karakülah, G.; Louka, A.; Pavlopoulou, A. “In the light of evolution”: Keratins as exceptional tumor biomarkers. PeerJ 2023, 11, e15099. [Google Scholar] [CrossRef]
- Sollis, E.; Mosaku, A.; Abid, A.; Buniello, A.; Cerezo, M.; Gil, L.; Groza, T.; Güneş, O.; Hall, P.; Hayhurst, J.; et al. The NHGRI-EBI GWAS Catalog: Knowledgebase and deposition resource. Nucleic Acids Res. 2023, 51, D977–D985. [Google Scholar] [CrossRef]
- Liyanage, U.E.; Law, M.H.; Han, X.; An, J.; Ong, J.-S.; Gharahkhani, P.; Gordon, S.; Neale, R.E.; Olsen, C.M.; MacGregor, S.; et al. Combined analysis of keratinocyte cancers identifies novel genome-wide loci. Hum. Mol. Genet. 2019, 28, 3148–3160. [Google Scholar] [CrossRef]
- Murthy, O.G.; Lau, J.; Balasubramaniam, R.; Frydrych, A.M.; Kujan, O. Unraveling the Keratin Expression in Oral Leukoplakia: A Scoping Review. Int. J. Mol. Sci. 2024, 25, 5597. [Google Scholar] [CrossRef]
- Farah, C.S.; Fox, S.A. Dysplastic oral leukoplakia is molecularly distinct from leukoplakia without dysplasia. Oral Dis. 2019, 25, 1715–1723. [Google Scholar] [CrossRef]
- Samuels, Y.; Waldman, T. Oncogenic mutations of PIK3CA in human cancers. Curr. Top. Microbiol. Immunol. 2010, 347, 21–41. [Google Scholar] [CrossRef]
- Das, D.; Maitra, A.; Panda, C.K.; Ghose, S.; Roy, B.; Sarin, R.; Majumder, P.P. Genes and pathways monotonically dysregulated during progression from normal through leukoplakia to gingivo-buccal oral cancer. NPJ Genom. Med. 2021, 6, 32. [Google Scholar] [CrossRef]
- Zhao, Y.; Montminy, T.; Azad, T.; Lightbody, E.; Hao, Y.; SenGupta, S.; Asselin, E.; Nicol, C.J.; Yang, X. PI3K Positively Regulates YAP and TAZ in Mammary Tumorigenesis Through Multiple Signaling Pathways. Mol. Cancer Res. 2018, 16, 1046–1058. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Huang, D.; Xu, H.; Zhan, F.; Tan, X. Macrophages: A communication network linking Porphyromonas gingivalis infection and associated systemic diseases. Front. Immunol. 2022, 13, 952040. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, A.K. Porphyromonas gingivalis in oral squamous cell carcinoma: A review. Microbes Infect. 2022, 24, 104925. [Google Scholar] [CrossRef]
- Grenier, D.; Grignon, L. Response of human macrophage-like cells to stimulation by Fusobacterium nucleatum ssp. nucleatum lipopolysaccharide. Oral Microbiol. Immunol. 2006, 21, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Decsi, G.; Soki, J.; Pap, B.; Dobra, G.; Harmati, M.; Kormondi, S.; Pankotai, T.; Braunitzer, G.; Minarovits, J.; Sonkodi, I.; et al. Chicken or the Egg: Microbial Alterations in Biopsy Samples of Patients with Oral Potentially Malignant Disorders. Pathol. Oncol. Res. 2019, 25, 1023–1033. [Google Scholar] [CrossRef]
- Amer, A.; Galvin, S.; Healy, C.M.; Moran, G.P. The Microbiome of Potentially Malignant Oral Leukoplakia Exhibits Enrichment for Fusobacterium, Leptotrichia, Campylobacter, and Rothia Species. Front. Microbiol. 2017, 8, 2391. [Google Scholar] [CrossRef]
- Li, X.; Hu, Y. Attribution of NF-κB Activity to CHUK/IKKα-Involved Carcinogenesis. Cancers 2021, 13, 1411. [Google Scholar] [CrossRef]
- Romieu-Mourez, R.; Landesman-Bollag, E.; Seldin, D.C.; Traish, A.M.; Mercurio, F.; Sonenshein, G.E. Roles of IKK kinases and protein kinase CK2 in activation of nuclear factor-kappaB in breast cancer. Cancer Res. 2001, 61, 3810–3818. [Google Scholar]
- Zhang, T.; Kutler, D.; Scognamiglio, T.; Gudas, L.J.; Tang, X.H. Transcriptomic analysis predicts the risk of progression of premalignant lesions in human tongue. Discover Oncol. 2023, 14, 24. [Google Scholar] [CrossRef]
- Conway, C.; Graham, J.L.; Chengot, P.; Daly, C.; Chalkley, R.; Ross, L.; Droop, A.; Rabbitts, P.; Stead, L.F. Elucidating drivers of oral epithelial dysplasia formation and malignant transformation to cancer using RNAseq. Oncotarget 2015, 6, 40186–40201. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.K.; Chan, J.K.C.; Grandis, J.R.; Takata, T.; Slootweg, P.J. (Eds.) WHO Classification of Head and Neck Tumors, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2022. [Google Scholar]
- Clough, E.; Barrett, T. The Gene Expression Omnibus Database. Methods Mol. Biol. 2016, 1418, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Varley, K.E.; Gertz, J.; Roberts, B.S.; Davis, N.S.; Bowling, K.M.; Kirby, M.K.; Nesmith, A.S.; Oliver, P.G.; Grizzle, W.E.; Forero, A.; et al. Recurrent read-through fusion transcripts in breast cancer. Breast Cancer Res. Treat. 2014, 146, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 2013, 29, 1830–1831. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
Criteria a | OSCC b |
---|---|
Patient samples (M/F) c | 3 (2/1) |
Patient race/ethnicity: | |
Caucasian | 3 (2/1) |
Age d: | |
Median | 70 |
Mean | 69 |
Standard deviation | 10.54 |
Range | 58–79 |
Diagnosis e: | |
T4aN0 | 1 (1/0) |
T1N0M0 | 1 (0/1) |
T1N0Mx | 1 (1/0) |
Lesion type f: | |
Erythroleukoplakia | 2 (1/1) |
Leukoplakia | 1 (1/0) |
(a) Significantly Upregulated Genes with log2FoldChange > 2.0 | |||
Gene a | FC b | p-Value c | p-Adjusted d |
KRT6B | 9.93 | 2.45 × 10−276 | 5.99 × 10−272 |
SERPINB5 | 6.37 | 7.95 × 10−266 | 9.72 × 10−262 |
DSC3 | 6.53 | 2.98 × 10−251 | 2.43 × 10−247 |
PERP | 5.71 | 3.50 × 10−244 | 2.14 × 10−240 |
KRT5 | 5.34 | 1.06 × 10−239 | 5.16 × 10−236 |
DSG1 | 10.70 | 2.83 × 10−208 | 1.15 × 10−204 |
DSC2 | 6.27 | 1.75 × 10−193 | 6.10 × 10−190 |
AQP3 | 6.53 | 1.37 × 10−153 | 4.19 × 10−150 |
GBP6 | 9.06 | 1.37 × 10−135 | 3.71 × 10−132 |
CLCA2 | 7.54 | 6.75 × 10−129 | 1.65 × 10−125 |
KRT14 | 6.15 | 3.43 × 10−120 | 7.61 × 10−117 |
TMPRSS11D | 5.65 | 2.82 × 10−112 | 5.74 × 10−109 |
KLK7 | 6.21 | 8.34 × 10−111 | 1.57 × 10−107 |
DSG3 | 8.16 | 2.30 × 10−107 | 4.02 × 10−104 |
SPINK5 | 8.96 | 1.23 × 10−104 | 2.00 × 10−101 |
FABP5 | 5.63 | 4.14 × 10−101 | 6.32 × 10−98 |
LGALSL | 4.45 | 8.36 × 10−100 | 1.20 × 10−96 |
DMKN | 4.74 | 2.56 × 10−99 | 3.47 × 10−96 |
MPZL2 | 4.06 | 3.00 × 10−99 | 3.85 × 10−96 |
A2ML1 | 8.01 | 6.88 × 10−99 | 8.41 × 10−96 |
IVL | 11.55 | 1.30 × 10−98 | 1.51 × 10−95 |
LIPG | 4.40 | 5.63 × 10−98 | 6.25 × 10−95 |
PKP1 | 6.33 | 7.62 × 10−95 | 7.75 × 10−92 |
GLTP | 3.97 | 1.55 × 10−92 | 1.46 × 10−89 |
PLA2G4E | 10.23 | 2.62 × 10−92 | 2.37 × 10−89 |
KRT17 | 5.40 | 1.86 × 10−90 | 1.63 × 10−87 |
CERS3 | 7.25 | 3.77 × 10−90 | 3.18 × 10−87 |
BNC1 | 5.71 | 2.08 × 10−89 | 1.70 × 10−86 |
TRIM29 | 3.90 | 2.70 × 10−86 | 2.06 × 10−83 |
KLK5 | 4.74 | 1.97 × 10−85 | 1.46 × 10−82 |
FAT2 | 4.41 | 4.13 × 10−85 | 2.97 × 10−82 |
TRPV3 | 5.74 | 1.46 × 10−79 | 1.02 × 10−76 |
CNFN | 6.47 | 2.78 × 10−78 | 1.89 × 10−75 |
LYPD5 | 5.20 | 1.29 × 10−77 | 8.54 × 10−75 |
COL17A1 | 3.07 | 1.89 × 10−77 | 1.21 × 10−74 |
IL20RB | 6.40 | 7.89 × 10−76 | 4.82 × 10−73 |
SERPINB13 | 12.73 | 1.12 × 10−75 | 6.68 × 10−73 |
CALML3 | 5.59 | 1.67 × 10−75 | 9.50 × 10−73 |
SFN | 5.65 | 1.07 × 10−71 | 5.69 × 10−69 |
ARNTL2 | 4.52 | 8.59 × 10−71 | 4.28 × 10−68 |
(b) Significantly downregulated genes with Log2FoldChange < −2.0 | |||
Gene a | FC b | p-value c | p-adjusted d |
KRT19 | −9.03 | 2.89 × 10−95 | 3.07 × 10−92 |
GREB1 | −6.64 | 3.99 × 10−94 | 3.90 × 10−91 |
ARFGEF3 | −4.36 | 1.53 × 10−88 | 1.21 × 10−85 |
SERPINA3 | −5.37 | 2.54 × 10−77 | 1.59 × 10−74 |
LONRF2 | −6.77 | 1.31 × 10−75 | 7.61 × 10−73 |
PLEKHA6 | −3.90 | 8.37 × 10−74 | 4.65 × 10−71 |
AR | −4.80 | 7.66 × 10−73 | 4.16 × 10−70 |
APOD | −5.36 | 1.16 × 10−71 | 6.02 × 10−69 |
EGR3 | −4.58 | 1.38 × 10−71 | 7.02 × 10−69 |
CRACR2B | −6.19 | 2.76 × 10−70 | 1.35 × 10−67 |
ESR1 | −3.81 | 4.83 × 10−69 | 2.23 × 10−66 |
HID1 | −3.76 | 8.83 × 10−66 | 3.92 × 10−63 |
PCLO | −6.35 | 9.72 × 10−66 | 4.24 × 10−63 |
EFHD1 | −6.48 | 5.46 × 10−62 | 2.19 × 10−59 |
PRLR | −6.61 | 2.06 × 10−61 | 7.88 × 10−59 |
KRT8 | −6.80 | 6.01 × 10−59 | 2.13 × 10−56 |
TFAP2B | −6.23 | 9.49 × 10−59 | 3.31 × 10−56 |
SNORA22 | −6.27 | 4.64 × 10−58 | 1.60 × 10−55 |
CCN2 | −2.66 | 2.77 × 10−57 | 9.39 × 10−55 |
TRNH | −4.15 | 8.18 × 10−57 | 2.70 × 10−54 |
MLPH | −5.67 | 6.93 × 10−56 | 2.20 × 10−53 |
FOXA1 | −8.03 | 1.84 × 10−54 | 5.61 × 10−52 |
RHPN1 | −4.44 | 4.51 × 10−54 | 1.36 × 10−51 |
SYCP2 | −3.10 | 5.13 × 10−53 | 1.46 × 10−50 |
MGP | −3.78 | 8.97 × 10−53 | 2.46 × 10−50 |
PLIN4 | −3.74 | 8.90 × 10−53 | 2.46 × 10−50 |
PNPLA2 | −3.31 | 1.30 × 10−51 | 3.45 × 10−49 |
PLEKHS1 | −5.06 | 9.53 × 10−51 | 2.40 × 10−48 |
KRT18 | −4.03 | 2.99 × 10−50 | 7.16 × 10−48 |
SNORD15B | −4.04 | 9.10 × 10−50 | 2.14 × 10−47 |
CILP | −6.10 | 2.34 × 10−48 | 5.34 × 10−46 |
PADI2 | −3.47 | 7.78 × 10−48 | 1.73 × 10−45 |
ELAPOR1 | −6.84 | 1.65 × 10−47 | 3.60 × 10−45 |
WNK2 | −5.32 | 2.66 × 10−47 | 5.65 × 10−45 |
CNN1 | −5.38 | 5.24 × 10−47 | 1.10 × 10−44 |
GATA3 | −6.73 | 3.24 × 10−46 | 6.49 × 10−44 |
HSPB6 | −7.48 | 8.88 × 10−45 | 1.71 × 10−42 |
OXTR | −6.85 | 2.66 × 10−44 | 4.99 × 10−42 |
TRNR | −3.54 | 4.44 × 10−44 | 8.22 × 10−42 |
C3 | −3.72 | 8.26 × 10−44 | 1.51 × 10−41 |
Pathway a | KEGG ID b | p-Value c | Upregulated Genes d | Downregulated Genes e |
---|---|---|---|---|
Chemokine signaling pathway | hsa04062 | 0.0014 | ADCY1, ADCY2, ADCY3, ADCY5, ADCY7, ARRB1, ARRB2, GRK2, GRK5, PIK3CA, PIK3CB, PIK3CD, PIK3R1, PIK3R2, PIK3R3, PLCB4, PLCG2, PREX1, PXN | CCL13, CCL2, CCL20, CCL21, CCL22, CCL28, CCL8, CCR2, CCR8, CHUK, CX3CL1, CXCL1, CXCL14, CXCL3, CXCL5, CXCL6, CXCL8, CXCR1, CXCR4, CXCR6, GNAI1, GNAI2, GNAI3, GNB3, GNB5, GNG12, GNG7, HCK, JAK2, LYN, MAP2K1, MAPK1, NFKB1, PARD3, RAF1, RAP1A, RHOA, ROCK2, SHC2, SHC3, STAT1, STAT3, TIAM1, VAV1 |
Natural killer cell mediated cytotoxicity | hsa04650 | 0.0025 | ARAF, IFNAR1, IFNAR2, IFNGR1, IFNGR2, NFATC1, NFATC2, PIK3CB, PIK3R3, RAF1, TYROBP | CASP3, CSF2, FAS, FASLG, FCGR3B, MAP2K1, NRAS, PLCG2, PPP3CB, PPP3R1, PRF1, PRKCA, PTPN11, RAET1E, RAET1L, SH3BP2, SHC1, SHC2, SHC3, SYK, ULBP3, VAV1 |
Arachidonic acid metabolism | hsa00590 | 0.0028 | CYP2B7P, GPX4, PTGDS, PTGR2, ZADH2 | ALOXE3, CBR1, CBR3, CYP2C1, CYP2219, CYP2C9, CYP4F3, HPGD, LTA4H, PLA2G2A, PLA2G2F, PLA2G3, PLA2G4A, PLA2G4B, PLA2G4D, PLA2G5, PLA2G6, PLAAT2, PLAAT3, PTGES3, PTGS1 |
NOD-like receptor signaling pathway | hsa04621 | 0.0045 | BCL2, BCL2L1, BRCC3, CARD9, CCL2, IRF3, JUN, MAP1LC3B, MAPK10, MAVS, PLCB1, PRKCD, RBCK1, SHARPIN, TAB1, TAB3, TICAM1, TP53BP1, TRAF5 | ATG5, BIRC2, CARD16, CARD18, CARD6, CASP1, CASP4, CASP5, CHUK, CTSB, CXCL1, CXCL3, CXCL8, DEFB4B, DHX33, DNM1L, GBP5, IFI16, IFNAR1, IFNAR2, IL18, IL1B, IRAK4, MAPK13, MAPK14, MCU, MEFV, MFN1, MFN2, MYD88, NEK7, NFKB1, NLRP1, NLRX1, NOD2, PSTPIP1, PYCARD, RELA, RHOA, RNASEL, STAT2, SUGT1, TBK1, TLR4, TRAF3, TRPV2, TXN2, VDAC1, VDAC2 |
RIG-I-like receptor signaling pathway | hsa04622 | 0.0123 | IRF3, RIPK1, TBKBP1, TKFC | ATG5, CASP10, CHUK, CYLD, IFIH1, IFNE, IFNK, IKBKE, MAP3K7, NFKB1, NLRX1, TRADD, TRIM25 |
Arginine and proline metabolism | hsa00330 | 0.0144 | CARNS1, GAMT, MAOA, PYCR1, SMS, SRM | ALDH1B1, ALDH2, ALDH3A2, ALDH9A1, AOC1, ARG1, CNDP2, GOT2, NOS1, ODC1, P4HA2, SMOX |
Cell cycle | hsa04110 | 0.0245 | ABL1, ATRX, CCND1, CCND2, CCND3, CCNH, CDKN2A, CREBBP, DBF4B, E2F4, E2F5, GADD45B, GADD45G, MAU2, MYC, SMC1A, TGFB2, TGFB3, TP53 | ANAPC1, ANAPC13,ANAPC4, ANAPC5, ATM, ATR, BUB1B, CCNA2, CCNE1, CDC14A, CDC14B, CDC20, CDC25B, CDC27, CDC6, CDCA5, CDK1, CDK4, CDK6, CDKN1A, CDKN2B, CHEK1, CUL1, ESPL1, FBXO5, KNL1, MAD2L1, MAD2L1BP, MCM4, MCM6, NDC80, ORC1, PPP2CA, PPP2R1A, PPP2R1B, PPP2R5C, PPP2R5E, PRKDC, PTTG1, RB1, RBX1, SFN, SGO1, STAG1, STAG2, TFDP1, TFDP2, YWHAG, YWHAQ, YWHAZ |
Apoptosis | hsa04210 | 0.0248 | BBC3, BCL2, BCL2L1, FOS, GADD45G, JUN, MAPK10, PARP3, PIDD1, PIK3CA, PIK3CB, PIK3CD, PIK3R1, PIK3R2, SEPTIN4, TP53, TUBA1A, TUBA1C, TUBA3D, TUBA3E, TUBA4A, TUBA8 | APAF1, BAK1, BCL2A1. BID, BIRC2, CAPN2, CASP10, CASP3, CASP7, CHUK, CSF2RB, CTSC, CTSD, CTSH, CTSV, EIF2S1, FAS, FASLG, KRAS, MAP3K5, MCL1, NFKB1, NRAS, PRF1, RAF1, RELA, TNFRSF10A, TNFRSF10B, TRADD, XIAP |
Cytosolic DNA-sensing pathway | hsa04623 | 0.0253 | DNASE2, IRF3, POLR2F, POLR3A, POLR3B, POLR3G, POLR3GL, RIPK1 | CASP3, CGAS, CHUK, G3BP1, GSDME, IFI16, IKBKE, IL18, IL1B, MEFV, MLKL, NFKB1, PYCARD, RELA, SAMHD1 |
Ubiquitin-mediated proteolysis | hsa04120 | 0.0340 | KLHL9, UBE2Q2, UBE2QL1 | ANAPC1, ANAPC10, ANAPC13, ANAPC4, ANAPC5, BIRC2, BIRC6, BRCA1, CBL, CBLC, CDC20, COP1, CUL1, CUL5, FBXW11, FBXW7, HERC4, MID1, NEDD4L, RBX1, SAE1, SKP2, TRIP12, UBA2, UBC, UBE2B, UBE2D1, UBE2D2, UBE2D3, UBE2E3, UBE2F, UBE2G1, UBE2K, UBE2N, UBE4A, XIAP |
p53 signaling pathway | hsa04115 | 0.0361 | BBC3, BCL2, BCL2L1, CCND1, CCND2, CCND3, CDKN2A, GADD45B, GADD45G, IGF1, PIDD1, TEAP3, THBS1, TP53, TSC2 | APAF1, BID, CASP3, CCNB1, CCNB2, CCNE1, CDK1, CDK6, CDKN1A, CHEK1, CYCS, EI24, FAS, GORAB, GTSE1, PERP, RRM2, RRM2B, SERPINB5, SESN3, SFN, SHISA5, SIAH1, TNFRSF10A, TNFRSF10B, TP53AIP1, ZMAT3 |
Proteasome | hsa03050 | 0.0387 | ADRM1, PSMC1, PSMF1 | PSMA1, PSMA2, PSMA4, PSMA5, PSMA6, PSMA7, PSMB1, PSMB2, PSMB5, PSMB6, PSMB7, PSMC3, PSMC6, PSMD1, PSMD12, PSMD14, PSMD2, PSMD6, PSMD9, PSME4, SEM1 |
Retinol metabolism | hsa00830 | 0.0390 | CYP2A6, CYP2A7, CYP3A5 | ADH1B, ADH5, ADH7, CYP26B1, CYP27C1, CYP2A6, CYP2A7, CYP2C18, CYP2C9, CYP2S1, DHRS3, DHRS9, RDH10, RDH11, RDH12, RDH16, RPE65, SDR16C5, UGT2B11 |
Linoleic acid metabolism | hsa00591 | 0.0394 | PLA2G2A, PLA2G5, PLA2G2F, PLA2G4A, CYP2C19, PLAAT2, PLAAT3, PLA2G4B, PLA2G4E, PLA2G4F, PLA2G3, PLA2G6 | |
Metabolism of xenobiotics by cytochrome P450 | hsa00980 | 0.0464 | AKR7A3, AKR7L, CYP1B1, CYP2A6, CYP2A7, CYP2S1, EPHX1, GSTA4, GSTM4, GSTO1, MGST2, MGST3 | ADH1B, ADH5, ADH7, ALDH3A1, CBR1, CBR3, CYP2C9, CYP3A5, GSTA4, GSTM2, GSTM4, GSTO1, GSTP1, HSD11B1, MGST1, MGST3, UGT2B11 |
T cell receptor signaling pathway | hsa04660 | 0.0499 | JUN, MAP2K7, MAPK10, NFATC1, NFATC2, PIK3CB, PIK3R1, PIK3R2, PIK3R3 | CDC42, CDK4, CHUK, CSF2, ICOS, MAP2K1, MAP3K7, MAPK1, MAPK11, MAPK14, NCK1, NFKB1, NFKBIE, NRAS, PPP2CB, PPP2R1B, PPP2R2A, PPP2R2C, PPP2R3A, PPP2R5E, PPP3CB, PPP3R1, PTPN11, PTPRC, RAF1, RASGRP1, RELA, RHOA, VAV1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richards, M.E.; Beckman, M.F.; Martinez Duarte, E.; Napenas, J.J.; Brennan, M.T.; Bahrani Mougeot, F.; Mougeot, J.-L.C. Transcriptomic Profile of Oral Cancer Lesions: A Proof-of-Concept Pilot Study of FFPE Tissue Sections. Int. J. Mol. Sci. 2025, 26, 6263. https://doi.org/10.3390/ijms26136263
Richards ME, Beckman MF, Martinez Duarte E, Napenas JJ, Brennan MT, Bahrani Mougeot F, Mougeot J-LC. Transcriptomic Profile of Oral Cancer Lesions: A Proof-of-Concept Pilot Study of FFPE Tissue Sections. International Journal of Molecular Sciences. 2025; 26(13):6263. https://doi.org/10.3390/ijms26136263
Chicago/Turabian StyleRichards, Madison E., Micaela F. Beckman, Ernesto Martinez Duarte, Joel J. Napenas, Michael T. Brennan, Farah Bahrani Mougeot, and Jean-Luc C. Mougeot. 2025. "Transcriptomic Profile of Oral Cancer Lesions: A Proof-of-Concept Pilot Study of FFPE Tissue Sections" International Journal of Molecular Sciences 26, no. 13: 6263. https://doi.org/10.3390/ijms26136263
APA StyleRichards, M. E., Beckman, M. F., Martinez Duarte, E., Napenas, J. J., Brennan, M. T., Bahrani Mougeot, F., & Mougeot, J.-L. C. (2025). Transcriptomic Profile of Oral Cancer Lesions: A Proof-of-Concept Pilot Study of FFPE Tissue Sections. International Journal of Molecular Sciences, 26(13), 6263. https://doi.org/10.3390/ijms26136263