From Womb to Mind: Prenatal Epigenetic Influences on Mental Health Disorders
Abstract
1. Introduction
2. Prenatal Epigenetic Mechanisms
2.1. DNA Methylation
2.2. Histone Modifications
2.3. Non-Coding RNAs
3. Maternal Influences on the Foetal Epigenome
3.1. Maternal Stress
3.2. Maternal Infection and Immune Activation
3.3. Maternal Nutrition
3.4. Environmental Toxins
4. Timing of Exposure and Critical Windows
5. Specific Mental Health Disorders and Prenatal Epigenetics
5.1. Schizophrenia
5.2. Autism Spectrum Disorders (ASDs)
5.3. Depression and Anxiety
6. Genetic Susceptibility and Epigenetic Plasticity
7. Reversibility of Epigenetic Changes and Early Interventions
8. Methodological Challenges and Future Directions
8.1. Methodological Challenges and Limitations
8.2. Future Directions
8.3. Limitations of This Review
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newman, L.; Judd, F.; Olsson, C.A.; Castle, D.; Bousman, C.; Sheehan, P.; Pantelis, C.; Craig, J.M.; Komiti, A.; Everall, I. Early Origins of Mental Disorder—Risk Factors in the Perinatal and Infant Period. BMC Psychiatry 2016, 16, 270. [Google Scholar] [CrossRef]
- Paarlberg, K.M.; Vingerhoets, A.J.J.M.; Passchier, J.; Dekker, G.A.; Van Geijn, H.P. Psychosocial Factors and Pregnancy Outcome: A Review with Emphasis on Methodological Issues. J. Psychosom. Res. 1995, 39, 563–595. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Hanson, M.A. The Developmental Origins of Health and Disease. In Early Life Origins of Health and Disease; Wintour, E.M., Owens, J.A., Eds.; Springer: Boston, MA, USA, 2006; pp. 1–7. ISBN 978-0-387-32632-0. [Google Scholar]
- Khashan, A.S.; Abel, K.M.; McNamee, R.; Pedersen, M.G.; Webb, R.T.; Baker, P.N.; Kenny, L.C.; Mortensen, P.B. Higher Risk of Offspring Schizophrenia Following Antenatal Maternal Exposure to Severe Adverse Life Events. Arch. Gen. Psychiatry 2008, 65, 146–152. [Google Scholar] [CrossRef]
- Buss, C.; Davis, E.P.; Shahbaba, B.; Pruessner, J.C.; Head, K.; Sandman, C.A. Maternal Cortisol over the Course of Pregnancy and Subsequent Child Amygdala and Hippocampus Volumes and Affective Problems. Proc. Natl. Acad. Sci. USA 2012, 109, E1312–E1319. [Google Scholar] [CrossRef]
- Masini, E.; Loi, E.; Vega-Benedetti, A.F.; Carta, M.; Doneddu, G.; Fadda, R.; Zavattari, P. An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity. Int. J. Mol. Sci. 2020, 21, 8290. [Google Scholar] [CrossRef]
- Os, J.V.; Selten, J.-P. Prenatal Exposure to Maternal Stress and Subsequent Schizophrenia: The May 1940 Invasion of the Netherlands. Br. J. Psychiatry 1998, 172, 324–326. [Google Scholar] [CrossRef]
- Portela, A.; Esteller, M. Epigenetic Modifications and Human Disease. Nat. Biotechnol. 2010, 28, 1057–1068. [Google Scholar] [CrossRef]
- Salinas, R.D.; Connolly, D.R.; Song, H. Invited Review: Epigenetics in Neurodevelopment. Neuropathol. Appl. Neurobiol. 2020, 46, 6–27. [Google Scholar] [CrossRef]
- Carlberg, C.; Molnár, F. Introduction. In Human Epigenetics: How Science Works; Carlberg, C., Molnár, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–13. ISBN 978-3-030-22907-8. [Google Scholar]
- Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J.C.; Pariante, C.M.; Pace, T.W.W.; Mercer, K.B.; Mayberg, H.S.; Bradley, B.; et al. Allele-Specific FKBP5 DNA Demethylation Mediates Gene-Childhood Trauma Interactions. Nat. Neurosci. 2013, 16, 33–41. [Google Scholar] [CrossRef]
- Drzymalla, E.; Crider, K.S.; Wang, A.; Marta, G.; Khoury, M.J.; Rasooly, D. Epigenome-Wide Association Studies of Prenatal Maternal Mental Health and Infant Epigenetic Profiles: A Systematic Review. Transl. Psychiatry 2023, 13, 377. [Google Scholar] [CrossRef]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—a scale for the quality assessment of narrative review articles. Res. Integr. Peer. Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Fagiolini, M.; Jensen, C.L.; Champagne, F.A. Epigenetic Influences on Brain Development and Plasticity. Curr. Opin. Neurobiol. 2009, 19, 207–212. [Google Scholar] [CrossRef]
- Levenson, J.M.; Sweatt, J.D. Epigenetic Mechanisms in Memory Formation. Nat. Rev. Neurosci. 2005, 6, 108–118. [Google Scholar] [CrossRef]
- Margueron, R.; Trojer, P.; Reinberg, D. The Key to Development: Interpreting the Histone Code? Curr. Opin. Genet. Dev. 2005, 15, 163–176. [Google Scholar] [CrossRef]
- Costa, F.F. Non-Coding RNAs, Epigenetics and Complexity. Gene 2008, 410, 9–17. [Google Scholar] [CrossRef]
- Unnikrishnan, A.; Freeman, W.M.; Jackson, J.; Wren, J.D.; Porter, H.; Richardson, A. The Role of DNA Methylation in Epigenetics of Aging. Pharmacol. Ther. 2019, 195, 172–185. [Google Scholar] [CrossRef]
- Kiefer, J.C. Epigenetics in Development. Dev. Dyn. 2007, 236, 1144–1156. [Google Scholar] [CrossRef]
- Meaney, M.J. Maternal Care, Gene Expression, and the Transmission of Individual Differences in Stress Reactivity Across Generations. Annu. Rev. Neurosci. 2001, 24, 1161–1192. [Google Scholar] [CrossRef]
- O’Donnell, K.; O’Connor, T.G.; Glover, V. Prenatal Stress and Neurodevelopment of the Child: Focus on the HPA Axis and Role of the Placenta. Dev. Neurosci. 2009, 31, 285–292. [Google Scholar] [CrossRef]
- Susser, E.S.; Lin, S.P. Schizophrenia after Prenatal Exposure to the Dutch Hunger Winter of 1944–1945. Arch. Gen. Psychiatry 1992, 49, 983–988. [Google Scholar] [CrossRef]
- Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent Epigenetic Differences Associated with Prenatal Exposure to Famine in Humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef] [PubMed]
- Joubert, B.R.; Felix, J.F.; Yousefi, P.; Bakulski, K.M.; Just, A.C.; Breton, C.; Reese, S.E.; Markunas, C.A.; Richmond, R.C.; Xu, C.-J.; et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-Wide Consortium Meta-Analysis. Am. J. Hum. Genet. 2016, 98, 680–696. [Google Scholar] [CrossRef] [PubMed]
- Cilleros-Portet, A.; Lesseur, C.; Marí, S.; Cosin-Tomas, M.; Lozano, M.; Irizar, A.; Burt, A.; García-Santisteban, I.; Garrido-Martín, D.; Escaramís, G.; et al. Potentially Causal Associations between Placental DNA Methylation and Schizophrenia and Other Neuropsychiatric Disorders. Nat. Commun. 2025, 16, 2431. [Google Scholar] [CrossRef] [PubMed]
- Gapp, K.; Woldemichael, B.T.; Bohacek, J.; Mansuy, I.M. Epigenetic Regulation in Neurodevelopment and Neurodegenerative Diseases. Neuroscience 2014, 264, 99–111. [Google Scholar] [CrossRef]
- Tweedie-Cullen, R.Y.; Brunner, A.M.; Grossmann, J.; Mohanna, S.; Sichau, D.; Nanni, P.; Panse, C.; Mansuy, I.M.; Imhof, A. Identification of Combinatorial Patterns of Post-Translational Modifications on Individual Histones in the Mouse Brain. PLoS ONE 2012, 7, e36980. [Google Scholar] [CrossRef]
- Dall’Aglio, L.; Muka, T.; Cecil, C.A.M.; Bramer, W.M.; Verbiest, M.M.P.J.; Nano, J.; Hidalgo, A.C.; Franco, O.H.; Tiemeier, H. The Role of Epigenetic Modifications in Neurodevelopmental Disorders: A Systematic Review. Neurosci. Biobehav. Rev. 2018, 94, 17–30. [Google Scholar] [CrossRef]
- Weaver, I.; Cervoni, N.; Champagne, F.; D’Alessio, A.; Sharma, S.; Seckl, J.; Dymov, S.; Szyf, M.; Meaney, M. Epigenetic Programming by Maternal Behavior. Nat. Neurosci. 2004, 7, 847–854. [Google Scholar] [CrossRef]
- Chen, H.; Dzitoyeva, S.; Manev, H. Effect of Valproic Acid on Mitochondrial Epigenetics. Eur. J. Pharmacol. 2012, 690, 51–59. [Google Scholar] [CrossRef]
- Sato, F.; Tsuchiya, S.; Meltzer, S.J.; Shimizu, K. MicroRNAs and Epigenetics. FEBS J. 2011, 278, 1598–1609. [Google Scholar] [CrossRef]
- Rashidi, S.K.; Kalirad, A.; Rafie, S.; Behzad, E.; Dezfouli, M.A. The Role of microRNAs in Neurobiology and Pathophysiology of the Hippocampus. Front. Mol. Neurosci. 2023, 16, 1226413. [Google Scholar] [CrossRef]
- Zucchi, F.C.R.; Yao, Y.; Ward, I.D.; Ilnytskyy, Y.; Olson, D.M.; Benzies, K.; Kovalchuk, I.; Kovalchuk, O.; Metz, G.A.S. Maternal Stress Induces Epigenetic Signatures of Psychiatric and Neurological Diseases in the Offspring. PLoS ONE 2013, 8, e56967. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.C.; Morris, K.V.; Wood, M.J.A. The Role of Long Non-Coding RNAs in Neurodevelopment, Brain Function and Neurological Disease. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130507. [Google Scholar] [CrossRef]
- Cao-Lei, L.; Laplante, D.P.; King, S. Prenatal Maternal Stress and Epigenetics: Review of the Human Research. Curr. Mol. Biol. Rep. 2016, 2, 16–25. [Google Scholar] [CrossRef]
- Oberlander, T.F.; Weinberg, J.; Papsdorf, M.; Grunau, R.; Misri, S.; Devlin, A.M. Prenatal Exposure to Maternal Depression, Neonatal Methylation of Human Glucocorticoid Receptor Gene (NR3C1) and Infant Cortisol Stress Responses. Epigenetics 2008, 3, 97–106. [Google Scholar] [CrossRef]
- Ursini, G.; Punzi, G.; Chen, Q.; Marenco, S.; Robinson, J.F.; Porcelli, A.; Hamilton, E.G.; Mitjans, M.; Maddalena, G.; Begemann, M.; et al. Convergence of Placenta Biology and Genetic Risk for Schizophrenia. Nat. Med. 2018, 24, 792–801. [Google Scholar] [CrossRef]
- Brown, A.S. The Environment and Susceptibility to Schizophrenia. Prog. Neurobiol. 2011, 93, 23–58. [Google Scholar] [CrossRef]
- Howerton, C.L.; Morgan, C.P.; Fischer, D.B.; Bale, T.L. O-GlcNAc Transferase (OGT) as a Placental Biomarker of Maternal Stress and Reprogramming of CNS Gene Transcription in Development. Proc. Natl. Acad. Sci. USA 2013, 110, 5169–5174. [Google Scholar] [CrossRef]
- Martin, E.; Smeester, L.; Bommarito, P.A.; Grace, M.R.; Boggess, K.; Kuban, K.; Karagas, M.R.; Marsit, C.J.; O’Shea, T.M.; Fry, R.C. Sexual Epigenetic Dimorphism in The Human Placenta: Implications for Susceptibility During The Prenatal Period. Epigenomics 2017, 9, 267–278. [Google Scholar] [CrossRef]
- Hill, R.A.; Gibbons, A.; Han, U.; Suwakulsiri, W.; Taseska, A.; Hammet, F.; Southey, M.; Malhotra, A.; Fahey, M.; Palmer, K.R.; et al. Maternal SARS-CoV-2 Exposure Alters Infant DNA Methylation. Brain Behav. Immun.-Health 2022, 27, 100572. [Google Scholar] [CrossRef]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural Effects of Developmental Toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef]
- Diez-Ahijado, L.; Cilleros-Portet, A.; Fernández-Jimenez, N.; Fernández, M.F.; Guxens, M.; Julvez, J.; Llop, S.; Lopez-Espinosa, M.-J.; Subiza-Pérez, M.; Lozano, M.; et al. Evaluating the Association between Placenta DNA Methylation and Cognitive Functions in the Offspring. Transl. Psychiatry 2024, 14, 383. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, T.G.; Heron, J.; Golding, J.; Beveridge, M.; Glover, V. Maternal Antenatal Anxiety and Children’s Behavioural/Emotional Problems at 4 Years: Report from the Avon Longitudinal Study of Parents and Children. Br. J. Psychiatry 2002, 180, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Bronson, S.L.; Bale, T.L. The Placenta as a Mediator of Stress Effects on Neurodevelopmental Reprogramming. Neuropsychopharmacology 2016, 41, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Bale, T.L.; Baram, T.Z.; Brown, A.S.; Goldstein, J.M.; Insel, T.R.; McCarthy, M.M.; Nemeroff, C.B.; Reyes, T.M.; Simerly, R.B.; Susser, E.S.; et al. Early Life Programming and Neurodevelopmental Disorders. Biol. Psychiatry 2010, 68, 314–319. [Google Scholar] [CrossRef]
- Mednick, S.A.; Machon, R.A.; Huttunen, M.O.; Bonett, D. Adult Schizophrenia Following Prenatal Exposure to an Influenza Epidemic. Arch. Gen. Psychiatry 1988, 45, 189–192. [Google Scholar] [CrossRef]
- Brown, A.S.; Begg, M.D.; Gravenstein, S.; Schaefer, C.A.; Wyatt, R.J.; Bresnahan, M.; Babulas, V.P.; Susser, E.S. Serologic Evidence of Prenatal Influenza in the Etiology of Schizophrenia. Arch. Gen. Psychiatry 2004, 61, 774–780. [Google Scholar] [CrossRef]
- Atladóttir, H.O.; Thorsen, P.; Østergaard, L.; Schendel, D.E.; Lemcke, S.; Abdallah, M.; Parner, E.T. Maternal Infection Requiring Hospitalization during Pregnancy and Autism Spectrum Disorders. J. Autism Dev. Disord. 2010, 40, 1423–1430. [Google Scholar] [CrossRef]
- Han, V.X.; Patel, S.; Jones, H.F.; Dale, R.C. Maternal Immune Activation and Neuroinflammation in Human Neurodevelopmental Disorders. Nat. Rev. Neurol. 2021, 17, 564–579. [Google Scholar] [CrossRef]
- Gumusoglu, S.B.; Fine, R.S.; Murray, S.J.; Bittle, J.L.; Stevens, H.E. The Role of IL-6 in Neurodevelopment after Prenatal Stress. Brain. Behav. Immun. 2017, 65, 274–283. [Google Scholar] [CrossRef]
- Jones, K.L.; Croen, L.A.; Yoshida, C.K.; Heuer, L.; Hansen, R.; Zerbo, O.; DeLorenze, G.N.; Kharrazi, M.; Yolken, R.; Ashwood, P.; et al. Autism with Intellectual Disability Is Associated with Increased Levels of Maternal Cytokines and Chemokines During Gestation. Mol. Psychiatry 2017, 22, 273–279. [Google Scholar] [CrossRef]
- Richetto, J.; Massart, R.; Weber-Stadlbauer, U.; Szyf, M.; Riva, M.A.; Meyer, U. Genome-Wide DNA Methylation Changes in a Mouse Model of Infection-Mediated Neurodevelopmental Disorders. Biol. Psychiatry 2016, 81, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Suleri, A.; Salontaji, K.; Luo, M.; Neumann, A.; Mulder, R.H.; Tiemeier, H.; Felix, J.F.; Marioni, R.E.; Bergink, V.; Cecil, C.A.M. Prenatal Exposure to Common Infections and Newborn DNA Methylation: A Prospective, Population-Based Study. Brain. Behav. Immun. 2024, 121, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.S.; van Os, J.; Driessens, C.; Hoek, H.W.; Susser, E.S. Further Evidence of Relation Between Prenatal Famine and Major Affective Disorder. Am. J. Psychiatry 2000, 157, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-W.; Friso, S. Epigenetics: A New Bridge between Nutrition and Health. Adv. Nutr. 2010, 1, 8–16. [Google Scholar] [CrossRef]
- Brown, A.S.; Susser, E.S.; Lin, S.P.; Neugebauer, R.; Gorman, J.M. Increased Risk of Affective Disorders in Males after Second Trimester Prenatal Exposure to the Dutch Hunger Winter of 1944–1945. Br. J. Psychiatry J. Ment. Sci. 1995, 166, 601–606. [Google Scholar] [CrossRef]
- Antony, A.C. In Utero Physiology: Role of Folic Acid in Nutrient Delivery and Fetal Development. Am. J. Clin. Nutr. 2007, 85, 598S–603S. [Google Scholar] [CrossRef]
- Blusztajn, J.K.; Mellott, T.J. Choline Nutrition Programs Brain Development Via DNA and Histone Methylation. Available online: https://www.ingentaconnect.com/content/ben/cnsamc/2012/00000012/00000002/art00003 (accessed on 19 May 2025).
- Derbyshire, E.; Obeid, R. Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nutrients 2020, 12, 1731. [Google Scholar] [CrossRef]
- Herrera, B.M.; Keildson, S.; Lindgren, C.M. Genetics and Epigenetics of Obesity. Maturitas 2011, 69, 41–49. [Google Scholar] [CrossRef]
- Phang, M.; Ross, J.; Raythatha, J.H.; Dissanayake, H.U.; McMullan, R.L.; Kong, Y.; Hyett, J.; Gordon, A.; Molloy, P.; Skilton, M.R. Epigenetic Aging in Newborns: Role of Maternal Diet. Am. J. Clin. Nutr. 2020, 111, 555–561. [Google Scholar] [CrossRef]
- Haan, E.; Westmoreland, K.E.; Schellhas, L.; Sallis, H.M.; Taylor, G.; Zuccolo, L.; Munafò, M.R. Prenatal Smoking, Alcohol and Caffeine Exposure and Offspring Externalizing Disorders: A Systematic Review and Meta-analysis. Addict. Abingdon Engl. 2022, 117, 2602–2613. [Google Scholar] [CrossRef]
- Mandal, C.; Halder, D.; Jung, K.H.; Chai, Y.G. In Utero Alcohol Exposure and the Alteration of Histone Marks in the Developing Fetus: An Epigenetic Phenomenon of Maternal Drinking. Int. J. Biol. Sci. 2017, 13, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Bozack, A.K.; Rifas-Shiman, S.L.; Coull, B.A.; Baccarelli, A.A.; Wright, R.O.; Amarasiriwardena, C.; Gold, D.R.; Oken, E.; Hivert, M.-F.; Cardenas, A. Prenatal Metal Exposure, Cord Blood DNA Methylation and Persistence in Childhood: An Epigenome-Wide Association Study of 12 Metals. Clin. Epigenetics 2021, 13, 208. [Google Scholar] [CrossRef]
- Perera, F.; Phillips, D.H.; Wang, Y.; Roen, E.; Herbstman, J.; Rauh, V.; Wang, S.; Tang, D. Prenatal Exposure to Polycyclic Aromatic Hydrocarbons/Aromatics, BDNF and Child Development. Environ. Res. 2015, 142, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Knopik, V.S.; Maccani, M.A.; Francazio, S.; McGeary, J.E. The Epigenetics of Maternal Cigarette Smoking During Pregnancy and Effects on Child Development. Dev. Psychopathol. 2012, 24, 1377–1390. [Google Scholar] [CrossRef]
- Nagy, C.; Turecki, G. Sensitive Periods in Epigenetics: Bringing Us Closer to Complex Behavioral Phenotypes. Epigenomics 2012, 4, 445–457. [Google Scholar] [CrossRef]
- Stiles, J.; Jernigan, T.L. The Basics of Brain Development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef]
- Perrin, M.; Kleinhaus, K.; Messinger, J.; Malaspina, D. Critical Periods and the Developmental Origins of Disease: An Epigenetic Perspective of Schizophrenia. Ann. N. Y. Acad. Sci. 2010, 1204, 8–13. [Google Scholar] [CrossRef]
- Irwin, R.E.; Pentieva, K.; Cassidy, T.; Lees-Murdock, D.J.; McLaughlin, M.; Prasad, G.; McNulty, H.; Walsh, C.P. The Interplay between DNA Methylation, Folate and Neurocognitive Development. Epigenomics 2016, 8, 863–879. [Google Scholar] [CrossRef]
- Tekola-Ayele, F.; Workalemahu, T.; Gorfu, G.; Shrestha, D.; Tycko, B.; Wapner, R.; Zhang, C.; Louis, G.M.B. Sex Differences in the Associations of Placental Epigenetic Aging with Fetal Growth. Aging 2019, 11, 5412–5432. [Google Scholar] [CrossRef]
- MacGillivray, D.M.; Kollmann, T.R. The Role of Environmental Factors in Modulating Immune Responses in Early Life. Front. Immunol. 2014, 5, 434. [Google Scholar] [CrossRef]
- Mate, A.; Reyes-Goya, C.; Santana-Garrido, Á.; Sobrevia, L.; Vázquez, C.M. Impact of Maternal Nutrition in Viral Infections during Pregnancy. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2021, 1867, 166231. [Google Scholar] [CrossRef] [PubMed]
- Quincer, E.M.; Cranmer, L.M.; Kamidani, S. Prenatal Maternal Immunization for Infant Protection: A Review of the Vaccines Recommended, Infant Immunity and Future Research Directions. Pathogens 2024, 13, 200. [Google Scholar] [CrossRef] [PubMed]
- Veldic, M.; Caruncho, H.J.; Liu, W.S.; Davis, J.; Satta, R.; Grayson, D.R.; Guidotti, A.; Costa, E. DNA-Methyltransferase 1 mRNA Is Selectively Overexpressed in Telencephalic GABAergic Interneurons of Schizophrenia Brains. Proc. Natl. Acad. Sci. USA 2004, 101, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Magwai, T.; Shangase, K.B.; Oginga, F.O.; Chiliza, B.; Mpofana, T.; Xulu, K.R. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021, 10, 2890. [Google Scholar] [CrossRef]
- Ramagopalan, S.V.; Rakyan, V.K. The Promise and Challenges of Blood Spot Methylomics. Epigenetics 2013, 8, 775–777. [Google Scholar] [CrossRef]
- Available online: https://www.hakjisa.co.kr/common_file/bbs_DSM-5_Update_October2018_NewMaster.pdf (accessed on 13 April 2025).
- Jiang, H.; Xu, L.; Shao, L.; Xia, R.; Yu, Z.; Ling, Z.; Yang, F.; Deng, M.; Ruan, B. Maternal Infection during Pregnancy and Risk of Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Brain. Behav. Immun. 2016, 58, 165–172. [Google Scholar] [CrossRef]
- Brown, A.S.; Sourander, A.; Hinkka-Yli-Salomäki, S.; McKeague, I.W.; Sundvall, J.; Surcel, H.-M. Elevated Maternal C-Reactive Protein and Autism in a National Birth Cohort. Mol. Psychiatry 2014, 19, 259–264. [Google Scholar] [CrossRef]
- Meyer, U.; Feldon, J.; Fatemi, S.H. In-Vivo Rodent Models for the Experimental Investigation of Prenatal Immune Activation Effects in Neurodevelopmental Brain Disorders. Neurosci. Biobehav. Rev. 2009, 33, 1061–1079. [Google Scholar] [CrossRef]
- Mordaunt, C.E.; Jianu, J.M.; Laufer, B.I.; Zhu, Y.; Hwang, H.; Dunaway, K.W.; Bakulski, K.M.; Feinberg, J.I.; Volk, H.E.; Lyall, K.; et al. Cord Blood DNA Methylome in Newborns Later Diagnosed with Autism Spectrum Disorder Reflects Early Dysregulation of Neurodevelopmental and X-Linked Genes. Genome Med. 2020, 12, 88. [Google Scholar] [CrossRef]
- Wan, H.; Zhang, C.; Li, H.; Luan, S.; Liu, C. Association of Maternal Diabetes with Autism Spectrum Disorders in Offspring: A Systemic Review and Meta-Analysis. Medicine 2018, 97, e9438. [Google Scholar] [CrossRef]
- Sauer, A.K.; Stanton, J.E.; Hans, S.; Grabrucker, A.M. Autism Spectrum Disorders: Etiology and Pathology. In Autism Spectrum Disorders; Grabrucker, A.M., Ed.; Exon Publications: Brisbane, Australia, 2021; ISBN 978-0-645-00178-5. [Google Scholar]
- Nag, N.; Ward, B.; Berger-Sweeney, J.E. Nutritional Factors in a Mouse Model of Rett Syndrome. Neurosci. Biobehav. Rev. 2009, 33, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Mordaunt, C.E.; Durbin-Johnson, B.P.; Caudill, M.A.; Malysheva, O.V.; Miller, J.W.; Green, R.; James, S.J.; Melnyk, S.B.; Fallin, M.D.; et al. Expression Changes in Epigenetic Gene Pathways Associated With One-Carbon Nutritional Metabolites in Maternal Blood From Pregnancies Resulting in Autism and Non-Typical Neurodevelopment. Autism Res. Off. J. Int. Soc. Autism Res. 2021, 14, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Hertz-Picciotto, I.; Schmidt, R.J.; Walker, C.K.; Bennett, D.H.; Oliver, M.; Shedd-Wise, K.M.; LaSalle, J.M.; Giulivi, C.; Puschner, B.; Thomas, J.; et al. A Prospective Study of Environmental Exposures and Early Biomarkers in Autism Spectrum Disorder: Design, Protocols, and Preliminary Data from the MARBLES Study. Environ. Health Perspect. 2018, 126, 117004. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, E.C.; Kundakovic, M.; Ramchandani, P.G.; Murphy, S.E.; Champagne, F.A. Maternal Prenatal Depressive Symptoms Predict Infant NR3C1 1F and BDNF IV DNA Methylation. Epigenetics 2015, 10, 408–417. [Google Scholar] [CrossRef]
- Caspi, A.; Hariri, A.R.; Holmes, A.; Uher, R.; Moffitt, T.E. Genetic Sensitivity to the Environment: The Case of the Serotonin Transporter Gene and Its Implications for Studying Complex Diseases and Traits. Am. J. Psychiatry 2010, 167, 509–527. [Google Scholar] [CrossRef]
- Nazzari, S.; Grumi, S.; Mambretti, F.; Villa, M.; Giorda, R.; Provenzi, L. Maternal and Infant NR3C1 and SLC6A4 Epigenetic Signatures of the COVID-19 Pandemic Lockdown: When Timing Matters. Transl. Psychiatry 2022, 12, 386. [Google Scholar] [CrossRef]
- Laplante, D.P.; Brunet, A.; Schmitz, N.; Ciampi, A.; King, S. Project Ice Storm: Prenatal Maternal Stress Affects Cognitive and Linguistic Functioning in 5 1/2-Year-Old Children. J. Am. Acad. Child Adolesc. Psychiatry 2008, 47, 1063–1072. [Google Scholar] [CrossRef]
- Yuan, D.; Meng, Y.; Ai, Z.; Zhou, S. Research Trend of Epigenetics and Depression: Adolescents’ Research Needs to Strengthen. Front. Neurosci. 2024, 17, 1289019. [Google Scholar] [CrossRef]
- Gurol-Urganci, I.; Langham, J.; Tassie, E.; Heslin, M.; Byford, S.; Davey, A.; Sharp, H.; Pasupathy, D.; van der Meulen, J.; Howard, L.M.; et al. Community Perinatal Mental Health Teams and Associations with Perinatal Mental Health and Obstetric and Neonatal Outcomes in Pregnant Women with a History of Secondary Mental Health Care in England: A National Population-Based Cohort Study. Lancet Psychiatry 2024, 11, 174–182. [Google Scholar] [CrossRef]
- Vaiserman, A. Epidemiologic Evidence for Association between Adverse Environmental Exposures in Early Life and Epigenetic Variation: A Potential Link to Disease Susceptibility? Clin. Epigenetics 2015, 7, 96. [Google Scholar] [CrossRef]
- Dieckmann, L.; Czamara, D. Epigenetics of Prenatal Stress in Humans: The Current Research Landscape. Clin. Epigenetics 2024, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Sosnowski, D.W.; Booth, C.; York, T.P.; Amstadter, A.B.; Kliewer, W. Maternal Prenatal Stress and Infant DNA Methylation: A Systematic Review. Dev. Psychobiol. 2018, 60, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Großmann, N.L.; Weihs, A.; Kühn, L.; Sauer, S.; Röh, S.; Wiechmann, T.; Rex-Haffner, M.; Völzke, H.; Völker, U.; Binder, E.B.; et al. Methylation Patterns of the FKBP5 Gene in Association with Childhood Maltreatment and Depressive Disorders. Int. J. Mol. Sci. 2024, 25, 1485. [Google Scholar] [CrossRef] [PubMed]
- Brummelte, S.; Glanaghy, E.M.; Bonnin, A.; Oberlander, T.F. Developmental Changes in Serotonin Signaling: Implications for Early Brain Function, Behavior and Adaptation. Neuroscience 2017, 342, 212–231. [Google Scholar] [CrossRef]
- Hochberg, Z.; Feil, R.; Constancia, M.; Fraga, M.; Junien, C.; Carel, J.-C.; Boileau, P.; Le Bouc, Y.; Deal, C.L.; Lillycrop, K.; et al. Child Health, Developmental Plasticity, and Epigenetic Programming. Endocr. Rev. 2011, 32, 159–224. [Google Scholar] [CrossRef]
- Belsky, J.; Jonassaint, C.; Pluess, M.; Stanton, M.; Brummett, B.; Williams, R. Vulnerability Genes or Plasticity Genes? Mol. Psychiatry 2009, 14, 746–754. [Google Scholar] [CrossRef]
- Breton, C.V.; Landon, R.; Kahn, L.G.; Enlow, M.B.; Peterson, A.K.; Bastain, T.; Braun, J.; Comstock, S.S.; Duarte, C.S.; Hipwell, A.; et al. Exploring the Evidence for Epigenetic Regulation of Environmental Influences on Child Health across Generations. Commun. Biol. 2021, 4, 769. [Google Scholar] [CrossRef]
- Boyce, W.T. Differential Susceptibility of the Developing Brain to Contextual Adversity and Stress. Neuropsychopharmacology 2016, 41, 142–162. [Google Scholar] [CrossRef]
- Wright, J. Epigenetics: Reversible Tags. Nature 2013, 498, S10–S11. [Google Scholar] [CrossRef]
- Chen, E.; Miller, G.E.; Kobor, M.S.; Cole, S.W. Maternal Warmth Buffers the Effects of Low Early-Life Socioeconomic Status on Pro-Inflammatory Signaling in Adulthood. Mol. Psychiatry 2011, 16, 729–737. [Google Scholar] [CrossRef]
- Grigorenko, E.L. Brain Development: The Effect of Interventions on Children and Adolescents. In Child and Adolescent Health and Development; Bundy, D.A.P., de Silva, N., Horton, S., Jamison, D.T., Patton, G.C., Eds.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2017; ISBN 978-1-4648-0423-6. [Google Scholar]
- Geraghty, A.A.; Lindsay, K.L.; Alberdi, G.; McAuliffe, F.M.; Gibney, E.R. Nutrition during Pregnancy Impacts Offspring’s Epigenetic Status—Evidence from Human and Animal Studies. Nutr. Metab. Insights 2015, 8 (Suppl. S1), NMI.S29527. [Google Scholar] [CrossRef] [PubMed]
- Freedman, R.; Hunter, S.K.; Hoffman, M.C. Prenatal Primary Prevention of Mental Illness by Micronutrient Supplements in Pregnancy. Am. J. Psychiatry 2018, 175, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Arch, J. Cognitive Behavioral Therapy and Pharmacotherapy for Anxiety: Treatment Preferences and Credibility among Pregnant and Non-Pregnant Women. Behav. Res. Ther. 2013, 52C, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Kaliman, P.; Álvarez-López, M.J.; Cosín-Tomás, M.; Rosenkranz, M.A.; Lutz, A.; Davidson, R.J. Rapid Changes in Histone Deacetylases and Inflammatory Gene Expression in Expert Meditators. Psychoneuroendocrinology 2014, 40, 96–107. [Google Scholar] [CrossRef]
- Hamm, C.A.; Costa, F.F. Epigenomes as Therapeutic Targets. Pharmacol. Ther. 2015, 151, 72–86. [Google Scholar] [CrossRef]
- Figueroa-Espada, C.G.; Hofbauer, S.; Mitchell, M.J.; Riley, R.S. Exploiting the Placenta for Nanoparticle-Mediated Drug Delivery during Pregnancy. Adv. Drug Deliv. Rev. 2020, 160, 244–261. [Google Scholar] [CrossRef]
- Torres, R.F.; Llontop, N.; Espinoza, C.S.; Kerr, B. Environmental Enrichment and Epigenetic Changes in the Brain: From the Outside to the Deep Inside. In Neuroepigenetics Mechanisms in Health and Disease; van Zundert, B., Montecino, M., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 217–230. ISBN 978-3-031-75980-2. [Google Scholar]
- Ellis, B.H.; Fisher, P.A.; Zaharie, S. Predictors of Disruptive Behavior, Developmental Delays, Anxiety, and Affective Symptomatology Among Institutionally Reared Romanian Children. J. Am. Acad. Child Adolesc. Psychiatry 2004, 43, 1283–1292. [Google Scholar] [CrossRef]
- Xie, N.; Zhou, Y.; Sun, Q.; Tang, B. Novel Epigenetic Techniques Provided by the CRISPR/Cas9 System. Stem Cells Int. 2018, 2018, 7834175. [Google Scholar] [CrossRef]
- Uchida, K.; Suzuki, M. Congenital Hypothyroidism and Brain Development: Association With Other Psychiatric Disorders. Front. Neurosci. 2021, 15, 772382. [Google Scholar] [CrossRef]
- Pastor, W.A.; Kwon, S.Y. Distinctive Aspects of the Placental Epigenome and Theories as to How They Arise. Cell. Mol. Life Sci. 2022, 79, 569. [Google Scholar] [CrossRef]
- Januar, V.; Desoye, G.; Novakovic, B.; Cvitic, S.; Saffery, R. Epigenetic Regulation of Human Placental Function and Pregnancy Outcome: Considerations for Causal Inference. Am. J. Obstet. Gynecol. 2015, 213, S182–S196. [Google Scholar] [CrossRef] [PubMed]
- Felix, J.F.; Joubert, B.R.; Baccarelli, A.A.; Sharp, G.C.; Almqvist, C.; Annesi-Maesano, I.; Arshad, H.; Baïz, N.; Bakermans-Kranenburg, M.J.; Bakulski, K.M.; et al. Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. Int. J. Epidemiol. 2018, 47, 22–23u. [Google Scholar] [CrossRef] [PubMed]
- Bakulski, K.M.; Dou, J.F.; Feinberg, J.I.; Aung, M.T.; Ladd-Acosta, C.; Volk, H.E.; Newschaffer, C.J.; Croen, L.A.; Hertz-Picciotto, I.; Levy, S.E.; et al. Autism-Associated DNA Methylation at Birth From Multiple Tissues Is Enriched for Autism Genes in the Early Autism Risk Longitudinal Investigation. Front. Mol. Neurosci. 2021, 14, 775390. [Google Scholar] [CrossRef]
- Deng, W.Q.; Pigeyre, M.; Azab, S.M.; Wilson, S.L.; Campbell, N.; Cawte, N.; Morrison, K.M.; Atkinson, S.A.; Subbarao, P.; Turvey, S.E.; et al. Consistent Cord Blood DNA Methylation Signatures of Gestational Age between South Asian and White European Cohorts. Clin. Epigenetics 2024, 16, 74. [Google Scholar] [CrossRef]
- Shu, C.; Street, K.; Breton, C.V.; Bastain, T.M.; Wilson, M.L. A Review of Single-Cell Transcriptomics and Epigenomics Studies in Maternal and Child Health. Epigenomics 2024, 16, 775–793. [Google Scholar] [CrossRef]
- Bohacek, J.; Mansuy, I.M. Epigenetic Inheritance of Disease and Disease Risk. Neuropsychopharmacology 2013, 38, 220–236. [Google Scholar] [CrossRef]
- Debnath, M.; Venkatasubramanian, G.; Berk, M. Fetal Programming of Schizophrenia: Select Mechanisms. Neurosci. Biobehav. Rev. 2015, 49, 90–104. [Google Scholar] [CrossRef]
- Colombo, J.; Kannass, K.N.; Jill Shaddy, D.; Kundurthi, S.; Maikranz, J.M.; Anderson, C.J.; Blaga, O.M.; Carlson, S.E. Maternal DHA and the Development of Attention in Infancy and Toddlerhood. Child Dev. 2004, 75, 1254–1267. [Google Scholar] [CrossRef]
- Merrill, S.M.; Gladish, N.; Kobor, M.S. Social Environment and Epigenetics. In Behavioral Neurogenomics; Binder, E.B., Klengel, T., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 83–126. ISBN 978-3-030-31265-7. [Google Scholar]
- Wang, H.; Zhang, T.; Ruan, J.; Zheng, X.; Zheng, S.; Liu, Q.; He, F.; Sun, B.; Zhang, Q.; Zhu, Y.; et al. Recent Advances in Multimodal Approaches for Investigating Placental Development and Related Diseases. Placenta 2025. [Google Scholar] [CrossRef]
- Schrott, R.; Song, A.; Ladd-Acosta, C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr. Environ. Health Rep. 2022, 9, 604–624. [Google Scholar] [CrossRef]
- Wang, K.C.; Chang, H.Y. Epigenomics: Technologies and applications. Circ. Res. 2018, 122, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Banushi, B.; Collova, J.; Milroy, H. Epigenetic Echoes: Bridging Nature, Nurture, and Healing Across Generations. Int. J. Mol. Sci. 2025, 26, 3075. [Google Scholar] [CrossRef] [PubMed]
Epigenetic Mechanism | Key Prenatal Exposures | Affected Tissue(s) | Associated Psychiatric/Neurodevelopmental Outcomes | Key References |
---|---|---|---|---|
DNA Methylation | Maternal stress, malnutrition, smoking, infections | Cord blood, placenta, neonatal blood | Schizophrenia, ASD, ADHD, depression, anxiety | [22,24,36,37,38] |
Histone Modifications | Valproic acid, stress, toxins | Placenta (mostly in animal models) | ASD, cognitive impairment (suggestive in humans) | [25,28,29,30] |
Non-coding RNAs | Maternal anxiety, inflammation | Placenta, foetal tissues | ASD, emotion regulation problems | [33,34,35] |
Placental Gene Regulation | Stress, infection, maternal obesity | Placenta | Schizophrenia, ASD, anxiety (sex-specific effects) | [37,39,40] |
Combined Mechanisms | Dutch famine, COVID-19, lead exposure | Cord blood, placenta, brain (animal) | Schizophrenia, cognitive dysfunction, ADHD | [23,41,42,43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Mejía, D.; Rodas, J.A.; Leon-Rojas, J.E. From Womb to Mind: Prenatal Epigenetic Influences on Mental Health Disorders. Int. J. Mol. Sci. 2025, 26, 6096. https://doi.org/10.3390/ijms26136096
Álvarez-Mejía D, Rodas JA, Leon-Rojas JE. From Womb to Mind: Prenatal Epigenetic Influences on Mental Health Disorders. International Journal of Molecular Sciences. 2025; 26(13):6096. https://doi.org/10.3390/ijms26136096
Chicago/Turabian StyleÁlvarez-Mejía, Diana, Jose A. Rodas, and Jose E. Leon-Rojas. 2025. "From Womb to Mind: Prenatal Epigenetic Influences on Mental Health Disorders" International Journal of Molecular Sciences 26, no. 13: 6096. https://doi.org/10.3390/ijms26136096
APA StyleÁlvarez-Mejía, D., Rodas, J. A., & Leon-Rojas, J. E. (2025). From Womb to Mind: Prenatal Epigenetic Influences on Mental Health Disorders. International Journal of Molecular Sciences, 26(13), 6096. https://doi.org/10.3390/ijms26136096