Human Serum Albumin Affinity for Putrescine Using ITC and STD-NMR
Abstract
1. Introduction
2. Results and Discussion
2.1. Putrescine Binding to HSA
2.2. Interaction Thermodynamics
3. Methods and Materials
3.1. Materials
3.2. Saturation Transfer Difference NMR
3.3. Isothermal Titration Calorimetry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holmar, J.; de la Puente-Secades, S.; Floege, J.; Noels, H.; Jankowski, J.; Orth-Alampour, S. Uremic Toxins Affecting Cardiovascular Calcification: A Systematic Review. Cells 2020, 9, 2428. [Google Scholar] [CrossRef] [PubMed]
- Ebert, T.; Neytchev, O.; Witasp, A.; Kublickiene, K.; Stenvinkel, P.; Shiels, P.G. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid. Redox Signal 2021, 35, 1426–1448. [Google Scholar] [CrossRef]
- Dehghan Niestanak, V.; Unsworth, L.D. Detailing Protein-Bound Uremic Toxin Interaction Mechanisms with Human Serum Albumin in the Pursuit of Designing Competitive Binders. Int. J. Mol. Sci. 2023, 24, 7452. [Google Scholar] [CrossRef]
- Itoh, Y.; Ezawa, A.; Kikuchi, K.; Tsuruta, Y.; Niwa, T. Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Anal. Bioanal. Chem. 2012, 403, 1841–1850. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.; de Pinho, M.N. Challenges of reducing protein-bound uremic toxin levels in chronic kidney disease and end stage renal disease. Transl. Res. 2021, 229, 115–134. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, S.; Tonelli, M.; Unsworth, L. Adsorption-Based Strategies for Removing Uremic Toxins from Blood. SSRN Electron. J. 2020, 319, 111035. [Google Scholar] [CrossRef]
- The European Uremic Toxins (EUTox) Database. Available online: https://www.uremic-toxins.org (accessed on 14 June 2024).
- Varshney, A.; Sen, P.; Ahmad, E.; Rehan, M.; Subbarao, N.; Khan, R.H. Ligand binding strategies of human serum albumin: How can the cargo be utilized? Chirality 2010, 22, 77–87. [Google Scholar] [CrossRef]
- Dockal, M.; Carter, D.C.; Ruker, F. The three recombinant domains of human serum albumin: Structural characterization and ligand binding properties. J. Biol. Chem. 1999, 274, 29303–29310. [Google Scholar] [CrossRef]
- Sleep, D.; Cameron, J.; Evans, L.R. Albumin as a versatile platform for drug half-life extension. Biochim. Biophys. Acta. 2013, 1830, 5526–5534. [Google Scholar] [CrossRef]
- Li, S.; Tonelli, M.; Unsworth, L.D. Indoxyl and p-cresol sulfate binding with human serum albumin. Colloids Surf. A Physicochem. Eng. Asp. 2022, 2022, 635. [Google Scholar] [CrossRef]
- Lee, P.; Wu, X. Review: Modifications of human serum albumin and their binding effect. Curr. Pharm. Des. 2015, 21, 1862–1865. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Vanholder, R.; De Smet, R.; Glorieux, G.; Argilés, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003, 63, 1934–1943. [Google Scholar] [CrossRef]
- Saito, A.; Takagi, T.; Chung, T.G.; Ohta, K. Serum levels of polyamines in patients with chronic renal failure. Kidney Int. Suppl. 1983, 16, S234–S237. [Google Scholar] [PubMed]
- Luo, D.; Lu, X.; Li, Y.; Xu, Y.; Zhou, Y.; Mao, H. Metabolism of Polyamines and Kidney Disease: A Promising Therapeutic Target. Kidney Dis. 2023, 9, 469–484. [Google Scholar] [CrossRef]
- Beauchemin, R.; N’Soukpoe-Kossi, C.N.; Thomas, T.J.; Thomas, T.; Carpentier, R.; Tajmir-Riahi, H.A. Polyamine analogues bind human serum albumin. Biomacromolecules 2007, 8, 3177–3183. [Google Scholar] [CrossRef]
- Roch, A.M.; Thomas, V.; Quash, G.; Moulinoux, J.P.; Delcros, J.G. A quantitative and qualitative study of the transglutaminase-mediated insertion of polyamines into plasma proteins from patients with bronchopulmonary cancer. Int. J. Cancer 1984, 33, 787–793. [Google Scholar] [CrossRef]
- Momeni, L.; Shareghi, B.; Saboury, A.A.; Farhadian, S.; Reisi, F. A spectroscopic and thermal stability study on the interaction between putrescine and bovine trypsin. Int. J. Biol. Macromol. 2017, 94 Pt. A, 145–153. [Google Scholar] [CrossRef]
- Ziaee, E.; Shareghi, B.; Farhadian, S.; Momeni, L.; Heibati-Goojani, F. The effect of putrescine on stability and structural properties of bovine serum albumin. J. Biomol. Struct. Dyn. 2021, 39, 254–262. [Google Scholar] [CrossRef]
- Ouameur, A.A.; Mangier, E.; Diamantoglou, S.; Rouillon, R.; Carpentier, R.; Tajmir-Riahi, H.A. Effects of organic and inorganic polyamine cations on the structure of human serum albumin. Biopolymers 2004, 73, 503–509. [Google Scholar] [CrossRef]
- Bakar, K.A.; Feroz, S.R. A critical view on the analysis of fluorescence quenching data for determining ligand-protein binding affinity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 223, 117337. [Google Scholar] [CrossRef]
- Dos Santos Rodrigues, F.H.; Delgado, G.G.; Santana da Costa, T.; Tasic, L. Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts. BBA Adv. 2023, 3, 100091. [Google Scholar] [CrossRef]
- Shu, S.; Yuan, Y.; Chen, J.; Sun, J.; Zhang, W.; Tang, Y.; Zhong, M.; Guo, S. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Sci. Rep. 2015, 5, 14390. [Google Scholar] [CrossRef] [PubMed]
- Angulo, J.; Nieto, P.M. STD-NMR: Application to transient interactions between biomolecules-a quantitative approach. Eur. Biophys. J. 2011, 40, 1357–1369. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: New York, NY, USA, 2006. [Google Scholar]
- Brender, J.R.; Krishnamoorthy, J.; Ghosh, A.; Bhunia, A. Binding Moiety Mapping by Saturation Transfer Difference NMR. Methods Mol. Biol. 2018, 1824, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, J.L.; Taylor, S.L.; Howard, M.J. Recent developments and applications of saturation transfer difference nuclear magnetic resonance (STD NMR) spectroscopy. Mol. Biosyst. 2013, 9, 571–577. [Google Scholar] [CrossRef]
- Cutting, B.; Shelke, S.V.; Dragic, Z.; Wagner, B.; Gathje, H.; Kelm, S.; Ernst, B. Sensitivity enhancement in saturation transfer difference (STD) experiments through optimized excitation schemes. Magn. Reson. Chem. 2007, 45, 720–724. [Google Scholar] [CrossRef]
- Mayer, M.; Meyer, B. Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy. Angew. Chem. Int. Ed. 1999, 38, 1784–1788. [Google Scholar] [CrossRef]
- Raiford, D.S.; Fisk, C.L.; Becker, E.D. Calibration of methanol and ethylene glycol nuclear magnetic resonance thermometers. Anal. Chem. 2002, 51, 2050–2051. [Google Scholar] [CrossRef]
- Harris, R.K.; Becker, E.D.; Cabral de Menezes, S.M.; Goodfellow, R.; Granger, P. NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts. IUPAC Recommendations 2001. Solid State Nucl. Magn. Reson. 2002, 22, 458–483. [Google Scholar] [CrossRef]
- Markley, J.L.; Bax, A.; Arata, Y.; Hilbers, C.W.; Kaptein, R.; Sykes, B.D.; Wright, P.E.; Wüthrich, K. Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy. J. Biomol. NMR. 1998, 12, 1–23. [Google Scholar] [CrossRef]
- Wishart, D.S.; Bigam, C.G.; Yao, J.; Abildgaard, F.; Dyson, H.J.; Oldfield, E.; Markley, J.L.; Sykes, B.D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR. 1995, 6, 135–140. [Google Scholar] [CrossRef]
- Hoult, D.I. Solvent peak saturation with single phase and quadrature fourier transformation. J. Magn. Reson. 1976, 21, 337–347. [Google Scholar] [CrossRef]
- Campbell, I.D.; Dobson, C.M.; Jeminet, G.; Williams, R.J. Pulsed NMR methods for the observation and assignment of exchangeable hydrogens: Application to bacitracin. FEBS Lett. 1974, 49, 115–119. [Google Scholar] [CrossRef]
- Kupce, E.; Freeman, R. Close Encounters between Soft Pulses. J. Magn. Reson. Ser. A 1995, 112, 261–264. [Google Scholar] [CrossRef]
- Ley, N.B.; Rowe, M.L.; Williamson, R.A.; Howard, M.J. Optimising selective excitation pulses to maximise saturation transfer difference NMR spectroscopy. RSC Adv. 2014, 4, 7347–7351. [Google Scholar] [CrossRef]
- Cala, O.; Guilliere, F.; Krimm, I. NMR-based analysis of protein-ligand interactions. Anal. Bioanal. Chem. 2014, 406, 943–956. [Google Scholar] [CrossRef]
- Bhunia, A.; Bhattacharjya, S.; Chatterjee, S. Applications of saturation transfer difference NMR in biological systems. Drug Discov. Today 2012, 17, 505–513. [Google Scholar] [CrossRef]
- Yan, J.; Kline, A.D.; Mo, H.; Shapiro, M.J.; Zartler, E.R. The effect of relaxation on the epitope mapping by saturation transfer difference NMR. J. Magn. Reson. 2003, 163, 270–276. [Google Scholar] [CrossRef]
- Mayer, M.; Meyer, B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 2001, 123, 6108–6117. [Google Scholar] [CrossRef]
- Liu, M.; Mao, X.-A.; Ye, C.; Huang, H.; Nicholson, J.K.; Lindon, J.C. Improved WATERGATE Pulse Sequences for Solvent Suppression in NMR Spectroscopy. J. Magn. Reson. 1998, 132, 125–129. [Google Scholar] [CrossRef]
- Smallcombe, S.H.; Patt, S.L.; Keifer, P.A. WET Solvent Suppression and Its Applications to LC NMR and High-Resolution NMR Spectroscopy. J. Magn. Reson. Ser. A 1995, 117, 295–303. [Google Scholar] [CrossRef]
- Ogg, R.J.; Kingsley, P.B.; Taylor, J.S. WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J. Magn. Reson. B 1994, 104, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, M.; Unsworth, L.D. Application of isothermal titration calorimetry for characterizing thermodynamic parameters of biomolecular interactions: Peptide self-assembly and protein adsorption case studies. Biomacromolecules 2014, 15, 3463–3473. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehghan Niestanak, V.; McKay, R.; Tonelli, M.; Unsworth, L.D. Human Serum Albumin Affinity for Putrescine Using ITC and STD-NMR. Int. J. Mol. Sci. 2025, 26, 6084. https://doi.org/10.3390/ijms26136084
Dehghan Niestanak V, McKay R, Tonelli M, Unsworth LD. Human Serum Albumin Affinity for Putrescine Using ITC and STD-NMR. International Journal of Molecular Sciences. 2025; 26(13):6084. https://doi.org/10.3390/ijms26136084
Chicago/Turabian StyleDehghan Niestanak, Vida, Ryan McKay, Marcello Tonelli, and Larry D. Unsworth. 2025. "Human Serum Albumin Affinity for Putrescine Using ITC and STD-NMR" International Journal of Molecular Sciences 26, no. 13: 6084. https://doi.org/10.3390/ijms26136084
APA StyleDehghan Niestanak, V., McKay, R., Tonelli, M., & Unsworth, L. D. (2025). Human Serum Albumin Affinity for Putrescine Using ITC and STD-NMR. International Journal of Molecular Sciences, 26(13), 6084. https://doi.org/10.3390/ijms26136084