Nanoneedle-Based Transdermal Gene Delivery: A Minimally Invasive Strategy for Gene Therapy
Abstract
1. Introduction
2. Nanoneedles
3. Advantages of Nanoneedles
4. Disadvantages of Nanoneedles
5. Types of Nanoneedles
5.1. Solid Nanoneedles
5.2. Porous Nanoneedles
5.3. Hollow Nanoneedles
5.4. Biodegradable and Hydrogel-Forming Nanoneedles
6. Fabrication of Nanoneedles
6.1. Bottom-Up Manufacturing Strategy of Nanoneedles
6.2. Top-Down Strategy for Nanoneedles
6.2.1. Metal-Assisted Chemical Etching (MACE)
6.2.2. Reactive Ion Etching (RIE)
6.2.3. Focused Ion Beam Manufacturing (FIB)
6.2.4. Nanoimprinting
7. Important Parameters of Nanoneedles
- -
- Insertion Force: The nanoneedles must be inserted with sufficient force to penetrate the skin effectively.
- -
- Penetration: This parameter refers to the depth to which the nanoneedle system penetrates the stratum corneum. The depth of penetration determines the amount of drug delivered to the dermal and epidermal layers.
- -
- Irritation: After inserting the nanoneedles, the skin is examined for signs of irritation, pruritus, or urticaria. Irritation tests are conducted using appropriate animal models, such as mice, rats, and rabbits.
- -
- Drug Encapsulation and Content: This assessment determines the precise amount of therapeutic agents encapsulated within the nanoneedles.
- -
- Needle Strength: Needle strength refers to the ability of the nanoneedles to effectively penetrate the stratum corneum without breaking.
- -
- Drug Release: In Vitro Drug Release: This is performed by attaching the nanoneedle array to a glass slide and inverting it into a container with a suitable medium. In Vivo Drug Release: Experiments are conducted using animal models such as mice or rats, with aliquots taken at predetermined time points to quantify the active ingredients.
- -
- Applicator Velocity: Applicator velocity refers to the speed and force with which the nanoneedles are applied to the skin. A higher applicator velocity improves the penetration efficiency.
- -
- Tip Radius and Needle Length: Tip Radius: A smaller tip radius increases the penetrability of the nanoneedles. Larger tip radii reduce the ease of penetration. Needle Length: The length of the needle directly influences how deeply it can penetrate the skin. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are used to measure these characteristics. Patch Thickness: The patch thickness can be measured using a digital caliper or a micrometer. The thickness affects patient compliance and the aesthetic appearance of the patch [32].
8. Toxicity of Nanoneedles
9. Nanoneedles for Gene Delivery
- -
- The degree to which nanostructures are engulfed by the cell membrane varies.
- -
- Under specific conditions, nanostructures can penetrate the membrane directly.
- -
- Nanostructures can stimulate endocytosis.
- -
- The use of pathway-specific endocytosis inhibitors such as clathrin-mediated, caveolae-mediated, or macropinocytosis to dissect internalization routes [91].
- -
- -
- Real-time live-cell imaging to observe nanoneedle–cell interactions and cargo transport dynamics [92].
- -
- And importantly, temperature-dependent uptake assays conducted at 4 °C and 37 °C to distinguish energy-dependent endocytosis from passive membrane penetration [93].
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FDA | U.S. Food and Drug Administration |
ZFNs | Zinc Finger Nucleases |
TALENs | Transcription Activator-Like Effector Nucleases |
AFM | atomic force microscopy |
VLS | vapor–liquid–solid |
FIB | focused ion beam |
APTES | 3-(aminopropyl) triethoxysilane |
pDNA | plasmid DNA |
siRNA | small interfering RNA |
saRNA | self-amplifying RNA |
miRNA | microRNA |
lncRNA | long non-coding RNA |
crRNA | CRISPR RNA |
MSCs | mesenchymal stem cells |
SiNW | silicone nanowire |
mES | mouse embryonic stem |
VA-SiNW | vertically aligned silicone nanowire |
References
- Scheller, E.L.; Krebsbach, P.H. Gene Therapy: Design and Prospects for Craniofacial Regeneration. J. Dent. Res. 2009, 88, 585–596. [Google Scholar] [CrossRef]
- Das, S.K.; Menezes, M.E.; Bhatia, S.; Wang, X.Y.; Emdad, L.; Sarkar, D.; Fisher, P.B. Gene Therapies for Cancer: Strategies, Challenges and Successes. J. Cell. Physiol. 2015, 230, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, N.; Sakuragi, M.; Kitade, Y. Advanced Nanotechnology-Based Nucleic Acid Medicines. Pharmaceutics 2024, 16, 1367. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Zeng, X.; Liu, M.; Deng, Y.; He, N. Current Progress in Gene Delivery Technology Based on Chemical Methods and Nano-Carriers. Theranostics 2014, 4, 240–255. [Google Scholar] [CrossRef]
- Foldvari, M.; Chen, D.W.; Nafissi, N.; Calderon, D.; Narsineni, L.; Rafiee, A. Non-Viral Gene Therapy: Gains and Challenges of Non-Invasive Administration Methods. J. Control. Release 2016, 240, 165–190. [Google Scholar] [CrossRef]
- Zu, H.; Gao, D. Non-Viral Vectors in Gene Therapy: Recent Development, Challenges, and Prospects. AAPS J. 2021, 23, 78. [Google Scholar] [CrossRef]
- Prausnitz, M.R.; Lau, B.S.; Milano, C.D.; Conner, S.; Langer, R.; Weaver, J.C. A Quantitative Study of Electroporation Showing a Plateau in Net Molecular Transport. Biophys. J. 1993, 65, 414–422. [Google Scholar] [CrossRef]
- Bratu, D.P.; Cha, B.J.; Mhlanga, M.M.; Kramer, F.R.; Tyagi, S. Visualizing the Distribution and Transport of MRNAs in Living Cells. Proc. Natl. Acad. Sci. USA 2003, 100, 13308–13313. [Google Scholar] [CrossRef]
- Sundaram, J.; Mellein, B.R.; Mitragotri, S. An Experimental and Theoretical Analysis of Ultrasound-Induced Permeabilization of Cell Membranes. Biophys. J. 2003, 84, 3087–3101. [Google Scholar] [CrossRef]
- Chakravarty, P.; Qian, W.; El-Sayed, M.A.; Prausnitz, M.R. Delivery of Molecules into Cells Using Carbon Nanoparticles Activated by Femtosecond Laser Pulses. Nat. Nanotechnol. 2010, 5, 607–611. [Google Scholar] [CrossRef]
- Davis, S.P.; Martanto, W.; Allen, M.G.; Prausnitz, M.R. Hollow Metal Microneedles for Insulin Delivery to Diabetic Rats. IEEE Trans. Biomed. Eng. 2005, 52, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Xiao, Z.; Radovic-Moreno, A.; Shi, J.; Langer, R.; Farokhzad, O.C. Progress in SiRNA Delivery Using Multifunctional Nanoparticles. In RNA Therapeutics: Function, Design, and Delivery; Sioud, M., Ed.; Humana Press: Totowa, NJ, USA, 2010; pp. 53–67. ISBN 978-1-60761-657-3. [Google Scholar]
- Tamura, A.; Nagasaki, Y. Smart SiRNA Delivery Systems Based on Polymeric Nanoassemblies and Nanoparticles. Nanomedicine 2010, 5, 1089–1102. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking down Barriers: Advances in SiRNA Delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138. [Google Scholar] [CrossRef]
- Chen, X. Current and Future Technological Advances in Transdermal Gene Delivery. Adv. Drug Deliv. Rev. 2018, 127, 85–105. [Google Scholar] [CrossRef]
- Chiappini, C.; Almeida, C. 8—Silicon Nanoneedles for Drug Delivery. In Semiconducting Silicon Nanowires for Biomedical Applications; Coffer, J.L., Ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 144–167. ISBN 978-0-85709-766-8. [Google Scholar]
- Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; Wurm, E.M.T.; Yoong, C.; Robertson, T.A.; Soyer, H.P.; et al. Nanoparticles and Microparticles for Skin Drug Delivery. Adv. Drug Deliv. Rev. 2011, 63, 470–491. [Google Scholar] [CrossRef]
- Gratieri, T.; Alberti, I.; Lapteva, M.; Kalia, Y.N. Next Generation Intra- and Transdermal Therapeutic Systems: Using Non- and Minimally-Invasive Technologies to Increase Drug Delivery into and across the Skin. Eur. J. Pharm. Sci. 2013, 50, 609–622. [Google Scholar] [CrossRef]
- Alkilani, A.Z.; McCrudden, M.T.C.; Donnelly, R.F. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics 2015, 7, 438–470. [Google Scholar] [CrossRef] [PubMed]
- Prausnitz, M.R.; Langer, R. Transdermal Drug Delivery. Nat. Biotechnol. 2008, 26, 1261–1268. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Z.; Li, L. Micro/Nano Needles for Advanced Drug Delivery. Prog. Nat. Sci. Mater. Int. 2020, 30, 589–596. [Google Scholar] [CrossRef]
- Kathuria, H.; Kochhar, J.S.; Kang, L. Micro and Nanoneedles for Drug Delivery and Biosensing. Ther. Deliv. 2018, 9, 489–492. [Google Scholar] [CrossRef]
- Park, S.; Kim, Y.S.; Kim, W.B.; Jon, S. Carbon Nanosyringe Array as a Platform for Intracellular Delivery. Nano Lett. 2009, 9, 1325–1329. [Google Scholar] [CrossRef]
- Liu, B.; Yi, X.; Zheng, Y.; Yuan, Z.; Yang, J.; Yang, J.; Yu, X.; Jiang, L.; Wang, C. A Review of Nano/Micro/Milli Needles Fabrications for Biomedical Engineering. Chin. J. Mech. Eng. (Engl. Ed.) 2022, 35, 106. [Google Scholar] [CrossRef]
- Kim, Y.C.; Park, J.H.; Prausnitz, M.R. Microneedles for Drug and Vaccine Delivery. Adv. Drug Deliv. Rev. 2012, 64, 1547–1568. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Allen, M.G.; Prausnitz, M.R. Polymer Microneedles for Controlled-Release Drug Delivery. Pharm. Res. 2006, 23, 1008–1019. [Google Scholar] [CrossRef]
- Karim, Z.; Karwa, P.; Hiremath, S.R.R. Polymeric Microneedles for Transdermal Drug Delivery—A Review of Recent Studies. J. Drug Deliv. Sci. Technol. 2022, 77, 103760. [Google Scholar] [CrossRef]
- Azmana, M.; Mahmood, S.; Hilles, A.R.; Mandal, U.K.; Saeed Al-Japairai, K.A.; Raman, S. Transdermal Drug Delivery System through Polymeric Microneedle: A Recent Update. J. Drug Deliv. Sci. Technol. 2020, 60, 101877. [Google Scholar] [CrossRef]
- Sil, D.; Bhowmik, S.; Patel, P.; Kurmi, B. Das Promising Role of Microneedles in Therapeutic and Biomedical Applications. J. Drug Deliv. Sci. Technol. 2024, 91, 105273. [Google Scholar] [CrossRef]
- Sero, J.E.; Stevens, M.M. Nanoneedle-Based Materials for Intracellular Studies. Adv. Exp. Med. Biol. 2021, 1295, 191–219. [Google Scholar] [CrossRef]
- Han, S.W.; Nakamura, C.; Kotobuki, N.; Obataya, I.; Ohgushi, H.; Nagamune, T.; Miyake, J. High-Efficiency DNA Injection into a Single Human Mesenchymal Stem Cell Using a Nanoneedle and Atomic Force Microscopy. Nanomed. Nanotechnol. Biol. Med. 2008, 4, 215–225. [Google Scholar] [CrossRef]
- Shende, P.; Sardesai, M.; Gaud, R.S. Micro to Nanoneedles: A Trend of Modernized Transepidermal Drug Delivery System. Artif. Cells Nanomed. Biotechnol. 2018, 46, 19–25. [Google Scholar] [CrossRef]
- Wu, S.; Yang, X.; Li, Y.; Wu, H.; Huang, Y.; Xie, L.; Zhang, Y.; Hou, Z.; Liu, X. Preparation of HCPT-Loaded Nanoneedles with Pointed Ends for Highly Efficient Cancer Chemotherapy. Nanoscale Res. Lett. 2016, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jang, H.; Kim, B.; Kim, M.K.; Wie, D.S.; Lee, H.S.; Kim, D.R.; Lee, C.H. Flexible Elastomer Patch with Vertical Silicon Nanoneedles for Intracellular and Intratissue Nanoinjection of Biomolecules. Sci. Adv. 2018, 4, eaau6972. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, C. Nanoneedle-Based Sensing in Biological Systems. ACS Sens. 2017, 2, 1086–1102. [Google Scholar] [CrossRef]
- Chiappini, C.; De Rosa, E.; Martinez, J.O.; Liu, X.; Steele, J.; Stevens, M.M.; Tasciotti, E. Biodegradable Silicon Nanoneedles Delivering Nucleic Acids Intracellularly Induce Localized In Vivo Neovascularization. Nat. Mater. 2015, 14, 532–539. [Google Scholar] [CrossRef]
- Elnathan, R.; Delalat, B.; Brodoceanu, D.; Alhmoud, H.; Harding, F.J.; Buehler, K.; Nelson, A.; Isa, L.; Kraus, T.; Voelcker, N.H. Maximizing Transfection Efficiency of Vertically Aligned Silicon Nanowire Arrays. Adv. Funct. Mater. 2015, 25, 7215–7225. [Google Scholar] [CrossRef]
- Rahamathulla, M.; Murugesan, S.; Gowda, D.V.; Alamri, A.H.; Ahmed, M.M.; Osmani, R.A.M.; Ramamoorthy, S.; Veeranna, B. The Use of Nanoneedles in Drug Delivery: An Overview of Recent Trends and Applications. AAPS PharmSciTech 2023, 24, 216. [Google Scholar] [CrossRef]
- Pradeep Narayanan, S.; Raghavan, S. Fabrication and Characterization of Gold-Coated Solid Silicon Microneedles with Improved Biocompatibility. Int. J. Adv. Manuf. Technol. 2019, 104, 3327–3333. [Google Scholar] [CrossRef]
- Tasciotti, E.; Liu, X.; Bhavane, R.; Plant, K.; Leonard, A.D.; Price, B.K.; Cheng, M.M.C.; Decuzzi, P.; Tour, J.M.; Robertson, F.; et al. Mesoporous Silicon Particles as a Multistage Delivery System for Imaging and Therapeutic Applications. Nat. Nanotechnol. 2008, 3, 151–157. [Google Scholar] [CrossRef]
- Peer, E.; Artzy-Schnirman, A.; Gepstein, L.; Sivan, U. Hollow Nanoneedle Array and Its Utilization for Repeated Administration of Biomolecules to the Same Cells. ACS Nano 2012, 6, 4940–4946. [Google Scholar] [CrossRef]
- Gill, H.S.; Prausnitz, M.R. Coated Microneedles for Transdermal Delivery. J. Control. Release 2007, 117, 227–237. [Google Scholar] [CrossRef]
- Wang, C.; Gu, C.; Popp, C.; Vashisth, P.; Mustfa, S.A.; Martella, D.A.; Spiteri, C.; McLennan, S.; Sun, N.; Riddle, M.; et al. Integrating Porous Silicon Nanoneedles within Medical Devices for Nucleic Acid Nanoinjection. ACS Nano 2024, 18, 14938–14953. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, C. Porous Silicon Microneedles and Nanoneedles. In Handbook of Porous Silicon; Canham, L., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 185–201. ISBN 978-3-319-71381-6. [Google Scholar]
- Shalek, A.K.; Robinson, J.T.; Karp, E.S.; Lee, J.S.; Ahn, D.R.; Yoon, M.H.; Sutton, A.; Jorgolli, M.; Gertner, R.S.; Gujral, T.S.; et al. Vertical Silicon Nanowires as a Universal Platform for Delivering Biomolecules into Living Cells. Proc. Natl. Acad. Sci. USA 2010, 107, 1870–1875. [Google Scholar] [CrossRef]
- Obataya, I.; Nakamura, C.; Han, S.W.; Nakamura, N.; Miyake, J. Mechanical Sensing of the Penetration of Various Nanoneedles into a Living Cell Using Atomic Force Microscopy. Biosens. Bioelectron. 2005, 20, 1652–1655. [Google Scholar] [CrossRef] [PubMed]
- McKnight, T.E.; Melechko, A.V.; Hensley, D.K.; Mann, D.G.J.; Griffin, G.D.; Simpson, M.L. Tracking Gene Expression after DNA Delivery Using Spatially Indexed Nanofiber Arrays. Nano Lett. 2004, 4, 1213–1219. [Google Scholar] [CrossRef]
- Han, S.W.; Nakamura, C.; Obataya, I.; Nakamura, N.; Miyake, J. Gene Expression Using an Ultrathin Needle Enabling Accurate Displacement and Low Invasiveness. Biochem. Biophys. Res. Commun. 2005, 332, 633–639. [Google Scholar] [CrossRef]
- Salonen, J.; Laitinen, L.; Kaukonen, A.M.; Tuura, J.; Björkqvist, M.; Heikkilä, T.; Vähä-Heikkilä, K.; Hirvonen, J.; Lehto, V.P. Mesoporous Silicon Microparticles for Oral Drug Delivery: Loading and Release of Five Model Drugs. J. Control. Release 2005, 108, 362–374. [Google Scholar] [CrossRef]
- Riikonen, J.; Mäkilä, E.; Salonen, J.; Lehto, V.-P. Determination of the Physical State of Drug Molecules in Mesoporous Silicon with Different Surface Chemistries. Langmuir 2009, 25, 6137–6142. [Google Scholar] [CrossRef]
- VanDersarl, J.J.; Xu, A.M.; Melosh, N.A. Nanostraws for Direct Fluidic Intracellular Access. Nano Lett. 2012, 12, 3881–3886. [Google Scholar] [CrossRef]
- Xie, X.; Xu, A.M.; Leal-Ortiz, S.; Cao, Y.; Garner, C.C.; Melosh, N.A. Nanostraw—Electroporation System for Highly Efficient Intracellular Delivery and Transfection. ACS Nano 2013, 7, 4351–4358. [Google Scholar] [CrossRef]
- Cao, Y.; Hjort, M.; Chen, H.; Birey, F.; Leal-Ortiz, S.A.; Han, C.M.; Santiago, J.G.; Paşca, S.P.; Wu, J.C.; Melosh, N.A. Nondestructive Nanostraw Intracellular Sampling for Longitudinal Cell Monitoring. Proc. Natl. Acad. Sci. USA 2017, 114, E1866–E1874. [Google Scholar] [CrossRef]
- Obataya, I.; Nakamura, C.; Han, S.; Nakamura, N.; Miyake, J. Direct Insertion of Proteins into a Living Cell Using an Atomic Force Microscope with a Nanoneedle. NanoBiotechnology 2005, 1, 347–352. [Google Scholar] [CrossRef]
- Obataya, I.; Nakamura, C.; Han; Nakamura, N.; Miyake, J. Nanoscale Operation of a Living Cell Using an Atomic Force Microscope with a Nanoneedle. Nano Lett. 2005, 5, 27–30. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, L.C. Single-Cell Microinjection Technology in Cell Biology. BioEssays 2008, 30, 606–610. [Google Scholar] [CrossRef]
- Kawashima, T.; Matsugase, T.; Tanaka, K.; Nagai, M.; Shibata, T.; Mineta, T.; Makino, E. Fabrication of Hollow SiO2 Nanoneedle Array and Characterization of Simultaneous Multi-Site Ion-Conductance Recordings for Cell Morphology Imaging. Microelectron. Eng. 2012, 98, 663–667. [Google Scholar] [CrossRef]
- Biswas, A.; Bayer, I.S.; Biris, A.S.; Wang, T.; Dervishi, E.; Faupel, F. Advances in Top-down and Bottom-up Surface Nanofabrication: Techniques, Applications & Future Prospects. Adv. Colloid Interface Sci. 2012, 170, 2–27. [Google Scholar] [CrossRef]
- Levinson, H.J. Principles of Lithography, 4th ed.; SPIE Press: Bellingham, WA, USA, 2019. [Google Scholar]
- Nagai, M.; Miyamoto, T.; Hizawa, T.; Shibata, T. Scalable Hollow Nanoneedle Array Using Stepper Lithography for Parallel Intracellular Delivery. Precis. Eng. 2019, 55, 439–446. [Google Scholar] [CrossRef]
- Higgins, S.G.; Becce, M.; Belessiotis-Richards, A.; Seong, H.; Sero, J.E.; Stevens, M.M. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. Adv. Mater. 2020, 32, 1903862. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, M.; Lee, M.J.; Lee, J.S.; Shin, K.; Kim, Y.S. Low-Cost Fabrication of Transparent Hard Replica Molds for Imprinting Lithography. Adv. Mater. 2009, 21, 4050–4053. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Singh, T.R.R.; Garland, M.J.; Migalska, K.; Majithiya, R.; McCrudden, C.M.; Kole, P.L.; Mahmood, T.M.T.; McCarthy, H.O.; Woolfson, A.D. Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery. Adv. Funct. Mater. 2012, 22, 4879–4890. [Google Scholar] [CrossRef]
- Chiappini, C.; Campagnolo, P.; Almeida, C.S.; Abbassi-Ghadi, N.; Chow, L.W.; Hanna, G.B.; Stevens, M.M. Mapping Local Cytosolic Enzymatic Activity in Human Esophageal Mucosa with Porous Silicon Nanoneedles. Adv. Mater. 2015, 27, 5147–5152. [Google Scholar] [CrossRef]
- Beard, J.D.; Guy, R.H.; Gordeev, S.N. Mechanical Tomography of Human Corneocytes with a Nanoneedle. J. Investig. Dermatol. 2013, 133, 1565–1571. [Google Scholar] [CrossRef] [PubMed]
- Lestrell, E.; Patolsky, F.; Voelcker, N.H.; Elnathan, R. Engineered Nano-Bio Interfaces for Intracellular Delivery and Sampling: Applications, Agency and Artefacts. Mater. Today 2020, 33, 87–104. [Google Scholar] [CrossRef]
- Chiappini, C.; Liu, X.; Fakhoury, J.R.; Ferrari, M. Biodegradable Porous Silicon Barcode Nanowires with Defined Geometry. Adv. Funct. Mater. 2010, 20, 2231–2239. [Google Scholar] [CrossRef]
- He, G.; Hu, N.; Xu, A.M.; Li, X.; Zhao, Y.; Xie, X. Nanoneedle Platforms: The Many Ways to Pierce the Cell Membrane. Adv. Funct. Mater. 2020, 30, 1909890. [Google Scholar] [CrossRef]
- Escorcia-Díaz, D.; García-Mora, S.; Rendón-Castrillón, L.; Ramírez-Carmona, M.; Ocampo-López, C. Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review. Nanomaterials 2023, 13, 2586. [Google Scholar] [CrossRef]
- McKnight, T.E.; Melechko, A.V.; Griffin, G.D.; Guillorn, M.A.; Merkulov, V.I.; Serna, F.; Hensley, D.K.; Doktycz, M.J.; Lowndes, D.H.; Simpson, M.L. Intracellular Integration of Synthetic Nanostructures with Viable Cells for Controlled Biochemical Manipulation. Nanotechnology 2003, 14, 551–556. [Google Scholar] [CrossRef]
- Golshadi, M.; Maita, J.; Lanza, D.; Zeiger, M.; Presser, V.; Schrlau, M.G. Effects of Synthesis Parameters on Carbon Nanotubes Manufactured by Template-Based Chemical Vapor Deposition. Carbon N. Y. 2014, 80, 28–39. [Google Scholar] [CrossRef]
- Golshadi, M.; Wright, L.K.; Dickerson, I.M.; Schrlau, M.G. High-Efficiency Gene Transfection of Cells through Carbon Nanotube Arrays. Small 2016, 12, 3014–3020. [Google Scholar] [CrossRef]
- Huang, Z.; Geyer, N.; Werner, P.; De Boor, J.; Gösele, U. Metal-Assisted Chemical Etching of Silicon: A Review. Adv. Mater. 2011, 23, 285–308. [Google Scholar] [CrossRef]
- Elnathan, R.; Kwiat, M.; Patolsky, F.; Voelcker, N.H. Engineering Vertically Aligned Semiconductor Nanowire Arrays for Applications in the Life Sciences. Nano Today 2014, 9, 172–196. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Yan, L.; Kwok, S.Y.; Li, W.; Wang, Z.; Zhu, X.; Zhu, G.; Zhang, W.; Chen, X.; et al. Poking Cells for Efficient Vector-Free Intracellular Delivery. Nat. Commun. 2014, 5, 4466. [Google Scholar] [CrossRef]
- Seong, H.; Higgins, S.G.; Penders, J.; Armstrong, J.P.K.; Crowder, S.W.; Moore, A.C.; Sero, J.E.; Becce, M.; Stevens, M.M. Size-Tunable Nanoneedle Arrays for Influencing Stem Cell Morphology, Gene Expression, and Nuclear Membrane Curvature. ACS Nano 2020, 14, 5371–5381. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Peng, B.; Fan, N.; Liu, Y. Simulation and Experimental Study on the Influence of Lamina on Nanoneedle Penetration into the Cell Nucleus. Biomech. Model. Mechanobiol. 2024, 23, 1241–1262. [Google Scholar] [CrossRef]
- Ganjian, M.; Modaresifar, K.; Rompolas, D.; Fratila-Apachitei, L.E.; Zadpoor, A.A. Nanoimprinting for High-Throughput Replication of Geometrically Precise Pillars in Fused Silica to Regulate Cell Behavior. Acta Biomater. 2022, 140, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Yum, K.; Wang, N.; Yu, M.-F. Nanoneedle: A Multifunctional Tool for Biological Studies in Living Cells. Nanoscale 2010, 2, 363–372. [Google Scholar] [CrossRef]
- Shalek, A.K.; Gaublomme, J.T.; Wang, L.; Yosef, N.; Chevrier, N.; Andersen, M.S.; Robinson, J.T.; Pochet, N.; Neuberg, D.; Gertner, R.S.; et al. Nanowire-Mediated Delivery Enables Functional Interrogation of Primary Immune Cells: Application to the Analysis of Chronic Lymphocytic Leukemia. Nano Lett. 2012, 12, 6498–6504. [Google Scholar] [CrossRef]
- Yin, Y.; Hao, Y.; Wang, N.; Yang, P.; Li, N.; Zhang, X.; Song, Y.; Feng, X.; Ma, W. PPy Nanoneedle Based Nanoplatform Capable of Overcoming Biological Barriers for Synergistic Chemo-Photothermal Therapy. RSC Adv. 2020, 10, 7771–7779. [Google Scholar] [CrossRef]
- Cárcamo-Martínez, Á.; Mallon, B.; Domínguez-Robles, J.; Vora, L.K.; Anjani, Q.K.; Donnelly, R.F. Hollow Microneedles: A Perspective in Biomedical Applications. Int. J. Pharm. 2021, 599, 120455. [Google Scholar] [CrossRef]
- Bao, L.; Park, J.; Bonfante, G.; Kim, B. Recent Advances in Porous Microneedles: Materials, Fabrication, and Transdermal Applications. Drug Deliv. Transl. Res. 2022, 12, 395–414. [Google Scholar] [CrossRef]
- Wehlin, N. Fabrication and Optimization of Porous Microneedles. 2024. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2:1879784 (accessed on 10 April 2025).
- Stewart, M.P.; Langer, R.; Jensen, K.F. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem. Rev. 2018, 118, 7409–7531. [Google Scholar] [CrossRef]
- Nair, B.G.; Hagiwara, K.; Ueda, M.; Yu, H.H.; Tseng, H.R.; Ito, Y. High Density of Aligned Nanowire Treated with Polydopamine for Efficient Gene Silencing by SiRNA According to Cell Membrane Perturbation. ACS Appl. Mater. Interfaces 2016, 8, 18693–18700. [Google Scholar] [CrossRef]
- Choi, M.; Lee, S.H.; Kim, W.B.; Gujrati, V.; Kim, D.; Lee, J.; Kim, J.-I.; Kim, H.; Saw, P.E.; Jon, S. Intracellular Delivery of Bioactive Cargos to Hard-to-Transfect Cells Using Carbon Nanosyringe Arrays under an Applied Centrifugal g-Force. Adv. Healthc. Mater. 2016, 5, 101–107. [Google Scholar] [CrossRef]
- Hachim, D.; Zhao, J.; Bhankharia, J.; Nuñez-Toldra, R.; Brito, L.; Seong, H.; Becce, M.; Ouyang, L.; Grigsby, C.L.; Higgins, S.G.; et al. Polysaccharide-Polyplex Nanofilm Coatings Enhance Nanoneedle-Based Gene Delivery and Transfection Efficiency. Small 2022, 18, e2202303. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, C.; Chen, Y.; Aslanoglou, S.; Mariano, A.; Mollo, V.; Mu, H.; De Rosa, E.; He, G.; Tasciotti, E.; Xie, X.; et al. Tutorial: Using Nanoneedles for Intracellular Delivery. Nat. Protoc. 2021, 16, 4539–4563. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, C.; Martinez, J.O.; De Rosa, E.; Almeida, C.S.; Tasciotti, E.; Stevens, M.M. Biodegradable Nanoneedles for Localized Delivery of Nanoparticles in Vivo: Exploring the Biointerface. ACS Nano 2015, 9, 5500–5509. [Google Scholar] [CrossRef]
- Gopal, S.; Chiappini, C.; Penders, J.; Leonardo, V.; Seong, H.; Rothery, S.; Korchev, Y.; Shevchuk, A.; Stevens, M.M. Porous Silicon Nanoneedles Modulate Endocytosis to Deliver Biological Payloads. Adv. Mater. 2019, 31, e1806788. [Google Scholar] [CrossRef]
- Kim, W.; Ng, J.K.; Kunitake, M.E.; Conklin, B.R.; Yang, P. Interfacing Silicon Nanowires with Mammalian Cells. J. Am. Chem. Soc. 2007, 129, 7228–7229. [Google Scholar] [CrossRef]
- Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular Uptake of Nanoparticles: Journey inside the Cell. Chem. Soc. Rev. 2017, 46, 4218–4244. [Google Scholar] [CrossRef]
- Maurizi, E.; Martella, D.A.; Schiroli, D.; Merra, A.; Mustfa, S.A.; Pellegrini, G.; Macaluso, C.; Chiappini, C. Nanoneedles Induce Targeted SiRNA Silencing of P16 in the Human Corneal Endothelium. Adv. Sci. 2022, 9, e2203257. [Google Scholar] [CrossRef]
- Yoh, H.Z.; Chen, Y.; Aslanoglou, S.; Wong, S.; Trifunovic, Z.; Crawford, S.; Lestrell, E.; Priest, C.; Alba, M.; Thissen, H.; et al. Polymeric Nanoneedle Arrays Mediate Stiffness-Independent Intracellular Delivery. Adv. Funct. Mater. 2022, 32, 2104828. [Google Scholar] [CrossRef]
- Du, Y.; Liu, Y.; Hu, J.; Peng, X.; Liu, Z. CRISPR/Cas9 Systems: Delivery Technologies and Biomedical Applications. Asian J. Pharm. Sci. 2023, 18, 100854. [Google Scholar] [CrossRef] [PubMed]
- Farhang, N.; Ginley-Hidinger, M.; Berrett, K.C.; Gertz, J.; Lawrence, B.; Bowles, R.D. Lentiviral CRISPR Epigenome Editing of Inflammatory Receptors as a Gene Therapy Strategy for Disc Degeneration. Hum. Gene Ther. 2019, 30, 1161–1175. [Google Scholar] [CrossRef] [PubMed]
- Mashel, T.V.; Tarakanchikova, Y.V.; Muslimov, A.R.; Zyuzin, M.V.; Timin, A.S.; Lepik, K.V.; Fehse, B. Overcoming the Delivery Problem for Therapeutic Genome Editing: Current Status and Perspective of Non-Viral Methods. Biomaterials 2020, 258, 120282. [Google Scholar] [CrossRef]
- Yamagishi, A.; Matsumoto, D.; Kato, Y.; Honda, Y.; Morikawa, M.; Iwata, F.; Kobayashi, T.; Nakamura, C. Direct Delivery of Cas9-SgRNA Ribonucleoproteins into Cells Using a Nanoneedle Array. Appl. Sci. 2019, 9, 965. [Google Scholar] [CrossRef]
- Kim, H.; Gu, C.; Mustfa, S.A.; Martella, D.A.; Wang, C.; Wang, Y.; Chiappini, C. CRISPR/Cas-Assisted Nanoneedle Sensor for Adenosine Triphosphate Detection in Living Cells. ACS Appl. Mater. Interfaces 2023, 15, 49964–49973. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Xue, Y.; Zhang, X.; Lv, L.; Quan, Q.; Chen, Y.; Yu, G.; Liang, Z.; Zhang, X.; et al. High-Throughput and Efficient Intracellular Delivery Method via a Vibration-Assisted Nanoneedle/Microfluidic Composite System. ACS Nano 2023, 17, 2101–2113. [Google Scholar] [CrossRef]
- Abdelaal, A.M.; Sohal, I.S.; Iyer, S.; Sudarshan, K.; Kothandaraman, H.; Lanman, N.A.; Low, P.S.; Kasinski, A.L. A First-in-Class Fully Modified Version of MiR-34a with Outstanding Stability, Activity, and Anti-Tumor Efficacy. Oncogene 2023, 42, 2985–2999. [Google Scholar] [CrossRef]
- Abdelaal, A.M.; Sohal, I.S.; Iyer, S.G.; Sudarshan, K.; Orellana, E.A.; Ozcan, K.E.; dos Santos, A.P.; Low, P.S.; Kasinski, A.L. Selective Targeting of Chemically Modified MiR-34a to Prostate Cancer Using a Small Molecule Ligand and an Endosomal Escape Agent. Mol. Ther. Nucleic Acids 2024, 35, 102193. [Google Scholar] [CrossRef]
Microneedles (MNs) | Nanoneedles (NNs) | |
---|---|---|
Definition |
|
|
Size |
|
|
Superiority over other forms |
|
|
Design |
|
|
Fabrication |
|
|
Materials |
|
|
Drug delivery |
|
|
Applications |
|
|
Dynamic delivery strategies/Triggered release |
|
|
Problems |
|
|
Toxicity |
|
|
Approved products |
|
|
Type | Material | Characteristics | Use | References |
---|---|---|---|---|
Solid |
|
|
| [16,39] |
Hollow |
|
|
| [16,32,40,41] |
Coated |
|
|
| [16,32,42] |
Biodegradable |
|
|
| [36] |
Porous |
|
|
| [16,32,43,44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbuğa, F.J.; Arpa, M.D.; Şalva, E. Nanoneedle-Based Transdermal Gene Delivery: A Minimally Invasive Strategy for Gene Therapy. Int. J. Mol. Sci. 2025, 26, 6235. https://doi.org/10.3390/ijms26136235
Akbuğa FJ, Arpa MD, Şalva E. Nanoneedle-Based Transdermal Gene Delivery: A Minimally Invasive Strategy for Gene Therapy. International Journal of Molecular Sciences. 2025; 26(13):6235. https://doi.org/10.3390/ijms26136235
Chicago/Turabian StyleAkbuğa, Fatma Julide, Muhammet Davut Arpa, and Emine Şalva. 2025. "Nanoneedle-Based Transdermal Gene Delivery: A Minimally Invasive Strategy for Gene Therapy" International Journal of Molecular Sciences 26, no. 13: 6235. https://doi.org/10.3390/ijms26136235
APA StyleAkbuğa, F. J., Arpa, M. D., & Şalva, E. (2025). Nanoneedle-Based Transdermal Gene Delivery: A Minimally Invasive Strategy for Gene Therapy. International Journal of Molecular Sciences, 26(13), 6235. https://doi.org/10.3390/ijms26136235