Complexes of Fat-Soluble Vitamins with Cyclodextrins
Abstract
1. Introduction
2. Vitamins
2.1. Vitamin A
2.2. Vitamin D
2.3. Vitamin E
2.4. Vitamin K
3. Cyclodextrin Complexes with Fat-Soluble Vitamins
3.1. Complexes of Vitamin A and Its Derivatives with Cyclodextrins
3.1.1. Preparation Methods of Inclusion Complexes with VA Derivatives
3.1.2. Methods of Analysis of Inclusion Complexes with VA Analogue
3.1.3. Applications/Aim of Obtaining VA Derivative Inclusion Complexes with CDs
3.2. Complexes of Vitamin D and Its Derivatives with Cyclodextrins
3.2.1. Preparation Methods of Inclusion Complexes with VD Derivative Complexes with Cyclodextrins
3.2.2. Methods of Analysis of Inclusion Complexes with VD Analogues
3.2.3. Applications/Aim of Obtaining VD Derivative Inclusion Complexes with CDs
3.3. Vitamin E and Its Derivative Complexes with Cyclodextrins
3.3.1. Preparation Methods of Inclusion Complexes with VE Derivatives
3.3.2. Methods of Analysis of Inclusion Complexes with VE Analogues
3.3.3. Applications/Aim of Obtaining VE Derivative Inclusion Complexes with CDs
3.4. Vitamin K and Its Derivative Complexes with Cyclodextrins
3.4.1. Preparation Methods of Inclusion Complexes with VK Derivatives
3.4.2. Methods of Analysis of Inclusion Complexes with VK Analogues
3.4.3. Applications/Aim of Obtaining VK Derivative Inclusion Complexes with CDs
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2HPβCD | 2-hydroxypropyl-β-cyclodextrin |
7-DHC | 7-dehydrocholesterol (provitamin VD3 precursor) |
AFM | atomic force microscopy |
AFS | atomic fluorescent spectroscopy |
AMCDs | amphiphilic multicharged cyclodextrins |
AMF | atomic force microscopy |
BC | β-carotene |
CDs | cyclodextrins |
Chol-βCD-Ac | cholesteryl-acetyl-βCD |
CirD | circular dichroism |
CLSM | confocal laser scanning microscopy |
CMβCD | carboxymethylβcyclodextrin |
COSY | correlation spectroscopy |
CP/MAS | cross-polarization magic angle spinning |
DFT | density functional theory |
DLS | dynamic light scattering |
DMβCD | dimethyl-βCD |
DMγCD | dimethyl-γCD |
DSC | differential scanning calorimetry |
DPC | diphenyl carbonate |
DTG | derivative thermogravimetric analysis |
EγCD | ethyl-γCD |
EPI | Epiclon (5-(2,5-dioxotetrahydrofuran-3-yl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride) |
FLS | fluorescence spectroscopy |
FTIR | Fourier-transform infrared spectroscopy |
GalαCD | galactosyl-αCD |
GluαCD | glucosyl-αCD |
GluβCD | glucosyl-βCD |
HA | hyaluronic acid |
HF | Hartree–Fock |
HEβCD | hydroxyethyl-βCD |
HMDI | hexamethylene diisocyanate |
HGNCs | hydrogel nanocomposites |
HPαCD | hydroxypropyl-αCD |
HPβCD | hydroxypropyl-βCD |
HPγCD | hydroxypropyl-γCD |
HPLC | high performance liquid chromatography |
ITC | isothermal titration calorimetry |
LDA | laser–Doppler anemometry |
LDPE | low-density polyethylene films |
LLDPE | linear low-density polyethylene films |
LRCDs | large-ring cyclodextrins |
LS | light scattering spectroscopy |
MβCD | methyl-βCD |
MD | maltodextrin |
MDoc | molecular docking |
MEKC | micellar electrokinetic chromatography |
MM | molecular mechanics |
MP | Møller–Plesset |
MTT | methylthiazolyl diphenyl tetrazolium assay |
NFs | nanofibers |
NLPs | nanoliposomes |
NMR | nuclear magnetic resonance |
ODSβCD | octadecenyl succinic- βCD |
OγCD | octenyl-γCD |
ONIOM | Our N-layered Integrated molecular Orbital and molecular Mechanics |
OSAβCD | octenyl succinic-βCD |
OTM | optical transmission microscopy |
PCL | polycaprolactone |
PCS | photon correlation spectroscopy |
PEGDGE | poly(ethylene glycol) diglycidyl ether |
PI | polydispersity index |
PM3 | parametric method 3 |
PMβCD | partially methylated βCD |
PS | phosphorescence spectroscopy |
PVA | poly(vinyl alcohol) |
PXRD | powder X-ray diffraction |
QC | quantum mechanics |
QM | quantum mechanics |
RA | retinoic acid |
Raman | Raman spectroscopy |
ROESY | rotating-frame Overhauser effect spectroscopy |
SAβCD | stearoyl-βCD |
SBEβCD | sulfobutyl ether βCD |
SCXRD | Single-crystal X-ray diffraction |
SDTA | single differential thermal analysis |
SEM | scanning electron microscopy |
SSPS | soy soluble polysaccharide |
SWV | square-wave voltammetry |
TGA | thermogravimetric analysis |
TMβCD | trimethyl-βCD |
TOC3 | tocotrienol |
UDV | ultradeformable vesicles |
UV–Vis | ultraviolet–visible spectroscopy |
VE | vitamin E (α-tocopherol) |
VK | vitamin K |
VD | vitamin D |
VA | vitamin A (retinol) |
XPS | X-ray photon electron spectroscopy |
XRD | X-ray diffraction |
References
- Menezes, M.S.S.; Almeida, C.M.M. Structural, functional, nutritional and clinical aspects of vitamin A: A review. Pharma Nutr. 2024, 27, 100383. [Google Scholar] [CrossRef]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary Reference Intakes—Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- Powers, H.J.; Stephens, M.; Russel, J.; Hill, M.H. Fortified breakfast cereal consumed daily for 12 wk leads to a significant improvement in micronutrient intake and micronutrient status in adolescent girls: A randomised controlled trial. Nutr. J. 2016, 15, 69. [Google Scholar] [CrossRef]
- Singh, S.; Joshi, I. Button Mushroom—Potential Source of Vitamin D2 and Possibilities of Value Addition. Curr. Nutr. Food Sci. 2022, 19, 114–124. [Google Scholar] [CrossRef]
- Falahatzadeh, M.; Najafi, K.; Bashti, K. From tradition to science: Possible mechanisms of ghee in supporting bone and joint health. Prostaglandins Other Lipid Mediat. 2024, 175, 106902. [Google Scholar] [CrossRef]
- Langley, C.K.; Morse, C.I.; Buffey, A.J. The Prevalence of Low Vitamin D in Elite Para-Athletes: A Systematic Review. Sports Med. Open 2024, 10, 96. [Google Scholar] [CrossRef]
- Ross, A.C.; Taylor, C.L.; Yaktine, A.L.; Del Valle, H.B. Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011; pp. 389–393. [Google Scholar]
- Institute of Medicine (US). Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium and Carotenoids; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Szabolcs, P.; Friedel, A.; Roos, F.F.; Wyss, A.A. Systematic Review of Global Alpha-Tocopherol Status as Assessed by Nutritional Intake Levels and Blood Serum Concentrations. Int. J. for Vitam. Nutr. Res. 2016, 14, 1–21. [Google Scholar]
- Miquel, E.; Alegría, A.; Barberá, R.; Farré, R.; Clemente, G. Stability of tocopherols in adapted milk-based infant formulas during storage. Int. Dairy J. 2024, 14, 1003–1011. [Google Scholar] [CrossRef]
- Paulus, M.C.; Drent, M.; Kouw, I.W.K.; Balvers, M.G.J.; Bast, A.; van Zanten, A.R.H. Vitamin K: A potential missing link in critical illness-a scoping review. Crit. Care 2024, 28, 212. [Google Scholar] [CrossRef]
- Caballero, B. Human Nutrition, 4th ed.; Academic Press: Waltham, MA, USA, 2023; pp. 569–576. [Google Scholar]
- Gonzalo-Skok, O.; Casuso, R.A. Effects of Mitoquinone (MitoQ) Supplementation on Aerobic Exercise Performance and Oxidative Damage: A Systematic Review and Meta-analysis. Sports Med. Open 2024, 10, 77. [Google Scholar] [CrossRef]
- Qi, Q.; Zimmermann, W. Cyclodextrin glucanotransferase: From gene to applications. Appl. Microbiol. Biotechnol. 2005, 66, 475–850. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef]
- Cevallos, A.P.; Buera, M.P.; Elizalde, B.E. Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability. J. Food Eng. 2010, 99, 70–75. [Google Scholar] [CrossRef]
- Loftsson, T.; Magnúsdóttir, A.; Másson, M.; Sigurjónsdóttir, J.F. Self-association and cyclodextrin solubilization of drugs. J. Pharm. Sci. 2002, 91, 2307–2316. [Google Scholar] [CrossRef]
- Chaudhari, P.; Ghate, V.M.; Lewis, S.A. Supramolecular cyclodextrin complex: Diversity, safety, and applications in ocular therapeutics. Exp. Eye Res. 2019, 189, 107829. [Google Scholar] [CrossRef]
- Boczar, D.; Michalska, K. Cyclodextrin Inclusion Complexes with Antibiotics and Antibacterial Agents as Drug-Delivery Systems—A Pharmaceutical Perspective. Pharmaceutics 2022, 14, 1389. [Google Scholar] [CrossRef]
- Braithwaite, M.C.; Kumar, P.; Choonara, Y.E.; du Toit, L.C.; Tomar, L.K.; Tyagi, C.; Pillay, V. A novel multi-tiered experimental approach unfolding the mechanisms behind cyclodextrin-vitamin inclusion complexes for enhanced vitamin solubility and stability. Int. J. Pharm. 2017, 532, 90–104. [Google Scholar] [CrossRef]
- Vicatos, A.I.; Hoossen, Z.; Caira, M.R. Inclusion complexes of the steroid hormones 17β-estradiol and progesterone with β- and γ-cyclodextrin hosts: Syntheses, X-ray structures, thermal analyses and API solubility enhancements. Beilstein J. Org. Chem. 2022, 22, 1749–1762. [Google Scholar] [CrossRef]
- Araj, S.K.; Szeleszczuk, Ł. A Review on Cyclodextrins/Estrogens Inclusion Complexes. Int. J. Mol. Sci. 2023, 24, 8780. [Google Scholar] [CrossRef]
- Suvarana, V.; Chippa, S. Current Overview of Cyclodextrin Inclusion Complexes of Volatile Oils and their Constituents. Curr. Drug Deliv. 2023, 20, 770–791. [Google Scholar] [CrossRef]
- de Oliveira-Filho, R.D.; Silva, A.R.A.E.; de Azevedo Moreira, R.; Nogueira, N.A.P. Biological Activities and Pharmacological Applications of Cyclodextrins Complexed with Essential Oils and Their Volatile Components: A Systematic Review. Curr. Pharm. Des. 2018, 24, 3951–3963. [Google Scholar] [CrossRef] [PubMed]
- Jyothirmayi, N.; Ramadoss, C.S.; Divakar, S. Nuclear magnetic resonance studies of cyclodextrin complexes of linoleic acid and arachidonic acid. J. Agric. Food Chem. 1991, 39, 2123–2127. [Google Scholar] [CrossRef]
- Eastburn, S.D.; Tao, B.Y. Applications of modified cyclodextrins. Biotechnol. Adv. 1994, 12, 325–339. [Google Scholar] [CrossRef]
- Saokham, P.; Muankaew, S.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Basic science and product development. Thorsteinn J. Pharm. Pharmacol. 2010, 16, 1607–1621. [Google Scholar] [CrossRef]
- Fine-Shamir, N.; Beig, A.; Zur, M.; Lindley, D.; Miller, J.M.; Dahan, A. Toward Successful Cyclodextrin Based Solubility-Enabling Formulations for Oral Delivery of Lipophilic Drugs: Solubility–Permeability Trade-Off, Biorelevant Dissolution, and the Unstirred Water Layer. Mol. Pharm. 2017, 5, 2138–2146. [Google Scholar] [CrossRef]
- Popielec, A.; Loftsson, T. Effects of cyclodextrins on the chemical stability of drugs. Int. J. Pharm. 2017, 531, 532–542. [Google Scholar] [CrossRef]
- Iohara, D.; Anraku, M.; Uekama, K.; Hirayama, F. Modification of Drug Crystallization by Cyclodextrins in Pre-formulation Study. Chem. Pharm. Bull. 2019, 67, 915–920. [Google Scholar] [CrossRef]
- Mura, P. Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review. J. Pharm. Biomed. Anal. 2015, 113, 226–238. [Google Scholar] [CrossRef]
- Adamkiewicz, L.; Szeleszczuk, Ł. Review of Applications of Cyclodextrins as Taste-Masking Excipients for Pharmaceutical Purposes. Molecules 2023, 28, 6964. [Google Scholar] [CrossRef]
- Paiva-Santos, A.C.; Ferreira, L.; Peixoto, D.; Silva, F.; Soares, M.J.; Zeinali, M.; Zafar, H.; Mascarenhas-Melo, F.; Raza, F.; Mazzola, P.G.; et al. Cyclodextrins as an encapsulation molecular strategy for volatile organic compounds—Pharmaceutical applications. Colloids Surf. B Biointerfaces 2022, 218, 112758. [Google Scholar] [CrossRef] [PubMed]
- Musuc, A.M. Cyclodextrins: Advances in Chemistry, Toxicology, and Multifaceted Applications. Molecules 2024, 29, 5319. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Mascarenhas-Melo, F.; Rabaça, S.; Mathur, A.; Sharma, A.; Giram, P.S.; Pawar, K.D.; Rahdar, A.; Raza, F.; Veiga, F.; et al. Cyclodextrin-based dermatological formulations: Dermopharmaceutical and cosmetic applications. Colloids Surf. B Biointerfaces 2023, 221, 113012. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, G.; Tiwari, R.; Rai, A.K. Cyclodextrins in delivery systems: Applications. J. Pharm. Bioallied Sci. 2010, 2, 72–90. [Google Scholar] [CrossRef]
- Kali, G.; Haddadzadegan, S.; Bernkop-Schnürch, A. Cyclodextrins and derivatives in drug delivery: New developments, relevant clinical trials, and advanced products. Carbohydr. Polym. 2024, 324, 121500. [Google Scholar] [CrossRef]
- Xu, X.; Peng, S.; Bao, G.; Zhang, H.; Yin, C. β-cyclodextrin inclusion complexes with vitamin A and its esters: A comparative experimental and molecular modeling study. J. Mol. Struct. 2021, 1223, 129001. [Google Scholar] [CrossRef]
- Petkova, V.; Nikolova, V.; Kircheva, N.; Dobrev, S.; Angelova, S.; Dudev, T. Theoretical study of β-cyclodextrin inclusion complexes with vitamin K. Int. Sci. J. 2023, 2023, 37–40. [Google Scholar]
- Szejtli, J.; Bolla, E. Stabilisierung fettlöslicher Vitamine mit beta-Cyclodextrin. Starch. Stärke 1980, 32, 386–391. [Google Scholar] [CrossRef]
- Szejtli, J.; Bolla-Pusztai, E.; Szabó, P.; Frenczy, T. Enhancement of stability and biological effect on cholecalciferol by beta-cyclodextrin complexation. Pharm. J. 1980, 12, 779–870. [Google Scholar]
- Szejtli, J.; Bolla-Puszrai, E.; Kajtar, M. The β-cyclodextrin inclusion complex of menadione (vitamin K3). Pharm. J. 1982, 37, 725–728. [Google Scholar]
- Sapino, S.; Carlotti, M.E.; Trottaae, R.C.M.; Vione, F.T.D. Effect of akyl-γ-cyclodextrins on the stability of retinol. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 451–455. [Google Scholar] [CrossRef]
- Celebioglu, A.; Uyar, A.T. Design of polymer-free Vitamin-A acetate/cyclodextrin nanofibrous webs: Antioxidant and fast-dissolving properties. Food Funct. 2020, 11, 7626–7637. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, G.F.; Wehrle, P.; Duportail, G.; Stamm, A. Inclusion complexation of vitamin A palmitate with b-cyclodextrin in aqueous solution. Drug Dev. Indus. Pharm. 1992, 18, 2117–2121. [Google Scholar] [CrossRef]
- Vilanova, N.; Solans, C. Vitamin A Palmitate-β-cyclodextrin inclusion complexes: Characterization, protection and emulsification properties. Food Chem. 2015, 15, 529–535. [Google Scholar] [CrossRef]
- Muñoz-Botella, S.; Martín, M.; Castillo, B.D.; Lerner, D.; Menéndez, J. Differentiating geometrical isomers of retinoids and controlling their photo-isomerization by complexation with cyclodextrins. Anal. Chem. Act. 2002, 468, 161–170. [Google Scholar] [CrossRef]
- Caddeo, C.; Manconi, M.; Valenti, D. Photostability and solubility improvement of b-cyclodextrin-included tretinoin. J. Incl. Phenom. 2007, 59, 293–300. [Google Scholar] [CrossRef]
- Mele, A.; Mendichi, R.; Selva, A. Non-covalent associations of cyclomaltooligosaccharides (cyclodextrins) with trans-b-carotene in water: Evidence for the formation of large aggregates by light scattering and NMR spectroscopy. Carbohydr. Res. 1998, 310, 261–267. [Google Scholar] [CrossRef]
- Ascenso, A.; Cruz, M.; Euleutério, C.; Carvalho, F.A.; Santos, N.C.; Marques, H.C.; Simões, A.S. Novel tretinoin formulations: A drug-in-cyclodextrin-in-liposome approach. J. Liposome Res. 2013, 23, 211–219. [Google Scholar] [CrossRef]
- Weisse, S.; Perly, B.; Dalbiez, J.-P.; Barton-Ouvrard, F.; Archambault, J.-C.; André, P.; Rollin, P.; Djedaïni-Pilard, F. New Aqueous Gel Based on Soluble Cyclodextrin/Vitamin A Inclusion Complex. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 87–91. [Google Scholar] [CrossRef]
- Koeda, T.; Wada, Y.; Neoh, T.; Wada, T.; Tekeshi, F.; Yoshii, H. Encapsulation of Retinyl Palmitate with a Mixture of Cyclodextrins and Maltodextrins by the Kneading Method. Food Sci. Technol. Res. 2014, 20, 529–535. [Google Scholar] [CrossRef]
- Fathalla, Z.; Shoman, M.E.; Barakat, H.S.; Fatease, A.A.; Alamri, A.H.; Abdelkader, H. Cyclodextrins and Amino Acids Enhance Solubility and Tolerability of Retinoic Acid/Tretinoin: Molecular Docking, Physicochemical, Cytotoxicity, Scratch Assay, and Topical Gel Formulations Investigation. Pharmaceutics 2024, 16, 853. [Google Scholar] [CrossRef] [PubMed]
- Comini, S.; Olivier, P.; Riottot, M.; Duhamel, D. Interaction of b-cyclodextrin with bile acids their competition with vitamins A and D3 as determined by 1H-NMR spectrometry. Clin. Chim. Acta 1994, 228, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Kim, S.; Sasagawa, T.; Choi, Y.; Akaike, T.; Cho, C. Delivery of all trans-retinoic acid (RA) to hepatocyte cell line from RA/galactosyl b-cyclodextrin inclusion complex. Eur. J. Pharm. Biopharm. 2004, 58, 681–700. [Google Scholar] [CrossRef]
- Weisse, S.; Perly, B.; Créminon, C.; Ouvrard-Baraton, F.; Djedaïni-Pilard, F. Enhancement of vitamin A skin absorption by cyclodextrins. J. Drug Deliv. Sci. Tec. 2004, 14, 77–86. [Google Scholar] [CrossRef]
- Yap, K.; Liu, X.; Thenmozhiyal, J.; Ho, P. Characterization of the 13-cis-retinoic acid/cyclodextrin inclusion complexes by phase solubility, photostability, physicochemical and computational analysis. Eur. J. Pharm. Sci. 2005, 25, 49–56. [Google Scholar] [CrossRef]
- Lemma, S.M.; Scampicchio, M.; Mahon, P.J.; Sbarski, I.; Wang, J.; Kingshott, P. Controlled Release of Retinyl Acetate from β-Cyclodextrin Functionalized Poly(vinyl alcohol) Electrospun Nanofibers. J. Agric. Food Chem. 2015, 63, 6. [Google Scholar] [CrossRef]
- Yildiz, Z.I.; Topuz, F.; Kilic, M.E.; Durgun, E.; Uyar, T. Encapsulation of antioxidant beta-carotene by cyclodextrin complex electrospun nanofibers: Solubilization and stabilization of beta-carotene by cyclodextrins. Food Chem. 2023, 423, 136284. [Google Scholar] [CrossRef]
- Celitan, E.; Gruskiene, R.; Sereikaite, A.J. An Optimization Procedure for Preparing Aqueous CAR/HP-CD Aggregate Dispersions. Molecules 2021, 26, 7562. [Google Scholar] [CrossRef]
- Kaur, M.; Bawa, M.; Singh, M. β–carotene-β–cyclodextrin inclusion complex: Towards enhanced aqueous solubility. J. Glob. Biosci. 2016, 5, 3665–3675. [Google Scholar]
- Kim, H.; Hu, Y.; Jeong, D.; Jun, B.; Cho, E.; Jung, S. Synthesis, Characterization, and Retinol Stabilization of Fatty Amide-β-cyclodextrin Conjugates. Molecules 2016, 21, 963. [Google Scholar] [CrossRef]
- Mallem, N.; Khatmi, D.; Azzouz, S.; Benghodbane, S.; Yahia, O.A. Computational studies of 1:2 complex between retinol propionate and b cyclodextrin. J. Incl. Phenom. 2011, 73, 305–312. [Google Scholar] [CrossRef]
- Muñoz Botella, S.; Martìn, M.A.; del Castillo, B.; Menéndez, J.C.; Vázquez, L.; Lerner, D.A. Analytical applications of retinoid-cyclodextrin inclusion complexes. 1. Characterization of a retinal-beta-cyclodextrin complex. J. Pharm. Biomed. Anal. 1996, 14, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Montassier, P.; Duchéne, D.; Poelman, M. Inclusion complexes of tretinoin with cyclodextrins. Inter. J. Pharm. 1997, 153, 199–209. [Google Scholar] [CrossRef]
- Niu, H.; Chen, W.; Chen, W.; Yun, Y.; Zhong, Q.; Fu, X.; Chen, H.; Liu, A.G. Preparation and Characterization of a Modified-β-Cyclodextrin/β-Carotene Inclusion Complex and Its Application in Pickering Emulsions. J. Agric. Food Chem. 2019, 67, 12875–12884. [Google Scholar] [CrossRef]
- Semenova, E.M.; Cooper, A.; Wilson, C.G.; Converse, C.A. Stabilization of All-trans-retinol by Cyclodextrins: A Comparative Study Using HPLC and Fluorescence Spectroscopy. J. Incl. Phenom. 2002, 44, 155–158. [Google Scholar] [CrossRef]
- Ascenso, A.; Guedes, R.; Bernardino, R.; Diogo, H.; Carvalho, F.A.; Santos, N.C.; Silva, A.M.; Marques, H.C. Complexation and Full Characterization of the Tretinoin and Dimethyl-βeta-Cyclodextrin Complex. AAPS Pharm. Sci. Technol. 2011, 12, 553–630. [Google Scholar] [CrossRef]
- Pitha, J.; Szente, L. Rescue from hypervitaminosis a or potentiation of retinoid toxicity by different modes of cyclodextrin administration. Life Sci. 1983, 32, 719–723. [Google Scholar] [CrossRef]
- Lin, H.S.; Chean, C.S.; Ng, Y.Y.; Chan, S.Y.; Ho, P.C. 2-hydroxypropyl-beta-cyclodextrin increases aqueous solubility and photostability of all-trans-retinoic acid. J. Clin. Pharm. Ther. 2000, 25, 265–269. [Google Scholar] [CrossRef]
- Çelik, S.E.; Bekdeser, B.; Tufan, A.N.; Apak, R. Modified Radical Scavenging and Antioxidant Activity Measurement of b-Carotene with β-Cyclodextrin Complexation in Aqueous Medium. Anal. Sci. 2017, 33, 299–305. [Google Scholar] [CrossRef]
- Okada, Y.; Tachibana, M.; Koizumi, K. Solubilization of Lipid—Soluble Vitamins by Complexation with Glucosyl—β- cyclodextrin. Chem. Pharm. Bull. 1990, 38, 2047–2049. [Google Scholar] [CrossRef]
- Weisse, S.; Kalimouttou, S.; Lahiani-Skiba, M.; Djedaini-Pilard, F.; Perly, B.; Skiba, M.; Nanosci, J. Investigations on Topically Applied Vitamin A Loaded Amphiphilic Cyclodextrin Nanocapsules. Nanotechnol. 2009, 9, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, M.; Tavakoli, O.; Khoobi, M.; Wu, Y.S.; Gholibegloo, E.; Faramarzi, M.A.; Farkhondeh, S. Beta-carotene/cyclodextrin-based inclusion complex: Improved loading, solubility, stability, and cytotoxicity. J. Incl. Phenom. Marcocycl. Chem. 2021, 102, 55–64. [Google Scholar] [CrossRef]
- Dai, Y.; Row, K.H. Isolation and Determination of Beta-Carotene in Carrots by Magnetic Chitosan Beta-Cyclodextrin Extraction and High-Performance Liquid Chromatography (HPLC). Anal. Lett. 2019, 52, 1–16. [Google Scholar] [CrossRef]
- Hou, J.; Xu, H.-N. Faceted crystal growth of cyclodextrin-oil inclusion complexes. Carbohydr. Polym. 2024, 343, 122446. [Google Scholar] [CrossRef]
- Frieler, L.; Ho, T.M.; Anthony, A.; Hidefumi, Y.; Yago, A.J.E.; Bhandari, B.R. Crystallisation properties of amorphous cyclodextrin powders and their complexation with fish oil. J. Food Sci. Technol. 2019, 56, 1519–1529. [Google Scholar] [CrossRef]
- Saenger, W. Cyclodextrin Inclusion Compounds in Research and Industry. Angew. Chem. Int. Edit. Engl. 1980, 19, 344–362. [Google Scholar] [CrossRef]
- Schneider, H.J.; Hacket, F.; Rüdiger, V.; Ikeda, H. NMR Studies of Cyclodextrins and Cyclodextrin Complexes. Chem. Rev. 1998, 30, 1755–1786. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł. A Review of Applications of Solid-State Nuclear Magnetic Resonance (ssNMR) for the Analysis of Cyclodextrin- Including Systems. Int. J. Mol. Sci. 2023, 24, 3648. [Google Scholar] [CrossRef]
- Hădărugă, N.G.; Bandur, G.N.; David, I.; Hădărugă, D.I. A review on thermal analyses of cyclodextrins and cyclodextrin complexes. Environ. Chem. Lett. 2018, 17, 349–373. [Google Scholar] [CrossRef]
- Li, J.; Gao, H.; Ye, Z.; Deng, J.; Ouyang, D. In silico formulation prediction of drug/cyclodextrin/polymer ternary complexes by machine learning and molecular modeling techniques. Carbohydr. Polym. 2022, 275, 118712. [Google Scholar] [CrossRef]
- Quevedo, M.A.; Zoppi, A. Current trends in molecular modeling methods applied to the study of cyclodextrin complexes. J. Incl. Phenom. Macrocycl. Chem. 2018, 90, 1–14. [Google Scholar] [CrossRef]
- Rekharsky, M.V.; Inoue, Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998, 98, 1875–1918. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, A.H.; Szeleszczuk, Ł.; Gubica, T. Application of Molecular Dynamics Simulations in the Analysis of Cyclodextrin Complexes. Int. J. Mol. Sci. 2021, 22, 9422. [Google Scholar] [CrossRef]
- Gebhardt, J.; Kleist, C.; Jakobtorweihen, S.; Hansen, N. Validation and Comparison of Force Fields for Native Cyclodextrins in Aqueous Solution. J. Phys. Chem. Bull. 2018, 122, 1608–1626. [Google Scholar] [CrossRef]
- Likhachev, I.V.; Balabaev, N.K.; Galzitskaya, O.V. Available Instruments for Analyzing Molecular Dynamics Trajectories. Open Biochem. J. 2016, 10, 1–11. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł. Current Status of Quantum Chemical Studies of Cyclodextrin Host–Guest Complexes. Molecules 2022, 27, 3874. [Google Scholar] [CrossRef]
- Izutani, Y.; Kanaori, K.; Oda, M. Aggregation property of glycyrrhizic acid and its interaction with cyclodextrins analyzed by dynamic light scattering, isothermal titration calorimetry, and NMR. Carbohydr. Res. 2014, 392, 25–30. [Google Scholar] [CrossRef]
- Choi, H.S.; Ooya, T.; Huh, K.M. pH-Triggered Changes in Assembling Properties of β-Cyclodextrin-Conjugated Poly(ε-lysine) Complexes. Biomacromolecules 2005, 3, 1200–1204. [Google Scholar] [CrossRef]
- Sobczyk, M.; Porzak, M.; Żuraw, D.; Sodolska, A.; Oleksa, P.; Jasiński, K. Small Intestinal Bacterial Overgrowth—Current, Novel and Possible Future Methods of Treatment and Diagnosis. Prosp. Pharm. Sc. 2024, 22, 65–70. [Google Scholar] [CrossRef]
- Bakirova, R.; Nukhuly, A.; Iskineyeva, A.; Fazylov, S.; Burkeyev, M.; Mustafayeva, A.; Minayeva, Y.; Sarsenbekova, A. Obtaining and Investigation of the β-Cyclodextrin Inclusion Complex with Vitamin D3 Oil Solution. Scientifica 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Kim, S.H.; Youna, J.Y.; Kima, K.M.; Kanga, K.C.; Pyoa, H.B.; Lee, S.J. Characterization of an inclusion complex of 7-dehydrocholesterol and cyclodextrin. J. Ind. Eng. Chem. 2010, 16, 119–121. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Hamishehkar, H.; Amjadi, S. Development of gelatin-coated nanoliposomes loaded with β-cyclodextrin/vitamin D3 inclusion complex for nutritional therapy. Food Chem. 2023, 424, 136246. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, G.F.; Wehrlé, P.; Stamm, A. Inclusion of vitamin D2 in β-cyclodextrin. Evaluation. of different complexation methods. Drug Devl. Ind. Pharm. 1993, 19, 875–885. [Google Scholar] [CrossRef]
- Tian, X.Q.; Holick, M.F. Catalyzed Thermal Isomerization between Previtamin D3 and Vitamin D3 via b-Cyclodextrin Complexation. J. Biol. Chem. 1995, 270, 8706–8711. [Google Scholar] [CrossRef]
- Wang, F.; Yu, W.; Popescu, C.; Ibrahim, A.A.; Yu, D.; Pearson, R.; McKerell, A.D.M., Jr.; Hoag, S.W. Cholecalciferol complexation with hydroxypropyl-β-cyclodextrin (HPBCD) and its molecular dynamics simulation. Pharm. Dev. Technol. 2022, 27, 389–398. [Google Scholar] [CrossRef]
- Ferro-Costas, D.; Sánchez-Murcia, P.A.; Fernández-Ramos, A. Unraveling the Catalytic Mechanism of β-Cyclodextrin in the Vitamin D Formation. J. Chem. Inf. Model. 2024, 64, 3865–3873. [Google Scholar] [CrossRef]
- Uberti, F.; Trotta, F.; Pagliaro, P.; Ferrari, S.; Penna, C.; Matencio, A. Developing New Cyclodextrin-Based Nanosponges Complexes to Improve Vitamin D Absorption in an In Vitro Study. Int. J. Mol. Sci. 2023, 24, 5322. [Google Scholar] [CrossRef]
- Mercê, A.L.R.; Nicolini, J.; Khan, M.A.; Bouet, G. Qualitative study of supramolecular assemblies of b-cyclodextrin and cholecalciferol and the cobalt (II), copper (II) and zinc (II) ions. Carbohydr. Polym. 2009, 77, 402–409. [Google Scholar] [CrossRef]
- Soares, D.F.; Noseda, M.D.; Felcman, J.; Khan, M.A.; Bouet, G.; Mercé, A.L.R. Supramolecular assemblies of Al3+ complexes with vitamin D3 (cholecalciferol) and phenothiazine. Encapsulation and complexation studies in β-cyclodextrin. J. Incl. Phenom. 2012, 75, 137–145. [Google Scholar] [CrossRef]
- Napiórkowska, E. Overview of Cyclodextrins and Medicinal Products Containing Cyclodextrins Currently Registered in Poland. Prosp. Pharm. Sc. 2023, 21, 30–37. [Google Scholar] [CrossRef]
- Shimada, K.; Mitamura, K.; Miura, M.; Miyamoto, A. Retention Behavior of Vitamin D and Related Compounds During High-Performance Liquid Chromatography. J. Liq. Chromatogr. 1995, 18, 2885–2893. [Google Scholar] [CrossRef]
- Higashi, T.; Ogasawara, A.; Shimada, K. High performance liquid chromatographic separation of dihydroxylated vitamin D3 Metabolites using mobile phase containing cyclodextrin. J. Liq. Chromatogr. Relat. Technol. 2000, 23, 2475–2486. [Google Scholar] [CrossRef]
- Spencer, B.J.; Purdy, W.C. Comparison of the separation of fat-soluble vitamins using β-cyclodextrins in high-performance liquid chromatography and micellar electrokinetic chromatography. J. Chromatogr. A 1997, 782, 227–235. [Google Scholar] [CrossRef]
- Takeda, K.; Asou, T.; Matsuda, A.; Kimura, K.; Okamura, K.; Okamoto, R.; Sasaki, J.; Adachi, T.; Omura, S. Application of Cyclodextrin to Microbial Transformation of Vitamin D3 to 25-Hydroxyvitamin D3 and 1a,25-Dihydroxyvitamin D3. J. Ferment. Bioeng. 1994, 78, 380–382. [Google Scholar] [CrossRef]
- González-Ruiz, V.; León, A.G.; Olives, A.I.; Martín, M.A.; Menéndez, J.C. Eco-friendly liquid chromatographic separations based on the use of cyclodextrins as mobile phase additives. Green Chem. 2011, 13, 115–126. [Google Scholar] [CrossRef]
- Marinescu, L.; Bols, A.M. Cyclodextrins as Supramolecular Organo-Catalysts. Curr. Org. Chem. 2010, 13, 1380–1398. [Google Scholar] [CrossRef]
- Bai, C.C.; Tian, B.R.; Zhao, T.; Huang, Q.; Wang, Z.Z. Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications. Molecules 2017, 22, 1475. [Google Scholar] [CrossRef]
- Tuckeya, R.C.; Nguyena, M.N.; Slominski, A. Kinetics of vitamin D3 metabolism by cytochrome P450scc (CYP11A1) in phospholipid vesicles and cyclodextrin. Int. J. Biochem. Cell Biol. 2008, 40, 2619–2626. [Google Scholar] [CrossRef]
- Delaurent, C.; Siouffi, A.M.; Pepe, G. Cyclodextrin inclusion complexes with vitamin D3: Investigations of the solid complex characterization. Chem. Anal. 1998, 43, 601–616. [Google Scholar]
- Crespo-Biel, O.; Lim, C.W.; Ravoo, B.J.; Reinhoudt, D.N.; Huskens, J. Expression of a supramolecular complex at a multivalent interface. J. Am. Chem. Soc. 2006, 128, 17024–17032. [Google Scholar] [CrossRef]
- Torri, G.; Bertini, S.; Giavana, T.; Guerrini, M.; Puppini, N.; Zoppetti, G. Inclusion complex characterization between progesterone and hydroxypropyl-β-cyclodextrin in aqueous solution by NMR study. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 317–321. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, A.; Kumar, S. Nanosponges: A Promising Nanocarrier Systems for Drug Delivery. Curr. Res. Pharm. Sci. 2020, 10, 1–5. [Google Scholar] [CrossRef]
- Gazdag, M.; Szepesi, G.; Huszár, L. α-, β- and γ-cyclodextrins as mobile phase additives in the high-performance liquid chromatographic separation of enantiomeric compounds: II. Optimization of the separation method by using α-, β- and γ-cyclodextrins in mixture. J. Chromatogr. A 1988, 436, 31–38. [Google Scholar] [CrossRef]
- Barbalho, S.M.; de Alvares Goulart, R.; Araújo, A.C.; Guiguer, É.L.; Bechara, M.D. Irritable bowel syndrome: A review of the general aspects and the potential role of vitamin. Expert Rev. Gastroenterolo. Hepatol. 2019, 13, 345–359. [Google Scholar] [CrossRef]
- Williams, C.E.; Williams, E.A.; Corfe, B.M. Vitamin D status in irritable bowel syndrome and the impact of supplementation on symptoms: What do we know and what do we need to know? Eur. J. Clin. Nutr. 2018, 72, 1358–1363. [Google Scholar] [CrossRef]
- Uberti, F.; Trotta, F.; Cavalli, R.; Galla, R.; Caldera, F.; Ferrari, S.; Mulè, S.; Brovero, A.; Molinari, C.; Pagliaro, P.; et al. Enhancing Vitamin D3 Efficacy: Insights from Complexation with Cyclodextrin Nanosponges and Its Impact on Gut–Brain Axes in Physiology and IBS Syndrome. Int. J. Mol. Sci. 2024, 25, 2189. [Google Scholar] [CrossRef]
- Kypчeнкo, B.П.; Гoлoвaч, T.H.; Cyшинcкaя, H.B.; Tapyн, E.И.; Дyдчик, H.B.; Цыгaнкoв, B.Г.; Eвдoкимoв, И.A.; Лoдыгин, A.Д. Multicomponent composites of nanocomplexes of cyclodextrin with biologically active substances for φyctional food products. J. Food Process. Technol. 2022, 52, 375–389. [Google Scholar]
- Sasaki, J.; Miyazaki, A.; Saito, M.; Adachi, T.; Mizoue, K.; Hanada, K.; Omura, S. Transformation of vitamin D3 to 1α,25-dihydroxyvitamin D3 via 25-hydroxyvitamin D3 using Amycolata sp. strains. Appl. Microbiol. Biotechnol. 1992, 38, 152–157. [Google Scholar] [CrossRef]
- Kimura, M.; Ooya, T. Enhanced solubilization of a-tocopherol by hyperbranched polyglycerol-modifed β-cyclodextin. J. Drug Deliv. Sci. Technol. 2016, 35, 30–33. [Google Scholar] [CrossRef]
- Celebioglu, A.; Uyar, T. Antioxidant Vitamin E/Cyclodextrin Inclusion Complex Electrospun Nanofibers: Enhanced water-solubility, prolonged shelf-life and photostability of Vitamin E. J. Agric. Food Chem. 2017, 65, 5404–5412. [Google Scholar] [CrossRef]
- Aytac, Z.; Uyar, T. Antioxidant activity and photostability of a-tocopherol/b-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers. Eur. Polym. J. 2016, 79, 140–149. [Google Scholar] [CrossRef]
- Cao, C.; Xu, L.; Xie, P.; Hu, J.; Qi, J.; Zhou, Y.; Cao, L. The characterization and evaluation of the synthesis of large-ring cyclodextrins (CD9–CD22) and a-tocopherol with enhanced thermal stability. RCS Adv. 2020, 10, 6584–6591. [Google Scholar] [CrossRef] [PubMed]
- Iskineyeva, A.A.; Mustafaeva, A.; Zamaratskaya, G.; Fazylov, S.D.; Pustolaikina, I.; Nurkenov, O.A.; Sarsenbekova, A.; Seilkhanov, T.M.; Bakirova, R. Preparation of encapsulated α-tocopherol acetate and study of its physico-chemical and biological properties. Bull. Karaganda Univ. Chem. Ser. 2021, 103, 27–36. [Google Scholar] [CrossRef]
- Iaconinoto, A.; Chicca, M.; Pinamonti, S.; Casolari, A.; Bianchi, A.; Scalia, S. Influence of cyclodextrin complexation on the photodegradation and antioxidant activity of a-tocopherol. Pharm. J. 2004, 59, 30–33. [Google Scholar]
- Zhang, D.; Yang, C.; Niu, Z.; Wang, C.; Mukherjee, S.; Wang, D.; Li, X.; Liu, R.; Gao, J.; Chen, Y. The Construction of Crowning β-cyclodextrin with Temperature Response and Efficient Properties of Host-Guest Inclusion. Langmuir 2018, 34, 11567–11574. [Google Scholar] [CrossRef]
- Ogawa, S.; Katsuragi, H.; Iuchi, K.; Hara, S. Clarification of the Complexation Behaviour of 2,6-di-O-Methylated β -Cyclodextrin and Vitamin E and Radical Scavenging Ability of the Complex in Aqueous Solution. J. Oleo Sci. 2021, 70, 1461–1467. [Google Scholar] [CrossRef]
- Ogawa, S.; Shinkawa, M.; Hirase, R.; Tsubomura, T.; Iuchi, K.; Hara, S. Development of Water-Insoluble Vehicle Comprising Natural Cyclodextrin—Vitamin E Complex. Antioxidants 2021, 10, 490. [Google Scholar] [CrossRef]
- Burkeev, M.; Fazylov, S.D.; Bakirova, R.; Iskineyeva, A.; Sarsenbekova, A.; Tazhbaev, Y.M.; Davrenbekov, S. Thermal decomposition of β-cyclodextrin and its inclusion complex with vitamin E. Mendeleev Commun. 2021, 31, 76–78. [Google Scholar] [CrossRef]
- Ke, D.; Chen, W.; Chen, W.; Yun, Y.; Zhong, Q.; Su, X.; Chen, H. Preparation and Characterization of Octenyl Succinate β-Cyclodextrin and Vitamin E Inclusion Complex and Its Application in Emulsion. Molecules 2020, 25, 654. [Google Scholar] [CrossRef]
- Kuttiyawong, K.; Saehu, S.; Ito, K.; Pongsawasdi, P. Synthesis of large-ring cyclodextrin from tapioca starch by amylomaltase and complex formation with vitamin E acetate for solubility enhancement. Process Biochem. 2015, 50, 2168–2176. [Google Scholar] [CrossRef]
- Uekama, K.; Horiuchi, Y.; Kikuchi, M. Enhanced dissolution and oral bioavailability of α-tocopheryl esters by dimethyl-β-cyclodextrin complexation. J. Incl. Phenom. 1988, 6, 167–174. [Google Scholar] [CrossRef]
- Souri, J.; Almasi, H.; Hamishehkar, H.; Amjadi, S. Sodium caseinate-coated and β-cyclodextrin/vitamin E inclusion complex-loaded nanoliposomes: A novel stabilized nanocarrier. LWT 2021, 151, 112174. [Google Scholar] [CrossRef]
- Singh, P.; Wu, L.; Ren, X.; Zhang, W.; Tang, Y.; Yongli, C.; Carrier, A.; Zhang, X.; Zhang, J. Hyaluronic-acid-based β-cyclodextrin grafted copolymers as biocompatible supramolecular hosts to enhance the water solubility of tocopherol. Int. J. Pharm. 2020, 536, 119542. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Das, S.; Mahapatra, P.K.; Saha, K.D. Morin-VitaminE-β-Cyclodextrin Inclusion Complex Loaded Chitosan Nanoparticles (M-Vit.E-CD-CSNPs) Ameliorate Arsenic-Induced Hepatotoxicityina Murine Model. Molecules 2022, 27, 5819. [Google Scholar] [CrossRef]
- Benhenia, K.; Rahab, H.; Smadi, M.; Benmakhlouf, H.; Lamara, A.; Idres, T.; Iguer-Ouada, M. Beneficial and harmful effects of cyclodextrin-vitamin E complex on cryopreserved ram sperm. Anim. Reprod. Sci. 2018, 195, 266–273. [Google Scholar] [CrossRef]
- Ikeda, S.; Uchida, T.; Ichikawa, T.; Watanabe, T.; Uekaji, Y.; Nakata, D.; Terao, K.; Yano, T. Complexation of Tocotrienol with gamma-Cyclodextrin Enhances Intestinal Absorption of Tocotrienol in Rats. Biosci. Biotechnol. Biochem. 2010, 74, 1452–1457. [Google Scholar] [CrossRef]
- Koontz, J.L.; Marcy, J.E.; O’keefe, S.F.; Duncan, S.E. Cyclodextrin Inclusion Complex Formation and Solid-State Characterization of the Natural Antioxidants α-Tocopherol and Quercetin. J. Agric. Food Chem. 2009, 57, 1162–1171. [Google Scholar] [CrossRef]
- Sueishi, Y.; Hori, M.; Inazumi, N. Characterization of inclusion complex of vitamin E compound with 2,6-di-O-methylated b-cyclodextrin as the solubility enhancer and its kinetic determination for radical scavenging ability. J. Oleo Sci. 2021, 70, 467–472. [Google Scholar] [CrossRef]
- Eid, M.; Zhu, J.; Ismail, M.A.; Li, B. Dual encapsulation and sequential release of cisplatin and vitamin E from soy polysaccharides and β-cyclodextrin bioadhesive hydrogel nanoparticles. Int. J. Biol. Macromol. 2024, 273, 133240. [Google Scholar] [CrossRef]
- Benhenia, K.; Lamara, A.; Fatmi, S.; Iguer-Ouada, M. Effect of cyclodextrins, cholesterol and vitamin E and their complexation on cryopreserved epididymal ram semen. Small Rumin. Res. 2016, 141, 29–35. [Google Scholar] [CrossRef]
- Jiao, F.P.; Chen, X.Q.; Yu, H.Z.; Yang, L. Preparation and spectra properties of inclusion complexes if vitamin E with b-cyclodextrin. J. Food Process. Preserv. 2010, 34, 114–124. [Google Scholar] [CrossRef]
- Siró, I.; Fenyvesi, E.; Szente, L.; Meulenaer, B.D.; Devlieghere, F.; Orgoványi, J.; Sényi, J.; Barta, J. Release of alpha-tocopherol from antioxidative low-density polyethylene film into fatty food simulant: Influence of complexation in beta-cyclodextrin. Food Addit. Contam. 2006, 23, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Zou, Y.; Luo, Z.; Qi, L.; Lu, X. pH-Responsive Emulsions with β-Cyclodextrin/Vitamin E Assembled Shells for Controlled Delivery of Polyunsaturated Fatty Acids. J. Argic. Food Chem. 2019, 67, 11931–11941. [Google Scholar] [CrossRef] [PubMed]
- Kerdpol, K.; Nutho, B.; Krusong, K.; Pooarporn, R.P.; Rungrotmongkol, T.; Hannongbua, S. Encapsulation of α-tocopherol in large-ring cyclodextrin containing 26 a-D-glucopyranose units: A molecular dynamics study. J. Mol. Liq. 2021, 339, 116802. [Google Scholar] [CrossRef]
- Mattanum, S.; Wolschann, P.; Kerdpol, K.; Ismail, A.; Nutho, B.; Hanpiboon, C.; Krusong, K.; Rungrotmongkol, T.; Hannongbua, S. In Vitro and In Silico Study on the Molecular Encapsulation of a-Tocopherol in a Large-Ring Cyclodextrin. Int. J. Mol. Sci. 2023, 24, 4425. [Google Scholar]
- Sambasevam, K.P.; Mohamad, S.; Sarih, N.M.; Ismail, N.A.; Sarih, N.M.; Ismail, N.A. Synthesis and Characterization of the Inclusion Complex of β-cyclodextrin and Azomethine. Int. J. Mol. Sci. 2013, 14, 3671–3682. [Google Scholar] [CrossRef]
- Takahashi, A.I.; Veiga, F.J.B.; Ferraz, H.G. A literature review of cyclodextrin inclusion complexes characterization. Int. J. Pharma. Sci. Rev. Res. 2012, 12, 16–20. [Google Scholar]
- Wang, J.; Cao, Y.; Sun, B.; Wang, C. Physicochemical and release characterization of garlic oil-b-cyclodextrin IC’s. Food Chem. 2011, 127, 1680–1685. [Google Scholar] [CrossRef]
- Giordano, F.; Novak, C.; Moyano, J.R. Thermal analysis of cyclodextrins and their inclusion compounds. Termochim. Acta 2001, 380, 123–151. [Google Scholar] [CrossRef]
- Crini, G. Review: A history of cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef]
- Buddeesao, M.; Karpkird, T.; Nokkaew, R.; Setthayanond, J. Enhanced stability of natural vitamin E from palm oil by forming inclusion complexes with cyclodextrin and its application on PLA fabric. New J. Chem. 2024, 48, 6650–6659. [Google Scholar] [CrossRef]
- Drotleff, A.M.; Ternes, W. Separation and characterization of cis-trans isomers of a-tocotrienol by HPLC using a permethylated b-cyclodextrin phase. Eur. Food Res.Technol. 1998, 206, 9–13. [Google Scholar] [CrossRef]
- Bontempo, V.; Baldi, A.; Cheli, F.; Fantuz, F.; Prod, A.; Politis, I.; Carli, S.; Dell’Orto, V. Kinetic behavior of three preparations of α-tocopherol after oral administration to postpubertal heifers. Vet Res. 2000, 61, 589–593. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Z.; Liu, X.; Ni, X.; Li, J. Gelatin-based hydrogels with β-cyclodextrin as a dual functional component for enhanced drug loading and controlled release. RSC Adv. 2013, 3, 25041–25049. [Google Scholar] [CrossRef]
- Hao, L.; Li, J.; Mao, J.; Zhou, Q.; Dengc, Q.; Chai, Z.; Zhenga, L.; Shi, J. The soybean lecithin-cyclodextrin-vitamin E complex nanoparticles stabilized Pickering emulsions for the delivery of β-carotene: Physicochemical properties and in vitro digestion. Int. J. Biol. Macromol. 2024, 265, 130742. [Google Scholar] [CrossRef]
- Lengyel, M.T.; Szejtli, J. Menadione- γ-Cyclodextrin Inclusion Complex. J. Incl. Phenom. 1985, 3, 1–8. [Google Scholar] [CrossRef]
- Nevado, J.B.; Pulgarin, J.M.; Laguna, M.G. Spectrofluorimetric study of the b-cyclodextrin: Vitamin K3 complex and determination of vitamin K3. Talanta 2001, 53, 951–955. [Google Scholar] [CrossRef]
- Tang, Y.; Cai, L.; Xue, K.; Wang, C.; Xiong, X. Interaction Mode between Inclusion Complex of Vitamin K3 with γ-Cyclodextrin and Herring-Sperm DNA. Nucleosides Nucleotides Nucleic Acids 2016, 35, 245–258. [Google Scholar] [CrossRef]
- Zielenkiewicz, W.; Terekhova, I.V.; Koźbiał, M.; Poznanski, J.; Kumeev, R.S. Inclusion of menadione with cyclodextrins studied by calorimetry and spectroscopic methods. J. Phys. Org. Chem. 2007, 20, 656–661. [Google Scholar] [CrossRef]
- Zhenming, D.; Xiuping, L.; Guomei, Z.; Shaomin, S.; Jinghao, P. Study on vitamin K3-cyclodextrin inclusion complex and analytical application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2003, 59, 2073–2079. [Google Scholar] [CrossRef]
- Li, P.; Chen, Y.; Chena, C.; Liu, Y. Amphiphilic multi-charged cyclodextrins and vitamin K co-assembly as a synergistic coagulant. Chem. Commun. 2019, 55, 11790–11793. [Google Scholar]
- Kuboyama, A.; Matsuzaki, S.Y. The cyclodextrin-quinone inclusion compounds in an aqueous solution at 77K. I. 9,10-anthraquinone sulfonates and 1,4-naphthoquinones. J. Incl. Phenom. 1984, 2, 755–764. [Google Scholar] [CrossRef]
- Zhang, G.; Shuang, S.; Chuan, D.; Pan, J. Study on the interaction of methylene blue with cyclodextrin derivatives by absorption and fluorescence spectroscopy. J. Spectrochim. Acta Part A. 2003, 59, 2935–2941. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.G.; Zhang, H.; Zhang, D.Y.; Cao, Q.; Yang, J.; Ji, L.N.; Mao, Z.W. Cancer-specific chemotherapeutic strategy based on the vitamin K3 mediated ROS regenerative feedback and visualized drug release in vivo. Biomaterials 2018, 185, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Tabushi, I.; Yamamura, K.; Fujita, K.; Kawakubo, H. Specific Inclusion Catalysis by β-Cyclodextrin in the One-Step Preparation of Vitamin K1 or K2 Analogues. J. Am. Chem. Soc. 1979, 101, 1019–1026. [Google Scholar] [CrossRef]
- Fujita, K.; Kawakubo, H. One-Step Preparation of Vitamin K1 or K2 Analogues by Cyclodextrin Inclusion Catalysis. J. Am. Chem. Soc. 1977, 99, 6456–6457. [Google Scholar]
- Pyrak, B.; Gubica, T.; Rogacka-Pyrak, K. Cyclodextrin Nanosponges As Bioenhancers of Phytochemicals. Prosp. Pharm. Sc. 2024, 22, 170–177. [Google Scholar] [CrossRef]
Vitamin Name | Chemical Composition |
---|---|
Vitamin D1 | 1:1 mixture of ergocalciferol and lumisterol |
Vitamin D2 | ergocalciferol (derived from ergosterol) |
Vitamin D3 | cholecalciferol (synthesized from 7-dehydrocholesterol in the dermis) |
Vitamin D4 | 22-dihydroergocalciferol |
Vitamin D5 | sitocalciferol (derived from 7-dehydrositosterol) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska-Pisklak, M.; Michalik, K.A.; Szeleszczuk, Ł. Complexes of Fat-Soluble Vitamins with Cyclodextrins. Int. J. Mol. Sci. 2025, 26, 6110. https://doi.org/10.3390/ijms26136110
Zielińska-Pisklak M, Michalik KA, Szeleszczuk Ł. Complexes of Fat-Soluble Vitamins with Cyclodextrins. International Journal of Molecular Sciences. 2025; 26(13):6110. https://doi.org/10.3390/ijms26136110
Chicago/Turabian StyleZielińska-Pisklak, Monika, Konrad Adam Michalik, and Łukasz Szeleszczuk. 2025. "Complexes of Fat-Soluble Vitamins with Cyclodextrins" International Journal of Molecular Sciences 26, no. 13: 6110. https://doi.org/10.3390/ijms26136110
APA StyleZielińska-Pisklak, M., Michalik, K. A., & Szeleszczuk, Ł. (2025). Complexes of Fat-Soluble Vitamins with Cyclodextrins. International Journal of Molecular Sciences, 26(13), 6110. https://doi.org/10.3390/ijms26136110