MET and SLFN11 as a Players in the SCLC Molecular Subtyping Game
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Studied Group
4.2. Gene Expression Analysis
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-Cell Lung Cancer. Nat. Rev. Dis. Primer 2021, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Özgüroğlu, M.; Ji, J.H.; et al. Durvalumab plus Platinum-Etoposide versus Platinum-Etoposide in First-Line Treatment of Extensive-Stage Small-Cell Lung Cancer (CASPIAN): A Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet Lond. Engl. 2019, 394, 1929–1939. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Stewart, C.A.; Wang, Q.; Cardnell, R.J.; Rocha, P.; Fujimoto, J.; Solis Soto, L.M.; Wang, R.; Novegil, V.; Ansell, P.; et al. Dynamic Expression of Schlafen 11 (SLFN11) in Circulating Tumour Cells as a Liquid Biomarker in Small Cell Lung Cancer. Br. J. Cancer 2022, 127, 569–576. [Google Scholar] [CrossRef]
- Messaritakis, I.; Nikolaou, M.; Koinis, F.; Politaki, E.; Koutsopoulos, A.; Lagoudaki, E.; Vetsika, E.-K.; Georgoulias, V.; Kotsakis, A. Characterization of DLL3-Positive Circulating Tumor Cells (CTCs) in Patients with Small Cell Lung Cancer (SCLC) and Evaluation of Their Clinical Relevance during Front-Line Treatment. Lung Cancer Amst. Neth. 2019, 135, 33–39. [Google Scholar] [CrossRef]
- Gay, C.M.; Stewart, C.A.; Park, E.M.; Diao, L.; Groves, S.M.; Heeke, S.; Nabet, B.Y.; Fujimoto, J.; Solis, L.M.; Lu, W.; et al. Patterns of Transcription Factor Programs and Immune Pathway Activation Define Four Major Subtypes of SCLC with Distinct Therapeutic Vulnerabilities. Cancer Cell 2021, 39, 346–360.e7. [Google Scholar] [CrossRef]
- Lissa, D.; Takahashi, N.; Desai, P.; Manukyan, I.; Schultz, C.W.; Rajapakse, V.; Velez, M.J.; Mulford, D.; Roper, N.; Nichols, S.; et al. Heterogeneity of Neuroendocrine Transcriptional States in Metastatic Small Cell Lung Cancers and Patient-Derived Models. Nat. Commun. 2022, 13, 2023. [Google Scholar] [CrossRef]
- A Biobank of Small Cell Lung Cancer CDX Models Elucidates Inter- and Intratumoral Phenotypic Heterogeneity|Cancer Research UK Manchester Institute. Available online: https://www.cruk.manchester.ac.uk/publication/a-biobank-of-small-cell-lung-cancer-cdx-models-elucidates-inter-and-intratumoral-phenotypic-heterogeneity/ (accessed on 16 April 2025).
- Sadiq, A.A.; Salgia, R. MET as a Possible Target for Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2013, 31, 1089–1096. [Google Scholar] [CrossRef]
- Coleman, N.; Zhang, B.; Byers, L.A.; Yap, T.A. The Role of Schlafen 11 (SLFN11) as a Predictive Biomarker for Targeting the DNA Damage Response. Br. J. Cancer 2020, 124, 857–859. [Google Scholar] [CrossRef]
- Arriola, E.; Cañadas, I.; Arumí-Uría, M.; Dómine, M.; Lopez-Vilariño, J.A.; Arpí, O.; Salido, M.; Menéndez, S.; Grande, E.; Hirsch, F.R.; et al. MET Phosphorylation Predicts Poor Outcome in Small Cell Lung Carcinoma and Its Inhibition Blocks HGF-Induced Effects in MET Mutant Cell Lines. Br. J. Cancer 2011, 105, 814–823. [Google Scholar] [CrossRef]
- Gelsomino, F.; Rossi, G.; Tiseo, M. MET and Small-Cell Lung Cancer. Cancers 2014, 6, 2100–2115. [Google Scholar] [CrossRef]
- Targeting Epithelial-to-Mesenchymal Transition with Met Inhibitors Reverts Chemoresistance in Small Cell Lung Cancer|Clinical Cancer Research|American Association for Cancer Research. Available online: https://aacrjournals.org/clincancerres/article/20/4/938/78815/Targeting-Epithelial-to-Mesenchymal-Transition (accessed on 16 April 2025).
- Scattolin, D.; Maso, A.D.; Ferro, A.; Frega, S.; Bonanno, L.; Guarneri, V.; Pasello, G. The Emerging Role of Schlafen-11 (SLFN11) in Predicting Response to Anticancer Treatments: Focus on Small Cell Lung Cancer. Cancer Treat. Rev. 2024, 128, 102768. [Google Scholar] [CrossRef]
- Inno, A.; Stagno, A.; Gori, S. Schlafen-11 (SLFN11): A Step Forward towards Personalized Medicine in Small-Cell Lung Cancer? Transl. Lung Cancer Res. 2018, 7, S341–S345. [Google Scholar] [CrossRef]
- Winkler, C.; King, M.; Berthe, J.; Ferraioli, D.; Garuti, A.; Grillo, F.; Rodriguez-Canales, J.; Ferrando, L.; Chopin, N.; Ray-Coquard, I.; et al. SLFN11 Captures Cancer-Immunity Interactions Associated with Platinum Sensitivity in High-Grade Serous Ovarian Cancer. JCI Insight 2021, 6, e146098. [Google Scholar] [CrossRef]
- Raynaud, C.M.; Ahmed, E.I.; Jabeen, A.; Sanchez, A.; Sherif, S.; Carneiro-Lobo, T.C.; Awad, A.; Awartani, D.; Naik, A.; Thomas, R.; et al. Modulation of SLFN11 Induces Changes in DNA Damage Response in Breast Cancer. Cancer Cell Int. 2023, 23, 291. [Google Scholar] [CrossRef]
- Krushkal, J.; Silvers, T.; Reinhold, W.C.; Sonkin, D.; Vural, S.; Connelly, J.; Varma, S.; Meltzer, P.S.; Kunkel, M.; Rapisarda, A.; et al. Epigenome-Wide DNA Methylation Analysis of Small Cell Lung Cancer Cell Lines Suggests Potential Chemotherapy Targets. Clin. Epigenetics 2020, 12, 93. [Google Scholar] [CrossRef]
- Wang, W.Z.; Shulman, A.; Amann, J.M.; Carbone, D.P.; Tsichlis, P.N. Small Cell Lung Cancer: Subtypes and Therapeutic Implications. Semin. Cancer Biol. 2022, 86, 543–554. [Google Scholar] [CrossRef]
- Dhillon, S. Tarlatamab: First Approval. Drugs 2024, 84, 995–1003. [Google Scholar] [CrossRef]
- Ding, X.-L.; Su, Y.-G.; Yu, L.; Bai, Z.-L.; Bai, X.-H.; Chen, X.-Z.; Yang, X.; Zhao, R.; He, J.-X.; Wang, Y.-Y. Clinical Characteristics and Patient Outcomes of Molecular Subtypes of Small Cell Lung Cancer (SCLC). World J. Surg. Oncol. 2022, 20, 54. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Chen, R.; Zhu, Y.; Liu, L.; Dong, J.; Zhang, Z.; Sun, X.; Ying, J.; Lin, D.; et al. Histopathology Images-Based Deep Learning Prediction of Prognosis and Therapeutic Response in Small Cell Lung Cancer. NPJ Digit. Med. 2024, 7, 15. [Google Scholar] [CrossRef]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt Signal Transduction for Cancer Therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef] [PubMed]
- Bahar, M.E.; Kim, H.J.; Kim, D.R. Targeting the RAS/RAF/MAPK Pathway for Cancer Therapy: From Mechanism to Clinical Studies. Signal Transduct. Target. Ther. 2023, 8, 455. [Google Scholar] [CrossRef] [PubMed]
- Rygaard, K.; Nakamura, T.; Spang-Thomsen, M. Expression of the Proto-Oncogenes c-Met and c-Kit and Their Ligands, Hepatocyte Growth Factor/Scatter Factor and Stem Cell Factor, in SCLC Cell Lines and Xenografts. Br. J. Cancer 1993, 67, 37–46. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Lu, B.-B.; Yang, J.-S.; Wang, K.; De, W. Adenovirus-Mediated SiRNA Targeting c-Met Inhibits Proliferation and Invasion of Small-Cell Lung Cancer (SCLC) Cells. J. Surg. Res. 2011, 171, 127–135. [Google Scholar] [CrossRef]
- Ozasa, H.; Oguri, T.; Maeno, K.; Takakuwa, O.; Kunii, E.; Yagi, Y.; Uemura, T.; Kasai, D.; Miyazaki, M.; Niimi, A. Significance of c-MET Overexpression in Cytotoxic Anticancer Drug-Resistant Small-Cell Lung Cancer Cells. Cancer Sci. 2014, 105, 1032–1039. [Google Scholar] [CrossRef]
- Hardy-Werbin, M.; del Rey-Vergara, R.; Galindo-Campos, M.A.; Moliner, L.; Arriola, E. MET Inhibitors in Small Cell Lung Cancer: From the Bench to the Bedside. Cancers 2019, 11, 1404. [Google Scholar] [CrossRef]
- Okuda, K.; Sasaki, H.; Yukiue, H.; Yano, M.; Fujii, Y. Met Gene Copy Number Predicts the Prognosis for Completely Resected Non-Small Cell Lung Cancer. Cancer Sci. 2008, 99, 2280–2285. [Google Scholar] [CrossRef]
- Song, Z.; Wang, X.; Zheng, Y.; Su, H.; Zhang, Y. MET Gene Amplification and Overexpression in Chinese Non–Small-Cell Lung Cancer Patients without EGFR Mutations. Clin. Lung Cancer 2017, 18, 213–219.e2. [Google Scholar] [CrossRef]
- Miao, L.; Lu, Y.; Xu, Y.; Zhang, G.; Huang, Z.; Gong, L.; Fan, Y. PD-L1 and c-MET Expression and Survival in Patients with Small Cell Lung Cancer. Oncotarget 2017, 8, 53978–53988. [Google Scholar] [CrossRef]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Non-Oncogene-Addicted Metastatic Non-Small-Cell Lung Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2023, 34, 358–376. [Google Scholar] [CrossRef]
- Bordi, P.; Tiseo, M.; Barbieri, F.; Bavieri, M.; Sartori, G.; Marchetti, A.; Buttitta, F.; Bortesi, B.; Ambrosini-Spaltro, A.; Gnetti, L.; et al. Gene Mutations in Small-Cell Lung Cancer (SCLC): Results of a Panel of 6 Genes in a Cohort of Italian Patients. Lung Cancer 2014, 86, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Voortman, J.; Harada, T.; Chang, R.P.; Killian, J.K.; Suuriniemi, M.; Smith, W.I.; Meltzer, P.S.; Lucchi, M.; Wang, Y.; Giaccone, G. Detection and Therapeutic Implications of c-Met Mutations in Small Cell Lung Cancer and Neuroendocrine Tumors. Curr. Pharm. Des. 2013, 19, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Polley, E.; Kunkel, M.; Evans, D.; Silvers, T.; Delosh, R.; Laudeman, J.; Ogle, C.; Reinhart, R.; Selby, M.; Connelly, J.; et al. Small Cell Lung Cancer Screen of Oncology Drugs, Investigational Agents, and Gene and microRNA Expression. JNCI J. Natl. Cancer Inst. 2016, 108, djw122. [Google Scholar] [CrossRef]
- Murai, Y.; Jo, U.; Murai, J.; Jenkins, L.M.; Huang, S.-Y.N.; Chakka, S.; Chen, L.; Cheng, K.; Fukuda, S.; Takebe, N.; et al. SLFN11 Inactivation Induces Proteotoxic Stress and Sensitizes Cancer Cells to Ubiquitin Activating Enzyme Inhibitor TAK-243. Cancer Res. 2021, 81, 3067–3078. [Google Scholar] [CrossRef]
- Qu, S.; Fetsch, P.; Thomas, A.; Pommier, Y.; Schrump, D.S.; Miettinen, M.M.; Chen, H. Molecular Subtypes of Primary SCLC Tumors and Their Associations with Neuroendocrine and Therapeutic Markers. J. Thorac. Oncol. 2022, 17, 141–153. [Google Scholar] [CrossRef]
- Isnaldi, E.; Ferraioli, D.; Ferrando, L.; Brohée, S.; Ferrando, F.; Fregatti, P.; Bedognetti, D.; Ballestrero, A.; Zoppoli, G. Schlafen-11 Expression Is Associated with Immune Signatures and Basal-like Phenotype in Breast Cancer. Breast Cancer Res. Treat. 2019, 177, 335–343. [Google Scholar] [CrossRef]
- Xu, J.; Chen, S.; Liang, J.; Hao, T.; Wang, H.; Liu, G.; Jin, X.; Li, H.; Zhang, J.; Zhang, C.; et al. Schlafen Family Is a Prognostic Biomarker and Corresponds with Immune Infiltration in Gastric Cancer. Front. Immunol. 2022, 13, 922138. [Google Scholar] [CrossRef]
- Stewart, C.A.; Tong, P.; Cardnell, R.J.; Sen, T.; Li, L.; Gay, C.M.; Masrorpour, F.; Fan, Y.; Bara, R.O.; Feng, Y.; et al. Dynamic Variations in Epithelial-to-Mesenchymal Transition (EMT), ATM, and SLFN11 Govern Response to PARP Inhibitors and Cisplatin in Small Cell Lung Cancer. Oncotarget 2017, 8, 28575–28587. [Google Scholar] [CrossRef]
- Zhou, C.; Weng, J.; Liu, C.; Liu, S.; Hu, Z.; Xie, X.; Gao, D.; Zhou, Q.; Sun, J.; Xu, R.; et al. Disruption of SLFN11 Deficiency–Induced CCL2 Signaling and Macrophage M2 Polarization Potentiates Anti–PD-1 Therapy Efficacy in Hepatocellular Carcinoma. Gastroenterology 2023, 164, 1261–1278. [Google Scholar] [CrossRef]
- Willis, S.E.; Winkler, C.; Roudier, M.P.; Baird, T.; Marco-Casanova, P.; Jones, E.V.; Rowe, P.; Rodriguez-Canales, J.; Angell, H.K.; Ng, F.S.L.; et al. Retrospective Analysis of Schlafen11 (SLFN11) to Predict the Outcomes to Therapies Affecting the DNA Damage Response. Br. J. Cancer 2021, 125, 1666–1676. [Google Scholar] [CrossRef]
- Masuda, K.; Yoshida, T.; Motoi, N.; Shinno, Y.; Matsumoto, Y.; Okuma, Y.; Goto, Y.; Horinouchi, H.; Yamamoto, N.; Watanabe, S.; et al. Schlafen 11 Expression in Patients with Small Cell Lung Cancer and Its Association with Clinical Outcomes. Thorac. Cancer 2025, 16, e15529. [Google Scholar] [CrossRef] [PubMed]
Features | n (%) |
---|---|
Age (median = 66, SD = 7.4, min–max: 43–80 years) | |
<65 years ≥65 years | 16 (46) 19 (54) |
Gender | |
Female Male | 17 (49) 18 (51) |
Performance status according to ECOG-WHO | |
0 1 | 8 (23) 27 (77) |
Bone metastases | |
NO YES | 26 (74) 9 (26) |
CNS metastases | |
NO YES | 30 (86) 5 (14) |
Liver metastases | |
NO YES | 26 (74) 9 (26) |
Treatment-related adverse events (TRAEs) | |
NO YES | 17 (49) 38 (51) |
Response to treatment | |
PR SD PD | 15 (43) 13 (37) 7 (20) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grenda, A.; Galant, N.; Łomża-Łaba, A.; Krawczyk, P.; Jankowski, T.; Chmielewska, I.; Szczyrek, M.; Kieszko, R.; Milanowski, J. MET and SLFN11 as a Players in the SCLC Molecular Subtyping Game. Int. J. Mol. Sci. 2025, 26, 6095. https://doi.org/10.3390/ijms26136095
Grenda A, Galant N, Łomża-Łaba A, Krawczyk P, Jankowski T, Chmielewska I, Szczyrek M, Kieszko R, Milanowski J. MET and SLFN11 as a Players in the SCLC Molecular Subtyping Game. International Journal of Molecular Sciences. 2025; 26(13):6095. https://doi.org/10.3390/ijms26136095
Chicago/Turabian StyleGrenda, Anna, Natalia Galant, Aleksandra Łomża-Łaba, Paweł Krawczyk, Tomasz Jankowski, Izabela Chmielewska, Michał Szczyrek, Robert Kieszko, and Janusz Milanowski. 2025. "MET and SLFN11 as a Players in the SCLC Molecular Subtyping Game" International Journal of Molecular Sciences 26, no. 13: 6095. https://doi.org/10.3390/ijms26136095
APA StyleGrenda, A., Galant, N., Łomża-Łaba, A., Krawczyk, P., Jankowski, T., Chmielewska, I., Szczyrek, M., Kieszko, R., & Milanowski, J. (2025). MET and SLFN11 as a Players in the SCLC Molecular Subtyping Game. International Journal of Molecular Sciences, 26(13), 6095. https://doi.org/10.3390/ijms26136095